帳號:guest(18.191.222.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李德慈
作者(外文):Lee, Di-Chi.
論文名稱(中文):可調控生物素與鏈黴親合素化學探針於生物感測的應用
論文名稱(外文):The Applications of Streptavidin-Biotin Controlled Binding Probes (SBIO Probes) for Biosensing
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui-Thong
口試委員(中文):林俊成
王宗興
口試委員(外文):Lin, Chun-Cheng
Wang, Tsung-Shing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023513
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:籠閉生物素探針鏈黴親合素分子識別訊號放大法
外文關鍵詞:streptavidinsignal amplificationmolecular recognitionstreptavidin-biotin controlled binding probes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:460
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
分子識別 (例如:抗原−抗體,DNA−DNA和鏈黴親合素−生物素)是用於辨識目標分析物與訊號放大的現代生物分析之方法之一。此方法不適用於偵測金屬離子、陰離子與小分子 (如H2O2及O2−),因為這些分子太小而不能有效地結合到大分子上。因此,我們設計鏈黴親合素與生物素開關控制的結合探針 (SBIO probes),藉由探針辨識目標分子,透過酵素或螢光染料綴合的鏈黴親合素反應,對氟離子偵測訊號進行放大,並應用於網版印刷電極與微陣列之檢測技術。與傳統的分析方法相比,籠閉生物素探針展現了更低的背景值,且不受複雜環境中其他分子的干擾,甚至能運用在不同種類的檢測技術上。我們相信此新型檢測分析方法有助於醫學上的診斷與基礎生物學研究。
Molecular recognition (e.g. antigen-antibody, DNA-DNA and streptavidin-biotin) is fundamental in modern bioanalytical methods for target recognition and signal amplification. However, this approach is not applicable to metals, anions and small reactive molecules (e.g. H2O2 and O2−) as these molecules are too small to bind effectively to the macromolecule. Therefore, we demonstrate a general “OFF-ON” molecular recognition approach based on streptavidin-biotin controlled binding probes (SBIO probes) for enzyme-catalyzed signal amplified detection of fluoride (F−) with electrochemical detection techniques. This versatile approach can also be applied in microarray by using streptavidin conjugated with fluorescent dye reporters for target detection. As compared to the conventional analytical methods, the new strategy has several advantages, such as minimal background in its “OFF” state, multiple signal amplification steps and an unlimited selection of detection techniques. We believe that this SBIO probe strategy will be useful for a wide range of applications, such as in medical diagnosis and basic biological research, where highly specific signal enhancement is required.
摘要 I
Abstract II
謝誌 III
第一章、緒論 1
§1-1 研究動機 1
1-2生物感測增幅方法 (Amplification for Biosensing) 1
1-3 電化學測定法 (Electrochemical Analysis) 7
1-3.1 循環伏安法 (Cyclic Voltammetry, CV) 7
1-3.2 微分脈衝伏安法 (Differential Pulse Voltammetry, DPV) 9
1-3.3 網版印刷碳電極 (Screen-printed Carbon Electrodes, SPCEs) 10
1-4 微陣列偵測方法 (Microarrays Detection Method) 12
1-4.1 cDNA微陣列 (cDNA Microarray) 12
1-4.2 蛋白質微陣列 (Protein Microarray) 13
1-4.3 小分子微陣列 (Small-molecule Microarray) 14
第二章、文獻回顧 15
§2-1氟離子偵測 15
2-2離子選擇性電極法 (Ion Selective Electrodes) 16
2-3比色法 (Colorimetric Method) 16
2-4螢光分析法 (Fluorescence method) 17
2-4.1以氟促進矽氧鍵裂解之感測器 (Sensors Based on F−Promoted Cleavage of Silicon−Oxygen Bonds) 17
2-4.2反應型感測器偵測氟離子 (Reaction-Based Sensors for the Detection of Fluoride Ion) 19
2-4.3利用氫鍵相互作用之探針 (Sensors Utilizing Hygrogen-Bond Interactions) 20
2-4.4置換金屬錯合物之探針 (Sensors Based on Displacement Ensembles Using Metal Complexes) 21
第三章、螢光探針之設計構想 22
§3-1 探針構想 22
3-2探針設計 25
第4章、實驗結果及討論 29
§4-1探針10應用於網版印刷電極偵測氟離子 29
4-1.1 探針10之測試與討論 29
4-2探針14應用於微陣列偵測氟離子 35
4-2.1 探針14之測試與討論 37
第五章、實驗結論 43
第六章、實驗部分 44
§6-1 實驗藥品與器材 44
6-2儀器及電極裝置部分 45
6-2.1分析藥品與標準溶液配置方法 46
6-2.2以金鍍液配合電鍍法製備氧化金修飾電極 46
6-2.3探針10測試條件 47
6-3 微陣列測試條件 47
6-4 有機合成及光譜資料 49
第七章、參考文獻 62
附錄 66



(1) Goggins, S.; Frost, C. G. Approaches towards Molecular Amplification for Sensing. Analyst 2016, 141, 3157.
(2) Amir, R. J.; Shabat, D. Self-immolative Dendrimer Biodegradability by Multi-enzymatic Triggering. Chem. Commun. 2004, 1614.
(3) Banala, S.; Arts, R.; Aper, S. J. A.; Merkx, M. No Washing, Less Waiting: Engineering Biomolecular Reporters for Single-step Antibody Detection in Solution. Org. Biomol. Chem. 2013, 11, 7642.
(4) Vashist, S. K.; Luong, J. H. T. In Handbook of Immunoassay Technologies. 2018, pp 97.
(5) Gaffar, S.; Udamas, D.; Hartati, Y. W.; Subroto, T. Gold Modified Screen Printed Carbon Electrode (SPCE) with Steptavidin-biotin System for Detection of Heart Failure by Using Immunosensor. AIP Conf. Proc. 2018, 2049, 030017.
(6) Clark Jr., L. C.; Lyons, C. Electrode Systems for Continuous Monitoring in Cardiovascular Surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29.
(7) Borchert, H., Cyclic Voltammetry. In Solar Cells Based on Colloidal Nanocrystals, Borc, 2014, 111.
(8) Dusemund, C.; Sandanayake, K. R. A. S.; Shinkai, S. Selective Fluoride Recognition with Ferroceneboronic Acid. J. Chem. Soc., Chem. Commun. 1995, 333.
(9) Arimori, S.; Ushiroda, S.; Peter, L. M.; Jenkins, A. T. A.; James, T. D. A Modular Electrochemical Sensor for Saccharides. Chem. Commun. 2002, 2368.
(10) 王彥棋,探討表面修飾網版印刷碳膠電極在電化學特性影響,國立交通大學碩士論文, 2007.
(11) 馮俊方,平整性可拋棄式網版印刷碳電極之研發與應用,國立中興大學碩士論文, 2014.
(12) Parkash, O.; Yean, C. Y.; Shueb, R. H. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen. Diagnostics, 2014, 165.
(13) Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Recent Discoveries and Applications Involving Small-molecule Microarrays. Curr. Opin. Chem. Biol. 2014, 18, 21.
(14) Alhamdani, M. S.; Schröder, C.; Hoheisel, J. D. Oncoproteomic Profiling with Antibody Microarrays. Genome Med. 2009, 1, 68.
(15) Bradner, J. E.; McPherson, O. M.; Koehler, A. N. A Method for the Covalent Capture and Screening of Diverse Small Molecules in a Microarray Format. Nat. Protoc. 2006, 1, 2344.
(16) Singh, P.; Barjatiya, M.; Dhing, S.; Bhatnagar, R.; Kothari, S.; Dhar, V. Evidence Suggesting that High Intake of Fluoride Provokes Nephrolithiasis in Tribal Populations. Urol. Res. 2001, 29, 238.
(17) Kalita, A. C.; Murugavel, R. Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorg. Chem. 2014, 53, 3345.
(18) Galbraith, E.; James, T. D. Boron Based Anion Receptors as Sensors. Chem. Soc. Rev. 2010, 39, 3831.
(19) Lingane, J. J. A study of the Lanthanum Fluoride Membrane Electrode for End Point Detection in Titrations of Fluoride with Thorium, Lanthanum, and Calcium. Anal. Chem. 1967, 39, 881.
(20) Parham, H.; Rahbar, N. Solid Phase Extraction–spectrophotometric Determination of Fluoride in Water Samples Using Magnetic Iron Oxide Nanoparticles. Talanta. 2009, 80, 664.
(21) Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J.-I. Fluorescent Probe for Detection of Fluoride in Water and Bioimaging in A549 Human Lung Carcinoma Cells. Chem. Commun. 2009, 4735.
(22) Roy, A.; Kand, D.; Saha, T.; Talukdar, P. A Cascade Reaction Based Fluorescent Probe for Rapid and Selective Fluoride Ion Detection. Chem. Commun. 2014, 50, 5510.
(23) Sun, X.; Dahlhauser, S. D.; Anslyn, E. V. New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. J. Am. Chem. Soc. 2017, 139, 4635.
(24) Padié, C.; Zeitler, K. A Novel Reaction-based, Chromogenic and “Turn-on” Fluorescent Chemodosimeter for Fluoride Detection. New J. Chem. 2011, 35, 994.
(25) Baker, M. S.; Phillips, S. T. A Small Molecule Sensor for Fluoride Based On an Autoinductive, Colorimetric Signal Amplification Reaction. Org. Biomol. Chem. 2012, 10, 3595.
(26) Zhuang, X.; Liu, W.; Wu, J.; Zhang, H.; Wang, P. A Novel Fluoride Ion Colorimetric Chemosensor Based On Coumarin. Spectrochim Acta A. 2011, 79, 1352.
(27) Lu, W.; Jiang, H.; Hu, F.; Jiang, L.; Shen, Z. A Novel Chemosensor Based on Fe(III)-complexation for Selective Recognition and Rapid Detection of Fluoride Anions in Aqueous Media. Tetrahedron 2011, 67, 7909.
(28) Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S. An Activatable Theranostic for Targeted Cancer Therapy and Imaging. Angew. Chem. Int. Ed. 2014, 53, 4469.
(29) Kim, K.; Yang, H.; Jon, S.; Kim, E.; Kwak, J. Protein Patterning Based on Electrochemical Activation of Bioinactive Surfaces with Hydroquinone-Caged Biotin. J. Am. Chem. Soc. 2004, 126, 15368.
(30) Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Rational Development of Caged-Biotin Protein-Labeling Agents and Some Applications in Live Cells. Chem. Biol. 2011, 18, 1261.
(31) Wu, Y.-P.; Chew, C. Y.; Li, T.-N.; Chung, T.-H.; Chang, E.-H.; Lam, C. H.; Tan, K.-T. Target-Activated Streptavidin–Biotin Controlled Binding Probe. Chem. Sci. 2018, 9, 770.
(32) 行政院環境保護署公告水中陰離子檢測方法-離子層析法.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *