|
1. Rappuoli, R.; Mandl, C. W.; Black, S.; De Gregorio, E., Vaccines for the twenty-first century society. Nat. Rev. Immunol., 2011, 11, 865-872. 2. Feng, D.; Shaikh, A. S.; Wang, F., Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol., 2016, 11, 850-863. 3. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer, 2005, 5, 526-542. 4. Wiederschain, G. Y., Essentials of glycobiology. 2009; Vol. 74, p 1056. 5. Maccioni, H. J. F., Glycosylation of glycolipids in the Golgi complex. J. Neurochem., 2007, 103, 81-90. 6. Schnaar, R. L.; Gerardy-Schahn, R.; Hildebrandt, H., Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev., 2014, 94, 461-518. 7. Daniotti, J.; Vilcaes, A.; Torres Demichelis, V.; Ruggiero, F.; Rodriguez-Walker, M., Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front. Oncol., 2013, 3, 1-12. 8. Lammie, G.; Cheung, N.; Gerald, W.; Rosenblum, M.; Cordoncardo, C., Ganglioside GD2 expression in the human nervous-system and in neuroblastomas-An immunohistochemical study. Int. J. Oncol., 1993, 3, 909-915. 9. Watanabe, T.; Pukel, C. S.; Takeyama, H.; Lloyd, K. O.; Shiku, H.; Li, L.; Travassos, L. R.; Oettgen, H. F.; Old, L., Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J. Exp. Med., 1982, 156, 1884-1889. 10. Cheresh, D. A.; Rosenberg, J.; Mujoo, K.; Hirschowitz, L.; Reisfeld, R. A., Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res., 1986, 46, 5112-5118. 11. Carubia, J. M.; Robert, K. Y.; Macala, L. J.; Kirkwood, J. M.; Varga, J. M., Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun., 1984, 120, 500-504. 12. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S.; Gilbert, M.; Wakarchuk, W., Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res, 2005, 340, 1963-1972. 13. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem., 2016, 81, 10809-10824. 14. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org. Biomol. Chem., 2018, 16, 4076-4080. 15. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology, 2010, 20, 1373-1379. 16. Mènard, S.; Tagliabue, E.; Canevari, S.; Fossati, G.; Colnaghi, M. I., Generation of monoclonal antibodies reacting with normal and cancer cells of human breast. Cancer Res., 1983, 43, 1295-1300. 17. Watanabe, M.; Matsuoka, K.; Kita, E.; Igai, K.; Higashi, N.; Miyagawa, A.; Watanabe, T.; Yanoshita, R.; Samejima, Y.; Terunuma, D.; Natori, Y.; Nishikawa, K., Oral Therapeutic Agents with Highly Clustered Globotriose for Treatment of Shiga Toxigenic Escherichia coli Infections. J. Infect. Dis., 2004, 189, 360-368. 18. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X.-F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A., Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc. Natl. Acad. Sci., 2001, 98, 3270-3275. 19. Ragupathi, G.; Koganty, R. R.; Qiu, D.; Lloyd, K. O.; Livingston, P. O., A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconj. J., 1998, 15, 217-221. 20. Livingston, P. O.; Adluri, S.; Helling, F.; Yao, T.-J.; Kensilt, C. R.; Newman, M. J.; Marciani, D., Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine, 1994, 12, 1275-1280. 21. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc. Natl. Acad. Sci., 2013, 110, 2517-2522. 22. Lee, H.-Y.; Chen, C.-Y.; Tsai, T.-I.; Li, S.-T.; Lin, K.-H.; Cheng, Y.-Y.; Ren, C.-T.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H., Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc., 2014, 136, 16844-16853. 23. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S., Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc., 1995, 117, 7840-7841. 24. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org. Lett., 2008, 10, 1009-1012. 25. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J. Am. Chem. Soc., 2013, 135, 14831-14839. 26. Kobata, A., Structures and application of oligosaccharides in human milk. P. JPN. Acad., 2010, 86, 731-747. 27. Bode, L., Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 2012, 22, 1147-1162. 28. Gustafsson, A.; Hultberg, A.; Sjöström, R.; Kacskovics, I.; Breimer, M. E.; Borén, T.; Hammarström, L.; Holgersson, J., Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology, 2005, 16, 1-10. 29. Angeloni, S.; Ridet, J.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology, 2004, 15, 31-41. 30. Takada, A.; Ohmori, K.; Takahashi, N.; Tsuyuoka, K.; Yago, A.; Zenita, K.; Hasegawa, A.; Kannagi, R., Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem. Biophys. Res. Commun., 1991, 179, 713-719. 31. Koprowski, H.; Steplewski, Z.; Mitchell, K.; Herlyn, M.; Herlyn, D.; Fuhrer, P., Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet., 1979, 5, 957-971. 32. Magnani, J. L.; Nilsson, B.; Brockhaus, M.; Zopf, D.; Steplewski, Z.; Koprowski, H.; Ginsburg, V., A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem., 1982, 257, 14365-14369. 33. Ragupathi, G.; Damani, P.; Srivastava, G.; Srivastava, O.; Sucheck, S. J.; Ichikawa, Y.; Livingston, P. O., Synthesis of sialyl Lewis a (sLe a, CA19-9) and construction of an immunogenic sLe a vaccine. Cancer Immunol. Immunother., 2009, 58, 1397-1405. 34. Chou, H.-H.; Takematsu, H.; Diaz, S.; Iber, J.; Nickerson, E.; Wright, K. L.; Muchmore, E. A.; Nelson, D. L.; Warren, S. T.; Varki, A., A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci., 1998, 95, 11751-11756. 35. Angata, T.; Varki, A., Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev., 2002, 102, 439-470. 36. Bulai, T.; Bratosin, D.; Pons, A.; Montreuil, J.; Zanetta, J.-P., Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett., 2003, 534, 185-189. 37. Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and their roles in the immune system. Nat. Rev. Immunol., 2007, 7, 255-266. 38. Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol., 2014, 14, 653-666. 39. Stevens, J.; Blixt, O.; Paulson, J. C.; Wilson, I. A., Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol., 2006, 4, 857-864. 40. Avril, T.; North, S. J.; Haslam, S. M.; Willison, H. J.; Crocker, P. R., Probing the cis interactions of the inhibitory receptor Siglec‐7 with α2,8‐disialylated ligands on natural killer cells and other leukocytes using glycan‐specific antibodies and by analysis of α2,8‐sialyltransferase gene expression. J. Leukoc. Biol., 2006, 80, 787-796. 41. Filbin, M. T., Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 2003, 4, 703-713. 42. Caroni, P.; Schwab, M. E., Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Bio., 1988, 106, 1281-1288. 43. Mukhopadhyay, G.; Doherty, P.; Walsh, F. S.; Crocker, P. R.; Filbin, M. T., A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 1994, 13, 757-767. 44. Wang, K. C.; Koprivica, V.; Kim, J. A.; Sivasankaran, R.; Guo, Y.; Neve, R. L.; He, Z., Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417, 941-944. 45. Tang, S.; Shen, Y. J.; DeBellard, M. E.; Mukhopadhyay, G.; Salzer, J. L.; Crocker, P. R.; Filbin, M. T., Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J. Cell Bio., 1997, 138, 1355-1366. 46. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem., 2008, 77, 521-555. 47. Bülter, T.; Elling, L., Enzymatic synthesis of nucleotide sugars. Glycoconj. J, 1999, 16, 147-159. 48. Tsai, T.-I.; Wu, C.-Y.; Wong, C.-H., Large-scale enzymatic synthesis of glycans with cofactor regeneration. Glycoscience: Biology and Medicine, 2015, 409-417. 49. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang, L.-D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis galactokinase and its use in the one-pot enzymatic synthesis of uridine diphosphate-galactose and the chemoenzymatic synthesis of the carbohydrate antigen stage specific embryonic antigen-3. Adv. Synth. Catal., 2014, 356, 3199-3213. 50. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-kinase in the complete Lacto-N-Biose I/Galacto-N-Biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol., 2007, 73, 6444-6449. 51. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun., 2009, 2944-2946. 52. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives. Bioorg. Med. Chem. Lett., 2009, 19, 5433-5435. 53. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human symbionts use a host-like pathway for surface fucosylation. Science, 2005, 307, 1778-1781. 54. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc. Natl. Acad. Sci., 2009, 106, 16096-16101. 55. Kotake, T.; Yamaguchi, D.; Ohzono, H.; Hojo, S.; Kaneko, S.; Ishida, H.-k.; Tsumuraya, Y., UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem., 2004, 279, 45728-45736. 56. Litterer, L.; Schnurr, J.; Plaisance, K.; Storey, K.; Gronwald, J.; Somers, D., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant. Physiol. Bioch., 2006, 44, 171-180. 57. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J., Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorg. Med. Chem. Lett., 2013, 23, 3764-3768. 58. Mengin-Lecreulx, D.; Van Heijenoort, J., Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol., 1994, 176, 5788-5795. 59. Mengin-Lecreulx, D.; van Heijenoort, J., Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J. Bacteriol., 1993, 175, 6150-6157. 60. Guan, W.; Cai, L.; Fang, J.; Wu, B.; Wang, P. G., Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chem. Commun., 2009, 6976-6978. 61. Bourgeaux, V.; Piller, F.; Piller, V., Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg. Med. Chem. Lett., 2005, 15, 5459-5462. 62. Guan, W.; Cai, L.; Wang, P. G., Highly efficient synthesis of UDP‐GalNAc/GlcNAc analogues with promiscuous recombinant human UDP‐GalNAc pyrophosphorylase AGX1. Chem. Eur. J., 2010, 16, 13343-13345. 63. Knorst, M.; Fessner, W. D., CMP‐sialate synthetase from Neisseria meningitidis− Overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Synth. Catal., 2001, 343, 698-710. 64. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorg. Med. Chem., 2004, 12, 6427-6435. 65. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J.-F.; Dougherty, B. A.; Merrick, J. M., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995, 269, 496-512. 66. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Overexpression and biochemical characterization of β-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd. Biochem. Biophys. Res. Commun., 2002, 295, 1-8. 67. Shao, J.; Zhang, J.; Kowal, P.; Wang, P. G., Donor substrate regeneration for efficient synthesis of globotetraose and isoglobotetraose. Appl. Environ. Microbiol., 2002, 68, 5634-5640. 68. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Efficient synthesis of globoside and isogloboside tetrasaccharides by using β (1→3) N-acetylgalactosaminyltransferase/UDP-N-acetylglucosamine C4 epimerase fusion protein. Chem. Commun., 2003, 1422-1423. 69. Randriantsoa, M.; Drouillard, S.; Breton, C.; Samain, E., Synthesis of globopentaose using a novel β1,3‐galactosyltransferase activity of the Haemophilus influenzae β1,3‐N‐acetylgalactosaminyltransferase LgtD. FEBS Lett., 2007, 581, 2652-2656. 70. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384 identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H AND 13C NMR analysis. J. Biol. Chem., 2000, 275, 3896-3906. 71. Bernatchez, S.; Gilbert, M.; Blanchard, M.-C.; Karwaski, M.-F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the β1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology, 2007, 17, 1333-1343. 72. Liu, X.-w.; Xia, C.; Li, L.; Guan, W.-y.; Pettit, N.; Zhang, H.-c.; Chen, M.; Wang, P. G., Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55: H7. Bioorg. Med. Chem., 2009, 17, 4910-4915. 73. Logan, S. M.; Altman, E.; Mykytczuk, O.; Brisson, J.-R.; Chandan, V.; Michael, F. S.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology, 2005, 15, 721-733. 74. Sauerzapfe, B.; Křenek, K.; Schmiedel, J.; Wakarchuk, W. W.; Pelantová, H.; Křen, V.; Elling, L., Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj. J, 2009, 26, 141-159. 75. Fang, J. L.; Tsai, T. W.; Liang, C. Y.; Li, J. Y.; Yu, C. C., Enzymatic synthesis of human milk fucosides α1,2‐fucosyl para‐Lacto‐N‐Hexaose and its isomeric derivatives. Adv. Synth. Catal., 2018, 360, 3213-3219. 76. Gilbert, M.; Karwaski, M.-F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A.-M.; Wakarchuk, W. W., The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem., 2002, 277, 327-337. 77. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng., 1998, 11, 295-302. 78. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. Chem. Commun., 2010, 46, 6066-6068. 79. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem. Commun., 2014, 50, 5786-5789. 80. Zhang, J.; Kowal, P.; Fang, J.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant α-(1→4)-galactosyltransferase. Carbohydr. Res, 2002, 337, 969-976. 81. Wang, G.; Rasko, D. A.; Sherburne, R.; Taylor, D. E., Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α (1,2) fucosyltransferase gene. Mol. Microbio., 1999, 31, 1265-1274. 82. Stein, D. B.; Lin, Y. N.; Lin, C. H., Characterization of Helicobacter pylori α1, 2‐Fucosyltransferase for enzymatic synthesis of tumor‐associated antigens. Adv. Synth. Catal., 2008, 350, 2313-2321. 83. Rabbani, S.; Miksa, V.; Wipf, B.; Ernst, B., Molecular cloning and functional expression of a novel Helicobacter pylori α-1,4 fucosyltransferase. Glycobiology, 2005, 15, 1076-1083. 84. Morley, T. J.; Withers, S. G., Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc., 2010, 132, 9430-9437. 85. Yamamoto, T.; Nakashizuka, M.; Kodama, H.; Kajihara, Y.; Terada, I., Purification and characterization of a marine bacterial β-galactoside α2, 6-sialyltransferase from Photobacterium damsela JTO16O. J. Biochem., 1996, 120, 104-110. 86. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A novel α-2, 6-sialyltransferase: transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem., 1996, 61, 8632-8635. 87. Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and expression of a marine bacterial β-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. J. Biochem., 1998, 123, 94-100. 88. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non‐natural α‐2,6‐linked sialosides: a P. damsela α‐2,6‐sialyltransferase with extremely flexible donor–substrate specificity. Angew. Chem. Int. Ed., 2006, 45, 3938-3944. 89. Xu, Y.; Fan, Y.; Ye, J.; Wang, F.; Nie, Q.; Wang, L.; Wang, P. G.; Cao, H.; Cheng, J., Successfully engineering a bacterial sialyltransferase for regioselective α2, 6-sialylation. ACS Catal., 2018, 8, 7222-7227. 90. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 produces two sialyltransferases, α-/β-galactoside α2,3-sialyltransferase and β-galactoside α2,6-sialyltransferase. J. Biol. Chem., 2007, 143, 187-197. 91. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem. Commun., 2011, 47, 8691-8693. 92. Rodriguez, P.; Maggio, B.; Cumar, F., Acid and enzymatic hydrolysis of the internal sialic acid residue in native and chemically modified ganglioside GM1. J. Lipid. Res, 1996, 37, 382-390. 93. 蕭偉鎮, Chemoenzymatic synthesis of oligosacchrides. 博士論文, 國立清華大學, 2014. 94. Meng, X.; Yao, W.; Cheng, J.; Zhang, X.; Jin, L.; Yu, H.; Chen, X.; Wang, F.; Cao, H., Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J. Am. Chem. Soc., 2014, 136, 5205-5208. 95. 魯玟, Enzymatic synthesis of ganglioside glycans. 碩士論文, 國立清華大學, 2018. 96. 蔡騰緯, 舊物新用:α-1,3/4 岩藻糖化轉移酶於岩藻糖化多醣體文庫之合成應用. 碩士論文, 國立中正大學, 2018. 97. Lu, N.; Ye, J.; Cheng, J.; Sasmal, A.; Liu, C.-C.; Yao, W.; Yan, J.; Khan, N.; Yi, W.; Varki, A., Redox-controlled site-specific α2‒6-sialylation. J. Am. Chem. Soc., 2019, 141, 4547-4552. 98. 黃思瑜, Synthesis of Globo H, DSGb5 and globo-series sialosides. 碩士論文, 國立清華大學, 2017. 99. Ikeda, M.; Ochi, R.; Kurita, Y. s.; Pochan, D. J.; Hamachi, I., Heat‐induced morphological transformation of supramolecular nanostructures by retro‐Diels–Alder reaction. Chem. Eur. J., 2012, 18, 13091-13096.
|