|
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2018, 68, 394-424. 2. Varki, A., Biological roles of glycans. Glycobiology. 2016, 27, 3-49. 3. Hakomori, S.-i., Tumor-associated carbohydrate antigens. Annu. Rev. Immunol. 1984, 2, 103-126. 4. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526-542. 5. Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540-555. 6. Hossain, M. K.; Wall, K. A., Immunological evaluation of recent MUC1 glycopeptide cancer vaccines. Vaccine 2016, 4, 25. 7. Ju, T.; Otto, V. I.; Cummings, R. D., The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. 2011, 50, 1770-1791. 8. Feng, D.; Shaikh, A. S.; Wang, F., Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol. 2016, 11, 850-863. 9. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819-826. 10. Germain, R. N.; Margulies, D. H., The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 1993, 11, 403-450. 11. Wang, R.-F., The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 2001, 22, 269-276. 12. Inuki, S.; Kashiwabara, E.; Hirata, N.; Kishi, J.; Nabika, E.; Fujimoto, Y., Potent Th2 cytokine bias of natural killer T cell by CD1d glycolipid ligands: anchoring effect of polar groups in the lipid component. Angew. Chem. Int. Ed. 2018, 57, 9655-9659. 13. Kagan, E.; Ragupathi, G.; Reis, C. A.; Gildersleeve, J.; Kahne, D.; Clausen, H.; Danishefsky, S. J.; Livingston, P. O., Comparison of antigen constructs and carrier molecules for augmenting the immunogenicity of the monosaccharide epithelial cancer antigen Tn. Cancer Immunol. Immunother. 2005, 54, 424-430. 14. Shinefield, H. R., Overview of the development and current use of CRM197 conjugate vaccines for pediatric use. Vaccine 2010, 28, 4335-4339. 15. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc. Natl. Acad. Sci. 2013, 110, 2517-2522. 16. Kuan, T. C.; Wu, H. R.; Adak, A. K.; Li, B. Y.; Liang, C. F.; Hung, J. T.; Chiou, S. P.; Yu, A. L.; Hwu, J. R.; Lin, C. C., Synthesis of an S‐Linked α (2→ 8) GD3 Antigen and Evaluation of the Immunogenicity of Its Glycoconjugate. Chem.: Eur. J. 2017, 23, 6876-6887. 17. Allen, J. R.; Allen, J. G.; Zhang, X.-F.; Williams, L. J.; Zatorski, A.; Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J., A second generation synthesis of the MBr1 (Globo-H) breast tumor antigen: new application of the n-pentenyl glycoside method for achieving complex carbohydrate protein linkages. Chem.: Eur. J. 2000, 6, 1366-1375. 18. Tietze, L. F.; Schroeter, C.; Gabius, S.; Brinck, U.; Goerlach-Graw, A.; Gabius, H. J., Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chem. 1991, 2, 148-153. 19. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z., Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J. Med. Chem. 2005, 48, 875-883. 20. Yang, F.; Zheng, X.-J.; Huo, C.-X.; Wang, Y.; Zhang, Y.; Ye, X.-S., Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of sTn antigen. ACS Chem. Biol. 2011, 6, 252-259. 21. Zhang, X.; Kiechle, F. L., Glycosphingolipids in health and disease. Ann. Clin. Lab. Sci. 2004, 34, 3-13. 22. Alam, S.; Anugraham, M.; Huang, Y.-L.; Kohler, R. S.; Hettich, T.; Winkelbach, K.; Grether, Y.; López, M. N.; Khasbiullina, N.; Bovin, N. V., Altered (neo-) lacto series glycolipid biosynthesis impairs α2-6 sialylation on N-glycoproteins in ovarian cancer cells. Sci. Rep. 2017, 7, 45367. 23. Falk, K.-E.; Karlsson, K.-A.; Samuelsson, B. E., Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids: The globo-series (one to five sugars). Arch. Biochem. Biophys. 1979, 192, 164-176. 24. Liang, Y.-J.; Kuo, H.-H.; Lin, C.-H.; Chen, Y.-Y.; Yang, B.-C.; Cheng, Y.-Y.; Yu, A. L.; Khoo, K.-H.; Yu, J., Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc. Natl. Acad. Sci. 2010, 107, 22564-22567. 25. Schnaar, R. L.; Suzuki, A.; Stanley, P., Glycosphingolipids. In Essentials of Glycobiology. 2nd edition, Cold Spring Harbor Laboratory Press: 2009. 26. Farkas-Himsley, H.; Hill, R.; Rosen, B.; Arab, S.; Lingwood, C. A., The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc. Natl. Acad. Sci. 1995, 92, 6996-7000. 27. Okuda, T.; Tokuda, N.; Numata, S.-i.; Ito, M.; Ohta, M.; Kawamura, K.; Wiels, J.; Urano, T.; Tajima, O.; Furukawa, K., Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 2006, 281, 10230-10235. 28. Tolfvenstam, T.; Papadogiannakis, N.; Andersen, A.; Akre, O., No association between human parvovirus B19 and testicular germ cell cancer. J. Gen. Virol. 2002, 83, 2321-2324. 29. Chang, W.-W.; Lee, C. H.; Lee, P.; Lin, J.; Hsu, C.-W.; Hung, J.-T.; Lin, J.-J.; Yu, J.-C.; Shao, L.-e.; Yu, J., Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc. Natl. Acad. Sci. 2008, 105, 11667-11672. 30. Satoh, M.; Handa, K.; Saito, S.; Tokuyama, S.; Ito, A.; Miyao, N.; Orikasa, S.; Hakomori, S.-i., Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential. Cancer Res. 1996, 56, 1932-1938. 31. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X.-F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J., Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. 2001, 98, 3270-3275. 32. Slovin, S. F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W. G.; Fazzari, M.; Dantis, L.; Olkiewicz, K.; Lloyd, K. O.; Livingston, P. O.; Danishefsky, S. J.; Scher, H. I., Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. 1999, 96, 5710-5715. 33. Wang, Z. G.; Williams, L. J.; Zhang, X. F.; Zatorski, A.; Kudryashov, V.; Ragupathi, G.; Spassova, M.; Bornmann, W.; Slovin, S. F.; Scher, H. I.; Livingston, P. O.; Lloyd, K. O.; Danishefsky, S. J., Polyclonal antibodies from patients immunized with a globo H-keyhole limpet hemocyanin vaccine: Isolation, quantification, and characterization of immune responses by using totally synthetic immobilized tumor antigens. Proc. Natl. Acad. Sci. 2000, 97, 2719-2724. 34. Lee, H.-Y.; Chen, C.-Y.; Tsai, T.-I.; Li, S.-T.; Lin, K.-H.; Cheng, Y.-Y.; Ren, C.-T.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H., Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc. 2014, 136, 16844-16853. 35. Daniotti, J.; Vilcaes, A.; Torres Demichelis, V.; Ruggiero,F.; Rodriguez-Walker, M., Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front. Oncol. 2013, 3, 306. 36. Wang, Q.; Zhang, J.; Guo, Z., Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell. Bioorg. Med. Chem. 2007, 15, 7561-7567. 37. Osorio, M.; Gracia, E.; Rodríguez, E.; Saurez, G.; del Carmen Arango, M.; Noris, E.; Torriella, A.; Joan, A.; Gómez, E.; Anasagasti, L.; González, J. L.; de los Angeles Melgares, M.; Torres, I.; González, J.; Alonso, D.; Rengifo, E.; Carr, A.; Pérez, R.; Pérez, R.; Enrique Fernández, L., Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: Results of a phase Ib/IIa study. Canc. Biol. Ther. 2008, 7, 488-495. 38. Lo, A. S. Y.; Ma, Q.; Liu, D. L.; Junghans, R. P., Anti-GD3 chimeric sFv-CD28/T-cell receptor ζ designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin. Cancer Res. 2010, 16, 2769-2780. 39. Ragupathi, G.; Meyers, M.; Adluri, S.; Howard, L.; Musselli, C.; Livingston, P. O., Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int. J. Cancer 2000, 85, 659-666. 40. Yu, A. L.; Gilman, A. L.; Ozkaynak, M. F.; London, W. B.; Kreissman, S. G.; Chen, H. X.; Smith, M.; Anderson, B.; Villablanca, J. G.; Matthay, K. K.; Shimada, H.; Grupp, S. A.; Seeger, R.; Reynolds, C. P.; Buxton, A.; Reisfeld, R. A.; Gillies, S. D.; Cohn, S. L.; Maris, J. M.; Sondel, P. M., Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324-1334. 41. Alvarez-Rueda, N.; Desselle, A.; Cochonneau, D.; Chaumette, T.; Clemenceau, B.; Leprieur, S.; Bougras, G.; Supiot, S.; Mussini, J.-M.; Barbet, J.; Saba, J.; Paris, F.; Aubry, J.; Birklé, S., A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity. PLOS ONE 2011, 6, e25220. 42. Terme, M.; Dorvillius, M.; Cochonneau, D.; Chaumette, T.; Xiao, W.; Diccianni, M. B.; Barbet, J.; Yu, A. L.; Paris, F.; Sorkin, L. S.; Birklé, S., Chimeric antibody c.8B6 to O-acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14.18 antibody to GD2 without antibody induced allodynia. PLOS ONE 2014, 9, e87210. 43. Iwabuchi, K.; Nakayama, H.; Iwahara, C.; Takamori, K., Significance of glycosphingolipid fatty acid chain length on membrane microdomain‐mediated signal transduction. FEBS Lett. 2010, 584, 1642-1652. 44. Kiarash, A.; Boyd, B.; Lingwood, C. A., Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J. Biol. Chem. 1994, 269, 11138-11146. 45. Cheng, J.-Y.; Wang, S.-H.; Lin, J.; Tsai, Y.-C.; Yu, J.; Wu, J.-C.; Hung, J.-T.; Lin, J.-J.; Wu, Y.-Y.; Yeh, K.-T., Globo-H ceramide shed from cancer cells triggers translin-associated factor X-dependent angiogenesis. Cancer Res. 2014, 74, 6856-6866. 46. Helling, F.; Shang, A.; Calves, M.; Zhang, S.; Ren, S.; Yu, R. K.; Oettgen, H. F.; Livingston, P. O., GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 1994, 54, 197-203. 47. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523-1527. 48. Sears, P.; Wong, C.-H., Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001, 291, 2344-2350. 49. Huang, X.; Huang, L.; Wang, H.; Ye, X. S., Iterative one‐pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221-5224. 50. Monsan, P.; Remaud-Siméon, M.; André, I., Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr. Opin. Microbiol. 2010, 13, 293-300. 51. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S., Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc. 1995, 117, 7840-7841. 52. Park, T. K.; Kim, I. J.; Danishefsky, S. J., A total synthesis of a stage specific pentasaccharide embryogenesis marker. Tetrahedron Lett. 1995, 36, 9089-9092. 53. Lassaletta, J. M.; Carlsson, K.; Garegg, P. J.; Schmidt, R. R., Total synthesis of sialylgalactosylgloboside: stage-specific embryonic antigen 4. J. Org. Chem. 1996, 61, 6873-6880. 54. Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H., Synthesis of the Globo H hexasaccharide using the programmable reactivity-based one-pot strategy. Angew. Chem. Int. Ed. 2001, 40, 1274-1277. 55. Huang, C.-Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Head, S.; Wong, C.-H., Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. 2006, 103, 15-20. 56. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org. Lett. 2008, 10, 1009-1012. 57. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839. 58. Sugimoto, M.; Ogawa, T., Synthesis of a hematoside (GM3-ganglioside) and a stereoisomer. Glycoconj. 1985, 2, 5-9. 59. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A., A facile, regio- and stereo-selective synthesis of ganglioside GM3. Carbohydr. Res. 1989, 188, 71-80. 60. Ishida, H.; Ohta, Y.; Tsukada, Y.; Kiso, M.; Hasegawa, A., A synthetic approach to polysialogangliosides containing α-sialyl-(2 → 8)-sialic acid: total synthesis of ganglioside GD3. Carbohydr. Res. 1993, 246, 75-88. 61. Matsuzaki, Y.; Nunomura, S.; Ito, Y.; Sugimoto, M.; Nakahara, Y.; Ogawa, T., Stereocontrolled synthesis of GD2. Carbohydr. Res. 1993, 242, C1-C6. 62. Ito, Y.; Paulson, J. C., A novel strategy for synthesis of ganglioside GM3 using an enzymically produced sialoside glycosyl donor. J. Am. Chem. Soc. 1993, 115, 1603-1605. 63. Duclos, R. I., The total synthesis of ganglioside GM3. Carbohydr. Res. 2000, 328, 489-507. 64. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org. Biomol. Chem. 2018, 16, 4076-4080. 65. Takayama, S.; Livingston, P. O.; Wong, C.-H., Synthesis of the melanoma-associated ganglioside 9-O-acetyl GD3 through regioselective enzymatic acetylation of GD3 using subtilisin. Tetrahedron Lett. 1996, 37, 9271-9274. 66. Yu, H.; Cheng, J.; Ding, L.; Khedri, Z.; Chen, Y.; Chin, S.; Lau, K.; Tiwari, V. K.; Chen, X., Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J. Am. Chem. Soc. 2009, 131, 18467-18477. 67. Wu, D.; Xing, G.-W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer-Narkevitch, V.; Plettenburg, O.; Kronenberg, M.; Tsuji, M., Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. 2005, 102, 1351-1356. 68. Dondoni, A.; Perrone, D., Synthesis of 1,1‐dimethylethyl (S)‐4‐formyl‐2,2‐dimethyl‐3‐oxazolidinecarboxylate by oxidation of the alcohol. Org. Synth. 2003, 77, 64-64. 69. Dondoni, A.; Perrone, D.; Merino, P., Chelation-and non-chelation-controlled addition of 2-(trimethylsilyl) thiazole to. alpha.-amino aldehydes: stereoselective synthesis of the. beta.-amino-. alpha.-hydroxy aldehyde intermediate for the preparation of the human immunodeficiency virus proteinase inhibitor Ro 31-8959. J. Org. Chem. 1995, 60, 8074-8080. 70. Roush, W. R.; Hunt, J., Asymmetric allylboration of 2-N, 3-O-isopropylidene-N-Boc-L-serinal: diastereoselective synthesis of the calicheamicin. gamma. 1I amino sugar. J. Org. Chem. 1995, 60, 798-806. 71. Williams, L.; Zhang, Z.; Feng, S.; Carroll, P. J.; Joullié, M. M., Grignard reactions to chiral oxazolidine aldehydes. Tetrahedron 1996, 52, 11673-11694. 72. Duffin, G. R.; Ellames, G. J.; Hartmann, S.; Herbert, J. M.; Smith, D. I., Practical syntheses of [13C]- and [14C]-labelled glucosphingolipids. J. Chem. Soc. 2000, 2237-2242. 73. 陳安宜. 結合化學與酵素方法合成具神經增生活性之神經節苷脂LLG-5中Neu5Gc-α-(2,3)-Lac-β-Phytosphingosine片段. 國立清華大學, 2015. 74. 卓苑婷. 結合化學與酵素方法合成神經節苷脂LLG-5及其衍生物. 國立清華大學, 2017. 75. Despras, G.; Bernard, C.; Perrot, A.; Cattiaux, L.; Prochiantz, A.; Lortat‐Jacob, H.; Mallet, J. M., Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. Chem.: Eur. J. 2013, 19, 531-540. 76. Koto, S.; Hirooka, M.; Tashiro, T.; Sakashita, M.; Hatachi, M.; Kono, T.; Shimizu, M.; Yoshida, N.; Kurasawa, S.; Sakuma, N.; Sawazaki, S.; Takeuchi, A.; Shoya, N.; Nakamura, E., Simple preparations of alkyl and cycloalkyl α-glycosides of maltose, cellobiose, and lactose. Carbohydr. Res. 2004, 339, 2415-2424. 77. Nakayama, K.; Uoto, K.; Higashi, K.; Soga, T.; Kusama, T., A useful method for deprotection of the protective allyl group at the anomeric oxygen of carbohydrate moieties using tetrakis(triphenylphosphine)palladium. Chem. Pharm. Bull. 1992, 40, 1718-1720. 78. Liu, Y.; Wen, L.; Li, L.; Gadi, M. R.; Guan, W.; Huang, K.; Xiao, Z.; Wei, M.; Ma, C.; Zhang, Q., A general chemoenzymatic strategy for the synthesis of glycosphingolipids. Eur. J. Org. Chem. 2016, 2016, 4315-4320. 79. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem. 2016, 81, 10809-10824. 80. 魯 玟. 以酵素方法合成神經節苷脂醣體. 國立清華大學, 2018. 81. Ogura, H.; Furuhata, K.; Sato, S.; Anazawa, K.; Itoh, M.; Shitori, Y., Synthesis of 9-O-acyl- and 4-O-acetyl-sialic acids. Carbohydr. Res. 1987, 167, 77-86. 82. Furuhata, K.; Ogura, H., Studies on sialic acids. XIX. syntheses of partially O-acetylated 4-methylcoumarin-7-yl 5-acetamido-3, 5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acids. Chem. Pharm. Bull. 1989, 37, 2037-2040. 83. Khedri, Z.; Xiao, A.; Yu, H.; Landig, C. S.; Li, W.; Diaz, S.; Wasik, B. R.; Parrish, C. R.; Wang, L.-P.; Varki, A., A chemical biology solution to problems with studying biologically important but unstable 9-O-acetyl sialic acids. ACS Chem. Biol. 2016, 12, 214-224. 84. 黃思瑜. Globo H、DSGb5及唾液酸化 Globo-系列醣體之合成. 國立清華大學, 2017. 85. 吳東曄. DSGb5合成方法之開發. 國立清華大學, 2018. 86. Masui, H.; Yosugi, S.; Fuse, S.; Takahashi, T., Solution-phase automated synthesis of an α-amino aldehyde as a versatile intermediate. Beilstein J. Org. Chem. 2017, 13, 106-110. 87. Loka, R. S.; Sadek, C. M.; Romaniuk, N. A.; Cairo, C. W., Conjugation of synthetic N-acetyl-lactosamine to azide-containing proteins using the staudinger ligation. Bioconjugate Chem. 2010, 21, 1842-1849. 88. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
|