帳號:guest(3.145.155.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁瑋倫
作者(外文):Liang, Wei-Lun
論文名稱(中文):結合化學與酵素方法合成Globo-系列鞘醣脂及GD2衍生物
論文名稱(外文):Chemoenzymatic Syntheses of Globo-series Glycosphingolipids and GD2 Analogues
指導教授(中文):林俊成
指導教授(外文):Lin, Chun-Cheng
口試委員(中文):游景晴
梁健夫
口試委員(外文):Yu, Ching-Ching
Liang, Chien-Fu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023519
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:194
中文關鍵詞:結合化學與酵素方法合成腫瘤相關醣體抗原疫苗
外文關鍵詞:Chemoenzymatic SynthesisTumor-Associated Carbohydrate AntigensVaccine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在眾多的醣體中,腫瘤相關醣體抗原常大量表現在癌細胞表面,例如:Globo-系列鞘醣脂和9-OAc-GD2,因此,可以透過這些腫瘤相關醣體抗原區分腫瘤細胞和正常細胞。所以,腫瘤相關醣體抗原成為癌症免疫疫苗的標靶。此外,腫瘤相關醣體抗原與癌症腫瘤的增殖、入侵、轉移以及血管增生等現象有關。

Globo-系列鞘醣脂被發現大量表達於乳癌細胞表面,非還原端為九號位乙醯基修飾唾液酸的9-OAc-GD2被發現只會表現在癌細胞表面而不會存在於正常細胞。因此,本論文希望合成Globo-系列鞘醣脂及9-OAc-GD2來探討其在生物體內的作用機制,用以發展新的癌症治療方法。

在Globo-系列鞘醣脂的部分,本論文透過化學方法合成Lactose-Sph及Gb3-Sph,並且透過連續一鍋化酵素合成法合成Gb4-Sph, Gb5-Sph, Globo H-Sph及SSEA-4-Sph。最後將脂肪酸建構在醣體上,完成了Globo-系列鞘醣脂之合成。本論文亦利用多種酵素來建構9-OAc-GD2、9-NHAc-GD2及GD2,最後將GD2衍生物建構在DT上,完成GD2衍生物之疫苗。
Cancer cells can be distinguished from normal cells by displaying aberrant levels and types of tumor-associated carbohydrate antigens (TACAs) on their surfaces such as Globo-series glycosphingolipids and 9-OAc-GD2. As a result, TACAs were considered as promising targets for the design of anticancer vaccines. In addition, TACAs regulate tumor proliferation, invasion, metastasis and angiogenesis.

Globo-series glycosphingolipids were overexpressed on breast cancer cells, and 9-OAc-GD2 were only found on tumor cells but not on peripheral nerves and brain. Therefore, we would like to synthesize Globo-series glycosphingolipids and 9-OAc-GD2 analogues for realizing their roles in vivo and immunogenicity study.

For Globo-series glycosphingolipids, the synthetic pathway was initiated by glycosylation of lactose donor and sphingosine. After enzymatic synthesis of Gb4-, Gb5-, Globo H-, and SSEA-4-sphingosine, fatty acids were coupled with sphingosine to form Gb4, Gb5, Globo H and SSEA-4. On the other hand, we conducted a small library of carbohydrate-active enzymes to construct GD2 analogues, including GD2, 9-NHAc-GD2, and 9-OAc-GD2. These glycans were conjugated on DT for immunogenicity study.
中文摘要…I
Abstract…II
謝誌…III
目錄…VI
圖目錄…IX
表目錄…XII
流程目錄…XIII
縮寫對照表…XV
第一章 緒論…1
1-1 前言…1
1-2 腫瘤相關醣體抗原…2
1-2-1 抗原與免疫系統…4
1-2-2 抗原疫苗…7
1-3 醣神經胺醇脂…12
1-3-1 Globo-系列鞘醣脂…15
1-3-2 Ganglio-系列鞘醣脂…16
1-4 神經醯胺的重要性…19
1-4-1 神經醯胺影響生物體內的交互作用…19
1-4-2 神經醯胺對癌症相關病徵的影響…21
1-5 醣神經胺醇脂之合成策略…23
1-5-1 Globo-系列鞘醣脂之合成研究…23
1-5-2 Ganglio-系列鞘醣脂之合成研究…29
1-6 研究動機…34
第二章 Globo-系列鞘醣脂之合成…35
2-1 Globo-系列鞘醣脂之合成溯徑分析…35
2-2 鞘胺醇之合成…36
2-3 Lactose-Sph之建構…41
2-4 以酵素催化完成醣體之建構…42
2-5 Gb3-Sph之建構…45
2-6 脂肪酸之建構以完成Globo-系列鞘醣脂…46
2-7 結論…48
第三章 9-OAc-GD2及其衍生物之合成…49
3-1 9-OAc-GD2及其衍生物之合成溯徑分析…49
3-2 9-OAc-Sia之合成…51
3-3 6-NHAc-ManNAc之合成…53
3-4 9-OAc-GD3及其衍生物之建構…54
3-5 9-OAc-GD2及其衍生物之建構…61
3-6 9-OAc-GD2及其衍生物疫苗之建構…62
3-7 測試乙醯基水解程度…64
3-8 結論…67
第四章 未來展望…68
第五章 實驗部分…69
5-1 Reagents and Solvents…69
5-2 Spectra Notes…70
5-3 High-performance liquid chromatography (HPLC)…70
5-4 Synthetic Procedures and Characterization…71
5-5 General Procedure for GD2 analogues Glycoconjugates…120
5-6 Reaction condition of 9-OAc-GD2 hydrolysis…121
第六章 參考文獻與資料…122
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2018, 68, 394-424.
2. Varki, A., Biological roles of glycans. Glycobiology. 2016, 27, 3-49.
3. Hakomori, S.-i., Tumor-associated carbohydrate antigens. Annu. Rev. Immunol. 1984, 2, 103-126.
4. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526-542.
5. Pinho, S. S.; Reis, C. A., Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540-555.
6. Hossain, M. K.; Wall, K. A., Immunological evaluation of recent MUC1 glycopeptide cancer vaccines. Vaccine 2016, 4, 25.
7. Ju, T.; Otto, V. I.; Cummings, R. D., The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. 2011, 50, 1770-1791.
8. Feng, D.; Shaikh, A. S.; Wang, F., Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol. 2016, 11, 850-863.
9. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature 2007, 449, 819-826.
10. Germain, R. N.; Margulies, D. H., The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 1993, 11, 403-450.
11. Wang, R.-F., The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 2001, 22, 269-276.
12. Inuki, S.; Kashiwabara, E.; Hirata, N.; Kishi, J.; Nabika, E.; Fujimoto, Y., Potent Th2 cytokine bias of natural killer T cell by CD1d glycolipid ligands: anchoring effect of polar groups in the lipid component. Angew. Chem. Int. Ed. 2018, 57, 9655-9659.
13. Kagan, E.; Ragupathi, G.; Reis, C. A.; Gildersleeve, J.; Kahne, D.; Clausen, H.; Danishefsky, S. J.; Livingston, P. O., Comparison of antigen constructs and carrier molecules for augmenting the immunogenicity of the monosaccharide epithelial cancer antigen Tn. Cancer Immunol. Immunother. 2005, 54, 424-430.
14. Shinefield, H. R., Overview of the development and current use of CRM197 conjugate vaccines for pediatric use. Vaccine 2010, 28, 4335-4339.
15. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc. Natl. Acad. Sci. 2013, 110, 2517-2522.
16. Kuan, T. C.; Wu, H. R.; Adak, A. K.; Li, B. Y.; Liang, C. F.; Hung, J. T.; Chiou, S. P.; Yu, A. L.; Hwu, J. R.; Lin, C. C., Synthesis of an S‐Linked α (2→ 8) GD3 Antigen and Evaluation of the Immunogenicity of Its Glycoconjugate. Chem.: Eur. J. 2017, 23, 6876-6887.
17. Allen, J. R.; Allen, J. G.; Zhang, X.-F.; Williams, L. J.; Zatorski, A.; Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J., A second generation synthesis of the MBr1 (Globo-H) breast tumor antigen: new application of the n-pentenyl glycoside method for achieving complex carbohydrate protein linkages. Chem.: Eur. J. 2000, 6, 1366-1375.
18. Tietze, L. F.; Schroeter, C.; Gabius, S.; Brinck, U.; Goerlach-Graw, A.; Gabius, H. J., Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chem. 1991, 2, 148-153.
19. Pan, Y.; Chefalo, P.; Nagy, N.; Harding, C.; Guo, Z., Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J. Med. Chem. 2005, 48, 875-883.
20. Yang, F.; Zheng, X.-J.; Huo, C.-X.; Wang, Y.; Zhang, Y.; Ye, X.-S., Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of sTn antigen. ACS Chem. Biol. 2011, 6, 252-259.
21. Zhang, X.; Kiechle, F. L., Glycosphingolipids in health and disease. Ann. Clin. Lab. Sci. 2004, 34, 3-13.
22. Alam, S.; Anugraham, M.; Huang, Y.-L.; Kohler, R. S.; Hettich, T.; Winkelbach, K.; Grether, Y.; López, M. N.; Khasbiullina, N.; Bovin, N. V., Altered (neo-) lacto series glycolipid biosynthesis impairs α2-6 sialylation on N-glycoproteins in ovarian cancer cells. Sci. Rep. 2017, 7, 45367.
23. Falk, K.-E.; Karlsson, K.-A.; Samuelsson, B. E., Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids: The globo-series (one to five sugars). Arch. Biochem. Biophys. 1979, 192, 164-176.
24. Liang, Y.-J.; Kuo, H.-H.; Lin, C.-H.; Chen, Y.-Y.; Yang, B.-C.; Cheng, Y.-Y.; Yu, A. L.; Khoo, K.-H.; Yu, J., Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc. Natl. Acad. Sci. 2010, 107, 22564-22567.
25. Schnaar, R. L.; Suzuki, A.; Stanley, P., Glycosphingolipids. In Essentials of Glycobiology. 2nd edition, Cold Spring Harbor Laboratory Press: 2009.
26. Farkas-Himsley, H.; Hill, R.; Rosen, B.; Arab, S.; Lingwood, C. A., The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc. Natl. Acad. Sci. 1995, 92, 6996-7000.
27. Okuda, T.; Tokuda, N.; Numata, S.-i.; Ito, M.; Ohta, M.; Kawamura, K.; Wiels, J.; Urano, T.; Tajima, O.; Furukawa, K., Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J. Biol. Chem. 2006, 281, 10230-10235.
28. Tolfvenstam, T.; Papadogiannakis, N.; Andersen, A.; Akre, O., No association between human parvovirus B19 and testicular germ cell cancer. J. Gen. Virol. 2002, 83, 2321-2324.
29. Chang, W.-W.; Lee, C. H.; Lee, P.; Lin, J.; Hsu, C.-W.; Hung, J.-T.; Lin, J.-J.; Yu, J.-C.; Shao, L.-e.; Yu, J., Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc. Natl. Acad. Sci. 2008, 105, 11667-11672.
30. Satoh, M.; Handa, K.; Saito, S.; Tokuyama, S.; Ito, A.; Miyao, N.; Orikasa, S.; Hakomori, S.-i., Disialosyl galactosylgloboside as an adhesion molecule expressed on renal cell carcinoma and its relationship to metastatic potential. Cancer Res. 1996, 56, 1932-1938.
31. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X.-F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J., Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. 2001, 98, 3270-3275.
32. Slovin, S. F.; Ragupathi, G.; Adluri, S.; Ungers, G.; Terry, K.; Kim, S.; Spassova, M.; Bornmann, W. G.; Fazzari, M.; Dantis, L.; Olkiewicz, K.; Lloyd, K. O.; Livingston, P. O.; Danishefsky, S. J.; Scher, H. I., Carbohydrate vaccines in cancer: Immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl. Acad. Sci. 1999, 96, 5710-5715.
33. Wang, Z. G.; Williams, L. J.; Zhang, X. F.; Zatorski, A.; Kudryashov, V.; Ragupathi, G.; Spassova, M.; Bornmann, W.; Slovin, S. F.; Scher, H. I.; Livingston, P. O.; Lloyd, K. O.; Danishefsky, S. J., Polyclonal antibodies from patients immunized with a globo H-keyhole limpet hemocyanin vaccine: Isolation, quantification, and characterization of immune responses by using totally synthetic immobilized tumor antigens. Proc. Natl. Acad. Sci. 2000, 97, 2719-2724.
34. Lee, H.-Y.; Chen, C.-Y.; Tsai, T.-I.; Li, S.-T.; Lin, K.-H.; Cheng, Y.-Y.; Ren, C.-T.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H., Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc. 2014, 136, 16844-16853.
35. Daniotti, J.; Vilcaes, A.; Torres Demichelis, V.; Ruggiero,F.; Rodriguez-Walker, M., Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front. Oncol. 2013, 3, 306.
36. Wang, Q.; Zhang, J.; Guo, Z., Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell. Bioorg. Med. Chem. 2007, 15, 7561-7567.
37. Osorio, M.; Gracia, E.; Rodríguez, E.; Saurez, G.; del Carmen Arango, M.; Noris, E.; Torriella, A.; Joan, A.; Gómez, E.; Anasagasti, L.; González, J. L.; de los Angeles Melgares, M.; Torres, I.; González, J.; Alonso, D.; Rengifo, E.; Carr, A.; Pérez, R.; Pérez, R.; Enrique Fernández, L., Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients: Results of a phase Ib/IIa study. Canc. Biol. Ther. 2008, 7, 488-495.
38. Lo, A. S. Y.; Ma, Q.; Liu, D. L.; Junghans, R. P., Anti-GD3 chimeric sFv-CD28/T-cell receptor ζ designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin. Cancer Res. 2010, 16, 2769-2780.
39. Ragupathi, G.; Meyers, M.; Adluri, S.; Howard, L.; Musselli, C.; Livingston, P. O., Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int. J. Cancer 2000, 85, 659-666.
40. Yu, A. L.; Gilman, A. L.; Ozkaynak, M. F.; London, W. B.; Kreissman, S. G.; Chen, H. X.; Smith, M.; Anderson, B.; Villablanca, J. G.; Matthay, K. K.; Shimada, H.; Grupp, S. A.; Seeger, R.; Reynolds, C. P.; Buxton, A.; Reisfeld, R. A.; Gillies, S. D.; Cohn, S. L.; Maris, J. M.; Sondel, P. M., Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 2010, 363, 1324-1334.
41. Alvarez-Rueda, N.; Desselle, A.; Cochonneau, D.; Chaumette, T.; Clemenceau, B.; Leprieur, S.; Bougras, G.; Supiot, S.; Mussini, J.-M.; Barbet, J.; Saba, J.; Paris, F.; Aubry, J.; Birklé, S., A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity. PLOS ONE 2011, 6, e25220.
42. Terme, M.; Dorvillius, M.; Cochonneau, D.; Chaumette, T.; Xiao, W.; Diccianni, M. B.; Barbet, J.; Yu, A. L.; Paris, F.; Sorkin, L. S.; Birklé, S., Chimeric antibody c.8B6 to O-acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14.18 antibody to GD2 without antibody induced allodynia. PLOS ONE 2014, 9, e87210.
43. Iwabuchi, K.; Nakayama, H.; Iwahara, C.; Takamori, K., Significance of glycosphingolipid fatty acid chain length on membrane microdomain‐mediated signal transduction. FEBS Lett. 2010, 584, 1642-1652.
44. Kiarash, A.; Boyd, B.; Lingwood, C. A., Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J. Biol. Chem. 1994, 269, 11138-11146.
45. Cheng, J.-Y.; Wang, S.-H.; Lin, J.; Tsai, Y.-C.; Yu, J.; Wu, J.-C.; Hung, J.-T.; Lin, J.-J.; Wu, Y.-Y.; Yeh, K.-T., Globo-H ceramide shed from cancer cells triggers translin-associated factor X-dependent angiogenesis. Cancer Res. 2014, 74, 6856-6866.
46. Helling, F.; Shang, A.; Calves, M.; Zhang, S.; Ren, S.; Yu, R. K.; Oettgen, H. F.; Livingston, P. O., GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 1994, 54, 197-203.
47. Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., Automated solid-phase synthesis of oligosaccharides. Science 2001, 291, 1523-1527.
48. Sears, P.; Wong, C.-H., Toward automated synthesis of oligosaccharides and glycoproteins. Science 2001, 291, 2344-2350.
49. Huang, X.; Huang, L.; Wang, H.; Ye, X. S., Iterative one‐pot synthesis of oligosaccharides. Angew. Chem. Int. Ed. 2004, 43, 5221-5224.
50. Monsan, P.; Remaud-Siméon, M.; André, I., Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr. Opin. Microbiol. 2010, 13, 293-300.
51. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S., Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc. 1995, 117, 7840-7841.
52. Park, T. K.; Kim, I. J.; Danishefsky, S. J., A total synthesis of a stage specific pentasaccharide embryogenesis marker. Tetrahedron Lett. 1995, 36, 9089-9092.
53. Lassaletta, J. M.; Carlsson, K.; Garegg, P. J.; Schmidt, R. R., Total synthesis of sialylgalactosylgloboside: stage-specific embryonic antigen 4. J. Org. Chem. 1996, 61, 6873-6880.
54. Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H., Synthesis of the Globo H hexasaccharide using the programmable reactivity-based one-pot strategy. Angew. Chem. Int. Ed. 2001, 40, 1274-1277.
55. Huang, C.-Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Head, S.; Wong, C.-H., Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. 2006, 103, 15-20.
56. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org. Lett. 2008, 10, 1009-1012.
57. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839.
58. Sugimoto, M.; Ogawa, T., Synthesis of a hematoside (GM3-ganglioside) and a stereoisomer. Glycoconj. 1985, 2, 5-9.
59. Murase, T.; Ishida, H.; Kiso, M.; Hasegawa, A., A facile, regio- and stereo-selective synthesis of ganglioside GM3. Carbohydr. Res. 1989, 188, 71-80.
60. Ishida, H.; Ohta, Y.; Tsukada, Y.; Kiso, M.; Hasegawa, A., A synthetic approach to polysialogangliosides containing α-sialyl-(2 → 8)-sialic acid: total synthesis of ganglioside GD3. Carbohydr. Res. 1993, 246, 75-88.
61. Matsuzaki, Y.; Nunomura, S.; Ito, Y.; Sugimoto, M.; Nakahara, Y.; Ogawa, T., Stereocontrolled synthesis of GD2. Carbohydr. Res. 1993, 242, C1-C6.
62. Ito, Y.; Paulson, J. C., A novel strategy for synthesis of ganglioside GM3 using an enzymically produced sialoside glycosyl donor. J. Am. Chem. Soc. 1993, 115, 1603-1605.
63. Duclos, R. I., The total synthesis of ganglioside GM3. Carbohydr. Res. 2000, 328, 489-507.
64. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org. Biomol. Chem. 2018, 16, 4076-4080.
65. Takayama, S.; Livingston, P. O.; Wong, C.-H., Synthesis of the melanoma-associated ganglioside 9-O-acetyl GD3 through regioselective enzymatic acetylation of GD3 using subtilisin. Tetrahedron Lett. 1996, 37, 9271-9274.
66. Yu, H.; Cheng, J.; Ding, L.; Khedri, Z.; Chen, Y.; Chin, S.; Lau, K.; Tiwari, V. K.; Chen, X., Chemoenzymatic synthesis of GD3 oligosaccharides and other disialyl glycans containing natural and non-natural sialic acids. J. Am. Chem. Soc. 2009, 131, 18467-18477.
67. Wu, D.; Xing, G.-W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer-Narkevitch, V.; Plettenburg, O.; Kronenberg, M.; Tsuji, M., Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. 2005, 102, 1351-1356.
68. Dondoni, A.; Perrone, D., Synthesis of 1,1‐dimethylethyl (S)‐4‐formyl‐2,2‐dimethyl‐3‐oxazolidinecarboxylate by oxidation of the alcohol. Org. Synth. 2003, 77, 64-64.
69. Dondoni, A.; Perrone, D.; Merino, P., Chelation-and non-chelation-controlled addition of 2-(trimethylsilyl) thiazole to. alpha.-amino aldehydes: stereoselective synthesis of the. beta.-amino-. alpha.-hydroxy aldehyde intermediate for the preparation of the human immunodeficiency virus proteinase inhibitor Ro 31-8959. J. Org. Chem. 1995, 60, 8074-8080.
70. Roush, W. R.; Hunt, J., Asymmetric allylboration of 2-N, 3-O-isopropylidene-N-Boc-L-serinal: diastereoselective synthesis of the calicheamicin. gamma. 1I amino sugar. J. Org. Chem. 1995, 60, 798-806.
71. Williams, L.; Zhang, Z.; Feng, S.; Carroll, P. J.; Joullié, M. M., Grignard reactions to chiral oxazolidine aldehydes. Tetrahedron 1996, 52, 11673-11694.
72. Duffin, G. R.; Ellames, G. J.; Hartmann, S.; Herbert, J. M.; Smith, D. I., Practical syntheses of [13C]- and [14C]-labelled glucosphingolipids. J. Chem. Soc. 2000, 2237-2242.
73. 陳安宜. 結合化學與酵素方法合成具神經增生活性之神經節苷脂LLG-5中Neu5Gc-α-(2,3)-Lac-β-Phytosphingosine片段. 國立清華大學, 2015.
74. 卓苑婷. 結合化學與酵素方法合成神經節苷脂LLG-5及其衍生物. 國立清華大學, 2017.
75. Despras, G.; Bernard, C.; Perrot, A.; Cattiaux, L.; Prochiantz, A.; Lortat‐Jacob, H.; Mallet, J. M., Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. Chem.: Eur. J. 2013, 19, 531-540.
76. Koto, S.; Hirooka, M.; Tashiro, T.; Sakashita, M.; Hatachi, M.; Kono, T.; Shimizu, M.; Yoshida, N.; Kurasawa, S.; Sakuma, N.; Sawazaki, S.; Takeuchi, A.; Shoya, N.; Nakamura, E., Simple preparations of alkyl and cycloalkyl α-glycosides of maltose, cellobiose, and lactose. Carbohydr. Res. 2004, 339, 2415-2424.
77. Nakayama, K.; Uoto, K.; Higashi, K.; Soga, T.; Kusama, T., A useful method for deprotection of the protective allyl group at the anomeric oxygen of carbohydrate moieties using tetrakis(triphenylphosphine)palladium. Chem. Pharm. Bull. 1992, 40, 1718-1720.
78. Liu, Y.; Wen, L.; Li, L.; Gadi, M. R.; Guan, W.; Huang, K.; Xiao, Z.; Wei, M.; Ma, C.; Zhang, Q., A general chemoenzymatic strategy for the synthesis of glycosphingolipids. Eur. J. Org. Chem. 2016, 2016, 4315-4320.
79. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem. 2016, 81, 10809-10824.
80. 魯 玟. 以酵素方法合成神經節苷脂醣體. 國立清華大學, 2018.
81. Ogura, H.; Furuhata, K.; Sato, S.; Anazawa, K.; Itoh, M.; Shitori, Y., Synthesis of 9-O-acyl- and 4-O-acetyl-sialic acids. Carbohydr. Res. 1987, 167, 77-86.
82. Furuhata, K.; Ogura, H., Studies on sialic acids. XIX. syntheses of partially O-acetylated 4-methylcoumarin-7-yl 5-acetamido-3, 5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acids. Chem. Pharm. Bull. 1989, 37, 2037-2040.
83. Khedri, Z.; Xiao, A.; Yu, H.; Landig, C. S.; Li, W.; Diaz, S.; Wasik, B. R.; Parrish, C. R.; Wang, L.-P.; Varki, A., A chemical biology solution to problems with studying biologically important but unstable 9-O-acetyl sialic acids. ACS Chem. Biol. 2016, 12, 214-224.
84. 黃思瑜. Globo H、DSGb5及唾液酸化 Globo-系列醣體之合成. 國立清華大學, 2017.
85. 吳東曄. DSGb5合成方法之開發. 國立清華大學, 2018.
86. Masui, H.; Yosugi, S.; Fuse, S.; Takahashi, T., Solution-phase automated synthesis of an α-amino aldehyde as a versatile intermediate. Beilstein J. Org. Chem. 2017, 13, 106-110.
87. Loka, R. S.; Sadek, C. M.; Romaniuk, N. A.; Cairo, C. W., Conjugation of synthetic N-acetyl-lactosamine to azide-containing proteins using the staudinger ligation. Bioconjugate Chem. 2010, 21, 1842-1849.
88. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *