|
(1) Goggins, S.; Frost, C. G. Approaches towards Molecular Amplification for Sensing. Analyst 2016, 141, 3157. (2) Amir, R. J.; Shabat, D. Self-immolative Dendrimer Biodegradability by Multi-enzymatic Triggering. Chem. Commun. 2004, 1614. (3) Banala, S.; Arts, R.; Aper, S. J. A.; Merkx, M. No Washing, Less Waiting: Engineering Biomolecular Reporters for Single-step Antibody Detection in Solution. Org. Biomol. Chem. 2013, 11, 7642. (4) Vashist, S. K.; Luong, J. H. T. In Handbook of Immunoassay Technologies. 2018, pp 97. (5) Gaffar, S.; Udamas, D.; Hartati, Y. W.; Subroto, T. Gold Modified Screen Printed Carbon Electrode (SPCE) with Steptavidin-biotin System for Detection of Heart Failure by Using Immunosensor. AIP Conf. Proc. 2018, 2049, 030017. (6) Clark Jr., L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29. (7) Borchert, H., Cyclic Voltammetry. In Solar Cells Based on Colloidal Nanocrystals, Borc, 2014, 111. (8) Dusemund, C.; Sandanayake, K. R. A. S.; Shinkai, S. Selective Fluoride Recognition with Ferroceneboronic Acid. J. Chem. Soc., Chem. Commun. 1995, 333. (9) Arimori, S.; Ushiroda, S.; Peter, L. M.; Jenkins, A. T. A.; James, T. D. A Modular Electrochemical Sensor for Saccharides. Chem. Commun. 2002, 2368. (10) 王彥棋,探討表面修飾網版印刷碳膠電極在電化學特性影響,國立交通大學碩士論文, 2007. (11) 馮俊方,平整性可拋棄式網版印刷碳電極之研發與應用,國立中興大學碩士論文, 2014. (12) Parkash, O.; Yean, C. Y.; Shueb, R. H. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen. Diagnostics, 2014, 165. (13) Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Recent Discoveries and Applications Involving Small-molecule Microarrays. Curr. Opin. Chem. Biol. 2014, 18, 21. (14) Alhamdani, M. S.; Schröder, C.; Hoheisel, J. D. Oncoproteomic Profiling with Antibody Microarrays. Genome Med. 2009, 1, 68. (15) Bradner, J. E.; McPherson, O. M.; Koehler, A. N. A Method for the Covalent Capture and Screening of Diverse Small Molecules in a Microarray Format. Nat. Protoc. 2006, 1, 2344. (16) Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Evidence Suggesting that High Intake of Fluoride Provokes Nephrolithiasis in Tribal Populations. Urol. Res. 2001, 29, 238. (17) Kalita, A. C.; Murugavel, R. Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorg. Chem. 2014, 53, 3345. (18) Galbraith, E.; James, T. D. Boron Based Anion Receptors as Sensors. Chem. Soc. Rev. 2010, 39, 3831. (19) Lingane, J. J. A study of the Lanthanum Fluoride Membrane Electrode for End Point Detection in Titrations of Fluoride with Thorium, Lanthanum, and Calcium. Anal. Chem. 1967, 39, 881. (20) Parham, H.; Rahbar, N. Solid Phase Extraction–spectrophotometric Determination of Fluoride in Water Samples Using Magnetic Iron Oxide Nanoparticles. Talanta. 2009, 80, 664. (21) Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I. Fluorescent Probe for Detection of Fluoride in Water and Bioimaging in A549 Human Lung Carcinoma Cells. Chem. Commun. 2009, 4735. (22) Roy, A.; Kand, D.; Saha, T.; Talukdar, P. A Cascade Reaction Based Fluorescent Probe for Rapid and Selective Fluoride Ion Detection. Chem. Commun. 2014, 50, 5510. (23) Sun, X.; Dahlhauser, S. D.; Anslyn, E. V. New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. J. Am. Chem. Soc. 2017, 139, 4635. (24) Padié, C.; Zeitler, K. A Novel Reaction-based, Chromogenic and “Turn-on” Fluorescent Chemodosimeter for Fluoride Detection. New J. Chem. 2011, 35, 994. (25) Baker, M. S.; Phillips, S. T. A Small Molecule Sensor for Fluoride Based On an Autoinductive, Colorimetric Signal Amplification Reaction. Org. Biomol. Chem. 2012, 10, 3595. (26) Zhuang, X.; Liu, W.; Wu, J.; Zhang, H.; Wang, P. A Novel Fluoride Ion Colorimetric Chemosensor Based On Coumarin. Spectrochim Acta A. 2011, 79, 1352. (27) Lu, W.; Jiang, H.; Hu, F.; Jiang, L.; Shen, Z. A Novel Chemosensor Based on Fe(III)-complexation for Selective Recognition and Rapid Detection of Fluoride Anions in Aqueous Media. Tetrahedron 2011, 67, 7909. (28) Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S. An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angew. Chem. Int. Ed. 2014, 53, 4469. (29) Kim, K.; Yang, H.; Jon, S.; Kim, E.; Kwak, J. Protein Patterning Based on Electrochemical Activation of Bioinactive Surfaces with Hydroquinone-Caged Biotin. J. Am. Chem. Soc. 2004, 126, 15368. (30) Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18, 1261. (31) Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-Activated Streptavidin–Biotin Controlled Binding Probe. Chem. Sci. 2018, 9, 770. (32) 行政院環境保護署公告水中陰離子檢測方法-離子層析法.
|