帳號:guest(18.188.28.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李允聖
作者(外文):Lee, Yun-Sheng
論文名稱(中文):以酵素方法合成 Globo-系列、Ganglio-系列醣體及 Sialyl Lewis a
論文名稱(外文):Enzymatic Syntheses of Globo-series, Ganglio-series Glycans and Sialyl Lewis a
指導教授(中文):林俊成
周佳駿
指導教授(外文):Lin, Chun-Cheng
Chou, Chia-Chun
口試委員(中文):梁健夫
游景晴
口試委員(外文):Liang, Chien-Fu
Yu, Ching-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023515
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:255
中文關鍵詞:酵素合成神經節苷脂唾液酸腫瘤相關醣體抗原
外文關鍵詞:enzymatic synthesisgangliosidessialic acidTACAs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Globo-系列醣體及 sialyl Lewis a (sLea) 分別與乳癌及結腸癌有著極大的關聯,在正常細胞上卻鮮少觀察到它們的存在,因此這些醣體具有發展成抗癌疫苗的潛力。除此之外,常表現於神經細胞表面的 Ganglio-系列醣體亦相當重要,其疏水端的神經醯胺會嵌入細胞膜,親水端的醣體則與唾液酸免疫球蛋白有特定的作用力。因此神經節苷脂的取得有助於了解生物體內醣體與蛋白質之間的親和力
本篇論文利用多種酵素,並以醣核苷再生系統及連續性酵素催化系統合成一系列醣體。其中在神經節苷脂 GD1a 及 GM1 的α2,6-唾液酸化遇到選擇性問題,無法專一將唾液酸鍵結於 Gal 或是 GalNAc,而 GM1b 及 GA1 的α2,6-唾液酸化則可以有特定的產物;在 sialyl Lewis a 的部分,FucTIII 無法專一地將岩藻糖鍵結於內部 GlcNAc,導致生成鍵結於還原端 Glc 的異構物;而在 Globo-series 的部分,Globo H 醣體可以透過酵素法催化合成得到,最後再將含有馬來醯亞胺的連接物利用醯胺鍵的方式連結至醣體 (Globo H-maleimide)。
Globo-series glycans and sialyl Lewis a (sLea) are strongly associated with malignant diseases such as breast or colon cancers while they are rarely detectable in normal cells. Therefore, these glycans have good potential to be developed as anticancer vaccine. Furthermore, ganglio-series glycans are also vital since they are widely expressed on vertebrate cells and nerve cells. Ceramide of gangliosides are anchored to the plasma membrane while glycans extend into the extracellular space through sugar-specific interactions with glycan binding proteins such as Siglecs (sialic-acid-binding Ig-like lectins). Thus, obtainning gangliosides is necessary to elucidate the physiological mechanism of glycan-protein interaction.
In this thesis, multiple enzymes were applied on the enzymatic synthesis of glycans in regeneration system and sequential one-pot system. The challenge in synthesis of gangliosides, GT1aα and GD1α, was selectively sialylation at C6-OH in either Gal or GalNAc. As for sLea, the same problem we are facing is the selective fucosylation in either inner GlcNAc or Glc. For further application, Globo H with maleimde linker can be chemoenzymatically synthesized and conjugated with carrier protein for developing anticancer vaccine.
摘要 I
Abstract II
謝誌 III
目錄 V
圖目錄 XII
表目錄 XVII
流程目錄 XVIII
縮寫表 XX
酵素中英文名稱對照表 XXII
單醣中英文名稱及代表符號 XXIV
第一章、緒論 1
1.1 腫瘤相關醣體抗原 1
1.1.1 Ganglio-series 3
1.1.1.1 神經相關神經節苷脂 5
1.1.1.2 癌症相關神經節苷脂 5
1.1.1.3 gangliosides 合成文獻回顧 6
1.1.2 Globo-series 9
1.1.2.1 癌症相關醣體 10
1.1.2.2 globo-series 醣體合成文獻回顧 13
1.1.3 Lacto-series 18
1.1.3.1 母乳寡醣 18
1.1.3.2 癌症相關醣體 19
1.1.3.3 sLea 合成文獻回顧 21
1.2 唾液酸 22
1.3 唾液酸免疫球蛋白凝集素 24
1.3.1 唾液酸免疫球蛋白凝集素-4 (Siglec-4) 26
1.4 醣激酶與轉移酶 28
1.4.1 醣激酶 29
1.4.1.1 半乳糖激酶 (MtGalK) 29
1.4.1.2 N-乙醯己糖激酶 (NahK) 30
1.4.1.3 岩藻糖激酶 (FKP) 31
1.4.2 磷酸醣核苷酸轉移酶 31
1.4.2.1 尿苷磷酸糖焦磷酸酶 (AtUSP) 32
1.4.2.2 磷酸-N-乙醯葡萄糖胺尿苷轉移酶 (GlmU) 33
1.4.2.3 尿苷二磷酸-N-乙醯半乳糖焦磷酸酶 (AGX1) 34
1.4.2.4 胞苷單磷酸唾液酸合成酶 (CSS) 35
1.4.3 醣基轉移酶 35
1.4.3.1 β-1,3-N-乙醯半乳糖胺轉移酶 / β-1,3-半乳糖轉移酶 (LgtD) 35
1.4.3.2 β-1,3-半乳糖轉移酶 (CgtB) 36
1.4.3.3 β-1,3-半乳糖轉移酶 (WbgO) 37
1.4.3.4 β-1,3-N-乙醯葡萄糖胺轉移酶 (HP1105) 38
1.4.3.5 β-1,4-N-乙醯半乳糖胺轉移酶 (CgtA) 39
1.4.3.6 β-1,4-半乳糖胺轉移酶 (NmGalT) 40
1.4.3.7 α-1,4-半乳糖轉移酶 (LgtC) 42
1.4.3.8 α-1,2-岩藻糖轉移酶 (FutC) 43
1.4.3.9 α-1,3-岩藻糖轉移酶 / α-1,4-岩藻糖轉移酶 (FucTIII) 43
1.4.4 唾液酸轉移酶 44
1.4.4.1 α-2,3-唾液酸轉移酶 (CstI) 44
1.4.4.2 α-2,6-唾液酸轉移酶 (Pd2,6ST) 45
1.4.4.3 α-2,6-唾液酸轉移酶 (Psp2,6ST) 47
1.5 研究目標與動機 48
第二章、實驗結果與討論 49
2.1 以大腸桿菌誘導表現目標蛋白 49
2.1.1 勝任細胞 49
2.1.2 目標酵素純化與表現分析 50
2.1.2.1 IMPACTTM 系統 50
2.1.2.2 IMAC 系統 51
2.1.2.3 麥芽糖結合蛋白 (maltose binfing protein) 純化系統 52
2.1.2.4 穀胱甘肽 S-轉移酶 (GST) 純化系統 53
2.1.3 酵素表達分析 54
2.1.3.1 GalK 55
2.1.3.2 NahK 56
2.1.3.3 FKP 57
2.1.3.4 AtUSP 58
2.1.3.5 GlmU 59
2.1.3.6 LgtD 60
2.1.3.7 CgtB 61
2.1.3.8 WbgO 62
2.1.3.9 HP1105 63
2.1.3.10 CgtA 64
2.1.3.11 NmGalT 65
2.1.3.12 LgtC 66
2.1.3.13 FutC 67
2.1.3.14 FucTIII 68
2.1.3.15 CSS 69
2.1.3.16 CstI 70
2.1.3.17 Pd2,6ST 71
2.1.3.18 Psp2,6ST 72
2.1.3.19 CMK 73
2.1.3.20 IP 74
2.2 酵素系統合成ganglio-series 75
2.2.1 asialo-series 75
2.2.1.1 GA2 醣體合成 75
2.2.1.2 GA1 醣體合成 77
2.2.1.3 GM1b 醣體合成 80
2.2.1.4 GM1α 醣體合成 80
2.2.1.5 GD1α醣體合成 86
2.2.2 a-series 93
2.2.2.1 GD1a 醣體合成 93
2.2.1.2 GD1aα 醣體合成 93
2.2.1.3 GT1aα 醣體合成 99
2.3 酵素系統合成 Globo H 104
2.3.1 Gb3 醣體合成 104
2.3.2 Gb4 醣體合成 105
2.3.3 Gb5 醣體合成 106
2.3.4 GbH 醣體合成 107
2.3.5 GbH-maleimide 合成 108
2.4 酵素系統合成 sialyl Lewis a (sLea) 109
2.4.1 LNTri II 醣體合成 109
2.4.2 LNT 醣體合成 109
2.4.3 sialyl Lewis a (sLea) 醣體合成 110
2.5 結論 114
第三章、未來展望 116
第四章、實驗材料與方法 117
4.1 Materials 117
4.1.1 General 117
4.1.2 Machines 118
4.1.3 Enzymes 119
4.1.4 Vectors 119
4.2 General procedure of overexpression and purification of target enzymes 121
4.2.1 General procedure of enzyme overexpression 121
4.2.2 Purification of target enzymes 122
4.2.2.1 IMPACTTM system 122
4.2.2.2 IMAC system 123
4.2.2.3 MBP system 124
4.2.2.4 GST system 125
4.3 Synthetic procedures and characterization 126
第五章、文獻參考 180
附錄目錄 196
1. Rappuoli, R.; Mandl, C. W.; Black, S.; De Gregorio, E., Vaccines for the twenty-first century society. Nat. Rev. Immunol., 2011, 11, 865-872.
2. Feng, D.; Shaikh, A. S.; Wang, F., Recent advance in tumor-associated carbohydrate antigens (TACAs)-based antitumor vaccines. ACS Chem. Biol., 2016, 11, 850-863.
3. Fuster, M. M.; Esko, J. D., The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer, 2005, 5, 526-542.
4. Wiederschain, G. Y., Essentials of glycobiology. 2009; Vol. 74, p 1056.
5. Maccioni, H. J. F., Glycosylation of glycolipids in the Golgi complex. J. Neurochem., 2007, 103, 81-90.
6. Schnaar, R. L.; Gerardy-Schahn, R.; Hildebrandt, H., Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev., 2014, 94, 461-518.
7. Daniotti, J.; Vilcaes, A.; Torres Demichelis, V.; Ruggiero, F.; Rodriguez-Walker, M., Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches. Front. Oncol., 2013, 3, 1-12.
8. Lammie, G.; Cheung, N.; Gerald, W.; Rosenblum, M.; Cordoncardo, C., Ganglioside GD2 expression in the human nervous-system and in neuroblastomas-An immunohistochemical study. Int. J. Oncol., 1993, 3, 909-915.
9. Watanabe, T.; Pukel, C. S.; Takeyama, H.; Lloyd, K. O.; Shiku, H.; Li, L.; Travassos, L. R.; Oettgen, H. F.; Old, L., Human melanoma antigen AH is an autoantigenic ganglioside related to GD2. J. Exp. Med., 1982, 156, 1884-1889.
10. Cheresh, D. A.; Rosenberg, J.; Mujoo, K.; Hirschowitz, L.; Reisfeld, R. A., Biosynthesis and expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carcinoma for monoclonal antibody-mediated cytolysis. Cancer Res., 1986, 46, 5112-5118.
11. Carubia, J. M.; Robert, K. Y.; Macala, L. J.; Kirkwood, J. M.; Varga, J. M., Gangliosides of normal and neoplastic human melanocytes. Biochem. Biophys. Res. Commun., 1984, 120, 500-504.
12. Blixt, O.; Vasiliu, D.; Allin, K.; Jacobsen, N.; Warnock, D.; Razi, N.; Paulson, J. C.; Bernatchez, S.; Gilbert, M.; Wakarchuk, W., Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res, 2005, 340, 1963-1972.
13. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential one-pot multienzyme chemoenzymatic synthesis of glycosphingolipid glycans. J. Org. Chem., 2016, 81, 10809-10824.
14. Yu, H.; Santra, A.; Li, Y.; McArthur, J. B.; Ghosh, T.; Yang, X.; Wang, P. G.; Chen, X., Streamlined chemoenzymatic total synthesis of prioritized ganglioside cancer antigens. Org. Biomol. Chem., 2018, 16, 4076-4080.
15. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology, 2010, 20, 1373-1379.
16. Mènard, S.; Tagliabue, E.; Canevari, S.; Fossati, G.; Colnaghi, M. I., Generation of monoclonal antibodies reacting with normal and cancer cells of human breast. Cancer Res., 1983, 43, 1295-1300.
17. Watanabe, M.; Matsuoka, K.; Kita, E.; Igai, K.; Higashi, N.; Miyagawa, A.; Watanabe, T.; Yanoshita, R.; Samejima, Y.; Terunuma, D.; Natori, Y.; Nishikawa, K., Oral Therapeutic Agents with Highly Clustered Globotriose for Treatment of Shiga Toxigenic Escherichia coli Infections. J. Infect. Dis., 2004, 189, 360-368.
18. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X.-F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A., Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: a phase I trial. Proc. Natl. Acad. Sci., 2001, 98, 3270-3275.
19. Ragupathi, G.; Koganty, R. R.; Qiu, D.; Lloyd, K. O.; Livingston, P. O., A novel and efficient method for synthetic carbohydrate conjugate vaccine preparation: synthesis of sialyl Tn-KLH conjugate using a 4-(4-N-maleimidomethyl) cyclohexane-1-carboxyl hydrazide (MMCCH) linker arm. Glycoconj. J., 1998, 15, 217-221.
20. Livingston, P. O.; Adluri, S.; Helling, F.; Yao, T.-J.; Kensilt, C. R.; Newman, M. J.; Marciani, D., Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine, 1994, 12, 1275-1280.
21. Huang, Y.-L.; Hung, J.-T.; Cheung, S. K.; Lee, H.-Y.; Chu, K.-C.; Li, S.-T.; Lin, Y.-C.; Ren, C.-T.; Cheng, T.-J. R.; Hsu, T.-L., Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc. Natl. Acad. Sci., 2013, 110, 2517-2522.
22. Lee, H.-Y.; Chen, C.-Y.; Tsai, T.-I.; Li, S.-T.; Lin, K.-H.; Cheng, Y.-Y.; Ren, C.-T.; Cheng, T.-J. R.; Wu, C.-Y.; Wong, C.-H., Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc., 2014, 136, 16844-16853.
23. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S., Total synthesis of a human breast tumor associated antigen. J. Am. Chem. Soc., 1995, 117, 7840-7841.
24. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic synthesis of tumor-associated carbohydrate antigen Globo-H hexasaccharide. Org. Lett., 2008, 10, 1009-1012.
25. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective sugar nucleotide regeneration for the large-scale enzymatic synthesis of Globo H and SSEA4. J. Am. Chem. Soc., 2013, 135, 14831-14839.
26. Kobata, A., Structures and application of oligosaccharides in human milk. P. JPN. Acad., 2010, 86, 731-747.
27. Bode, L., Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology, 2012, 22, 1147-1162.
28. Gustafsson, A.; Hultberg, A.; Sjöström, R.; Kacskovics, I.; Breimer, M. E.; Borén, T.; Hammarström, L.; Holgersson, J., Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology, 2005, 16, 1-10.
29. Angeloni, S.; Ridet, J.; Kusy, N.; Gao, H.; Crevoisier, F.; Guinchard, S.; Kochhar, S.; Sigrist, H.; Sprenger, N., Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology, 2004, 15, 31-41.
30. Takada, A.; Ohmori, K.; Takahashi, N.; Tsuyuoka, K.; Yago, A.; Zenita, K.; Hasegawa, A.; Kannagi, R., Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem. Biophys. Res. Commun., 1991, 179, 713-719.
31. Koprowski, H.; Steplewski, Z.; Mitchell, K.; Herlyn, M.; Herlyn, D.; Fuhrer, P., Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet., 1979, 5, 957-971.
32. Magnani, J. L.; Nilsson, B.; Brockhaus, M.; Zopf, D.; Steplewski, Z.; Koprowski, H.; Ginsburg, V., A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J. Biol. Chem., 1982, 257, 14365-14369.
33. Ragupathi, G.; Damani, P.; Srivastava, G.; Srivastava, O.; Sucheck, S. J.; Ichikawa, Y.; Livingston, P. O., Synthesis of sialyl Lewis a (sLe a, CA19-9) and construction of an immunogenic sLe a vaccine. Cancer Immunol. Immunother., 2009, 58, 1397-1405.
34. Chou, H.-H.; Takematsu, H.; Diaz, S.; Iber, J.; Nickerson, E.; Wright, K. L.; Muchmore, E. A.; Nelson, D. L.; Warren, S. T.; Varki, A., A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci., 1998, 95, 11751-11756.
35. Angata, T.; Varki, A., Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem. Rev., 2002, 102, 439-470.
36. Bulai, T.; Bratosin, D.; Pons, A.; Montreuil, J.; Zanetta, J.-P., Diversity of the human erythrocyte membrane sialic acids in relation with blood groups. FEBS Lett., 2003, 534, 185-189.
37. Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and their roles in the immune system. Nat. Rev. Immunol., 2007, 7, 255-266.
38. Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol., 2014, 14, 653-666.
39. Stevens, J.; Blixt, O.; Paulson, J. C.; Wilson, I. A., Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol., 2006, 4, 857-864.
40. Avril, T.; North, S. J.; Haslam, S. M.; Willison, H. J.; Crocker, P. R., Probing the cis interactions of the inhibitory receptor Siglec‐7 with α2,8‐disialylated ligands on natural killer cells and other leukocytes using glycan‐specific antibodies and by analysis of α2,8‐sialyltransferase gene expression. J. Leukoc. Biol., 2006, 80, 787-796.
41. Filbin, M. T., Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci., 2003, 4, 703-713.
42. Caroni, P.; Schwab, M. E., Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J. Cell Bio., 1988, 106, 1281-1288.
43. Mukhopadhyay, G.; Doherty, P.; Walsh, F. S.; Crocker, P. R.; Filbin, M. T., A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron, 1994, 13, 757-767.
44. Wang, K. C.; Koprivica, V.; Kim, J. A.; Sivasankaran, R.; Guo, Y.; Neve, R. L.; He, Z., Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature, 2002, 417, 941-944.
45. Tang, S.; Shen, Y. J.; DeBellard, M. E.; Mukhopadhyay, G.; Salzer, J. L.; Crocker, P. R.; Filbin, M. T., Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J. Cell Bio., 1997, 138, 1355-1366.
46. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem., 2008, 77, 521-555.
47. Bülter, T.; Elling, L., Enzymatic synthesis of nucleotide sugars. Glycoconj. J, 1999, 16, 147-159.
48. Tsai, T.-I.; Wu, C.-Y.; Wong, C.-H., Large-scale enzymatic synthesis of glycans with cofactor regeneration. Glycoscience: Biology and Medicine, 2015, 409-417.
49. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang, L.-D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis galactokinase and its use in the one-pot enzymatic synthesis of uridine diphosphate-galactose and the chemoenzymatic synthesis of the carbohydrate antigen stage specific embryonic antigen-3. Adv. Synth. Catal., 2014, 356, 3199-3213.
50. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-kinase in the complete Lacto-N-Biose I/Galacto-N-Biose metabolic pathway in Bifidobacterium longum. Appl. Environ. Microbiol., 2007, 73, 6444-6449.
51. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun., 2009, 2944-2946.
52. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O’Neil, C.; Wang, P. G., Substrate specificity of N-acetylhexosamine kinase towards N-acetylgalactosamine derivatives. Bioorg. Med. Chem. Lett., 2009, 19, 5433-5435.
53. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human symbionts use a host-like pathway for surface fucosylation. Science, 2005, 307, 1778-1781.
54. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; Del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc. Natl. Acad. Sci., 2009, 106, 16096-16101.
55. Kotake, T.; Yamaguchi, D.; Ohzono, H.; Hojo, S.; Kaneko, S.; Ishida, H.-k.; Tsumuraya, Y., UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J. Biol. Chem., 2004, 279, 45728-45736.
56. Litterer, L.; Schnurr, J.; Plaisance, K.; Storey, K.; Gronwald, J.; Somers, D., Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant. Physiol. Bioch., 2006, 44, 171-180.
57. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J., Biosynthesis of nucleotide sugars by a promiscuous UDP-sugar pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorg. Med. Chem. Lett., 2013, 23, 3764-3768.
58. Mengin-Lecreulx, D.; Van Heijenoort, J., Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol., 1994, 176, 5788-5795.
59. Mengin-Lecreulx, D.; van Heijenoort, J., Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J. Bacteriol., 1993, 175, 6150-6157.
60. Guan, W.; Cai, L.; Fang, J.; Wu, B.; Wang, P. G., Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chem. Commun., 2009, 6976-6978.
61. Bourgeaux, V.; Piller, F.; Piller, V., Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg. Med. Chem. Lett., 2005, 15, 5459-5462.
62. Guan, W.; Cai, L.; Wang, P. G., Highly efficient synthesis of UDP‐GalNAc/GlcNAc analogues with promiscuous recombinant human UDP‐GalNAc pyrophosphorylase AGX1. Chem. Eur. J., 2010, 16, 13343-13345.
63. Knorst, M.; Fessner, W. D., CMP‐sialate synthetase from Neisseria meningitidis− Overexpression and application to the synthesis of oligosaccharides containing modified sialic acids. Adv. Synth. Catal., 2001, 343, 698-710.
64. Yu, H.; Yu, H.; Karpel, R.; Chen, X., Chemoenzymatic synthesis of CMP–sialic acid derivatives by a one-pot two-enzyme system: comparison of substrate flexibility of three microbial CMP–sialic acid synthetases. Bioorg. Med. Chem., 2004, 12, 6427-6435.
65. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J.-F.; Dougherty, B. A.; Merrick, J. M., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995, 269, 496-512.
66. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Overexpression and biochemical characterization of β-1,3-N-acetylgalactosaminyltransferase LgtD from Haemophilus influenzae strain Rd. Biochem. Biophys. Res. Commun., 2002, 295, 1-8.
67. Shao, J.; Zhang, J.; Kowal, P.; Wang, P. G., Donor substrate regeneration for efficient synthesis of globotetraose and isoglobotetraose. Appl. Environ. Microbiol., 2002, 68, 5634-5640.
68. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Efficient synthesis of globoside and isogloboside tetrasaccharides by using β (1→3) N-acetylgalactosaminyltransferase/UDP-N-acetylglucosamine C4 epimerase fusion protein. Chem. Commun., 2003, 1422-1423.
69. Randriantsoa, M.; Drouillard, S.; Breton, C.; Samain, E., Synthesis of globopentaose using a novel β1,3‐galactosyltransferase activity of the Haemophilus influenzae β1,3‐N‐acetylgalactosaminyltransferase LgtD. FEBS Lett., 2007, 581, 2652-2656.
70. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384 identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H AND 13C NMR analysis. J. Biol. Chem., 2000, 275, 3896-3906.
71. Bernatchez, S.; Gilbert, M.; Blanchard, M.-C.; Karwaski, M.-F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the β1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology, 2007, 17, 1333-1343.
72. Liu, X.-w.; Xia, C.; Li, L.; Guan, W.-y.; Pettit, N.; Zhang, H.-c.; Chen, M.; Wang, P. G., Characterization and synthetic application of a novel β1,3-galactosyltransferase from Escherichia coli O55: H7. Bioorg. Med. Chem., 2009, 17, 4910-4915.
73. Logan, S. M.; Altman, E.; Mykytczuk, O.; Brisson, J.-R.; Chandan, V.; Michael, F. S.; Masson, A.; Leclerc, S.; Hiratsuka, K.; Smirnova, N., Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology, 2005, 15, 721-733.
74. Sauerzapfe, B.; Křenek, K.; Schmiedel, J.; Wakarchuk, W. W.; Pelantová, H.; Křen, V.; Elling, L., Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj. J, 2009, 26, 141-159.
75. Fang, J. L.; Tsai, T. W.; Liang, C. Y.; Li, J. Y.; Yu, C. C., Enzymatic synthesis of human milk fucosides α1,2‐fucosyl para‐Lacto‐N‐Hexaose and its isomeric derivatives. Adv. Synth. Catal., 2018, 360, 3213-3219.
76. Gilbert, M.; Karwaski, M.-F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A.-M.; Wakarchuk, W. W., The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem., 2002, 277, 327-337.
77. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng., 1998, 11, 295-302.
78. Lau, K.; Thon, V.; Yu, H.; Ding, L.; Chen, Y.; Muthana, M. M.; Wong, D.; Huang, R.; Chen, X., Highly efficient chemoenzymatic synthesis of β1–4-linked galactosides with promiscuous bacterial β1–4-galactosyltransferases. Chem. Commun., 2010, 46, 6066-6068.
79. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential one-pot enzymatic synthesis of oligo-N-acetyllactosamine and its multi-sialylated extensions. Chem. Commun., 2014, 50, 5786-5789.
80. Zhang, J.; Kowal, P.; Fang, J.; Andreana, P.; Wang, P. G., Efficient chemoenzymatic synthesis of globotriose and its derivatives with a recombinant α-(1→4)-galactosyltransferase. Carbohydr. Res, 2002, 337, 969-976.
81. Wang, G.; Rasko, D. A.; Sherburne, R.; Taylor, D. E., Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α (1,2) fucosyltransferase gene. Mol. Microbio., 1999, 31, 1265-1274.
82. Stein, D. B.; Lin, Y. N.; Lin, C. H., Characterization of Helicobacter pylori α1, 2‐Fucosyltransferase for enzymatic synthesis of tumor‐associated antigens. Adv. Synth. Catal., 2008, 350, 2313-2321.
83. Rabbani, S.; Miksa, V.; Wipf, B.; Ernst, B., Molecular cloning and functional expression of a novel Helicobacter pylori α-1,4 fucosyltransferase. Glycobiology, 2005, 15, 1076-1083.
84. Morley, T. J.; Withers, S. G., Chemoenzymatic synthesis and enzymatic analysis of 8-modified cytidine monophosphate-sialic acid and sialyl lactose derivatives. J. Am. Chem. Soc., 2010, 132, 9430-9437.
85. Yamamoto, T.; Nakashizuka, M.; Kodama, H.; Kajihara, Y.; Terada, I., Purification and characterization of a marine bacterial β-galactoside α2, 6-sialyltransferase from Photobacterium damsela JTO16O. J. Biochem., 1996, 120, 104-110.
86. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A novel α-2, 6-sialyltransferase: transfer of sialic acid to fucosyl and sialyl trisaccharides. J. Org. Chem., 1996, 61, 8632-8635.
87. Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and expression of a marine bacterial β-galactoside α2,6-sialyltransferase gene from Photobacterium damsela JT0160. J. Biochem., 1998, 123, 94-100.
88. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly efficient chemoenzymatic synthesis of naturally occurring and non‐natural α‐2,6‐linked sialosides: a P. damsela α‐2,6‐sialyltransferase with extremely flexible donor–substrate specificity. Angew. Chem. Int. Ed., 2006, 45, 3938-3944.
89. Xu, Y.; Fan, Y.; Ye, J.; Wang, F.; Nie, Q.; Wang, L.; Wang, P. G.; Cao, H.; Cheng, J., Successfully engineering a bacterial sialyltransferase for regioselective α2, 6-sialylation. ACS Catal., 2018, 8, 7222-7227.
90. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 produces two sialyltransferases, α-/β-galactoside α2,3-sialyltransferase and β-galactoside α2,6-sialyltransferase. J. Biol. Chem., 2007, 143, 187-197.
91. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient chemoenzymatic synthesis of sialyl Tn-antigens and derivatives. Chem. Commun., 2011, 47, 8691-8693.
92. Rodriguez, P.; Maggio, B.; Cumar, F., Acid and enzymatic hydrolysis of the internal sialic acid residue in native and chemically modified ganglioside GM1. J. Lipid. Res, 1996, 37, 382-390.
93. 蕭偉鎮, Chemoenzymatic synthesis of oligosacchrides. 博士論文, 國立清華大學, 2014.
94. Meng, X.; Yao, W.; Cheng, J.; Zhang, X.; Jin, L.; Yu, H.; Chen, X.; Wang, F.; Cao, H., Regioselective chemoenzymatic synthesis of ganglioside disialyl tetrasaccharide epitopes. J. Am. Chem. Soc., 2014, 136, 5205-5208.
95. 魯玟, Enzymatic synthesis of ganglioside glycans. 碩士論文, 國立清華大學, 2018.
96. 蔡騰緯, 舊物新用:α-1,3/4 岩藻糖化轉移酶於岩藻糖化多醣體文庫之合成應用. 碩士論文, 國立中正大學, 2018.
97. Lu, N.; Ye, J.; Cheng, J.; Sasmal, A.; Liu, C.-C.; Yao, W.; Yan, J.; Khan, N.; Yi, W.; Varki, A., Redox-controlled site-specific α2‒6-sialylation. J. Am. Chem. Soc., 2019, 141, 4547-4552.
98. 黃思瑜, Synthesis of Globo H, DSGb5 and globo-series sialosides. 碩士論文, 國立清華大學, 2017.
99. Ikeda, M.; Ochi, R.; Kurita, Y. s.; Pochan, D. J.; Hamachi, I., Heat‐induced morphological transformation of supramolecular nanostructures by retro‐Diels–Alder reaction. Chem. Eur. J., 2012, 18, 13091-13096.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *