|
參考文獻 1. Shriki, J., Ultrasound Physics. Critical Care Clinics 2014, 30 (1), 1-24. 2. Quaia, E., Microbubble ultrasound contrast agents: an update. European Radiology 2007, 17 (8), 1995-2008. 3. Cosgrove, D., Ultrasound contrast agents: An overview. European Journal of Radiology 2006, 60 (3), 324-330. 4. Klibanov, A. L., Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Medical & Biological Engineering & Computing 2009, 47 (8), 875-882. 5. Schutt, E. G.; Klein, D. H.; Mattrey, R. M.; Riess, J. G., Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals. Angewandte Chemie International Edition 2003, 42 (28), 3218-3235. 6. Goss, S. A.; Johnston, R. L.; Dunn, F., Compilation of empirical ultrasonic properties of mammalian tissues. II. The Journal of the Acoustical Society of America 1980, 68 (1), 93-108. 7. Mitragotri, S., Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery 2005, 4 (3), 255-260. 8. Manzano, M.; Vallet-Regí, M., Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications 2019, 55 (19), 2731-2740. 9. J. Ernsting, M.; Worthington, A.; May, J.; Tagami, T.; Kolios, M.; Li, S.-D., Ultrasound drug targeting to tumors with thermosensitive liposomes. 2011; p 1-4. 10. Geers, B.; Lentacker, I.; Sanders, N. N.; Demeester, J.; Meairs, S.; De Smedt, S. C., Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. Journal of Controlled Release 2011, 152 (2), 249-256. 11. Wang, J.; Pelletier, M.; Zhang, H.; Xia, H.; Zhao, Y., High-Frequency Ultrasound-Responsive Block Copolymer Micelle. Langmuir 2009, 25 (22), 13201-13205. 12. Zeqiri, B., Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms: (NCRP Report No. 140) National Council on Radiation Protection and Measurements (NCRP), 2002. Ultrasound in Medicine and Biology 2003, 29 (12), 1809. 13. van den Bijgaart, R. J. E.; Eikelenboom, D. C.; Hoogenboom, M.; Fütterer, J. J.; den Brok, M. H.; Adema, G. J., Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunology, Immunotherapy 2017, 66 (2), 247-258. 14. Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N., Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. Journal of Controlled Release 2016, 241, 144-163. 15. Dalecki, D., Mechanical Bioeffects of Ultrasound. Annual Review of Biomedical Engineering 2004, 6 (1), 229-248. 16. Magnin, R.; Rabusseau, F.; Salabartan, F.; Mériaux, S.; Aubry, J.-F.; Le Bihan, D.; Dumont, E.; Larrat, B., Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound 2015, 3, 22-22. 17. Aryal, M.; Arvanitis, C. D.; Alexander, P. M.; McDannold, N., Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Advanced Drug Delivery Reviews 2014, 72, 94-109. 18. Ohl, C.-D.; Arora, M.; Ikink, R.; de Jong, N.; Versluis, M.; Delius, M.; Lohse, D., Sonoporation from Jetting Cavitation Bubbles. Biophysical Journal 2006, 91 (11), 4285-4295. 19. Rychak, J. J.; Klibanov, A. L., Nucleic acid delivery with microbubbles and ultrasound. Advanced Drug Delivery Reviews 2014, 72, 82-93. 20. Liu, H.-L.; Fan, C.-H.; Ting, C.-Y.; Yeh, C.-K., Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014, 4 (4), 432-444. 21. Kwan, J. J.; Coussios, C. C., Triggered Drug Release and Enhanced Drug Transport from Ultrasound-Responsive Nanoparticles. In Design and Applications of Nanoparticles in Biomedical Imaging, Bulte, J. W. M.; Modo, M. M. J., Eds. Springer International Publishing: Cham, 2017; pp 277-297. 22. Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M., Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. Journal of Hazardous Materials 2010, 178 (1), 1007-1014. 23. Feng, Y.; Zhao, L.; ter Haar, G.; Wan, M., Cavitation Mechanobiology and Applications. In Cavitation in Biomedicine: Principles and Techniques, Wan, M.; Feng, Y.; Haar, G. t., Eds. Springer Netherlands: Dordrecht, 2015; pp 457-503. 24. O'Brien, W. D., Jr., Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007, 93 (1-3), 212-255. 25. Kentish, S.; Ashokkumar, M., The Physical and Chemical Effects of Ultrasound. In Ultrasound Technologies for Food and Bioprocessing, Feng, H.; Barbosa-Canovas, G.; Weiss, J., Eds. Springer New York: New York, NY, 2011; pp 1-12. 26. Qian, X.; Zheng, Y.; Chen, Y., Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials 2016, 28 (37), 8097-8129. 27. Jong, N. d., Improvements in ultrasound contrast agents. IEEE Engineering in Medicine and Biology Magazine 1996, 15 (6), 72-82. 28. Bouakaz, A.; de Jong, N.; Cachard, C.; Jouini, K., On the effect of lung filtering and cardiac pressure on the standard properties of ultrasound contrast agent. Ultrasonics 1998, 36 (1), 703-708. 29. Lindner, J. R.; Song, J.; Jayaweera, A. R.; Sklenar, J.; Kaul, S., Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. Journal of the American Society of Echocardiography 2002, 15 (5), 396-403. 30. Hvattum, E.; Trygve Normann, P.; Oulie, I.; Uran, S.; Ringstad, O.; Skotland, T., Determination of perfluorobutane in rat blood by automatic headspace capillary gas chromatography and selected ion monitoring mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2001, 24 (3), 487-494. 31. Sponheim, N.; Hoff, L.; Waaler, A.; Muan, B.; Morris, H.; Holm, S.; Myrum, M.; Jong, N. d.; Skotland, T. In Albunex-a new ultrasound contrast agent, International Conference on Acoustic Sensing and Imaging, 1993., 29-30 March 1993; 1993; pp 103-108. 32. Paefgen, V.; Doleschel, D.; Kiessling, F., Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 2015, 6, 197-197. 33. Senior, R.; Becher, H.; Monaghan, M.; Agati, L.; Zamorano, J.; Vanoverschelde, J. L.; Nihoyannopoulos, P., Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. European Heart Journal - Cardiovascular Imaging 2009, 10 (2), 194-212. 34. Escoffre, J. M.; Novell, A.; Serrière, S.; Lecomte, T.; Bouakaz, A., Irinotecan Delivery by Microbubble-Assisted Ultrasound: In Vitro Validation and a Pilot Preclinical Study. Molecular Pharmaceutics 2013, 10 (7), 2667-2675. 35. Kotopoulis, S.; Dimcevski, G.; Helge Gilja, O.; Hoem, D.; Postema, M., Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study. Medical Physics 2013, 40 (7), 072902. 36. Smith, D. A. B.; Vaidya, S. S.; Kopechek, J. A.; Huang, S.-L.; Klegerman, M. E.; McPherson, D. D.; Holland, C. K., Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound in Medicine & biology 2010, 36 (1), 145-157. 37. Wheatley, M. A.; Forsberg, F.; Dube, N.; Patel, M.; Oeffinger, B. E., Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound in Medicine and Biology 2006, 32 (1), 83-93. 38. Wu, H.; Rognin, N. G.; Krupka, T. M.; Solorio, L.; Yoshiara, H.; Guenette, G.; Sanders, C.; Kamiyama, N.; Exner, A. A., Acoustic Characterization and Pharmacokinetic Analyses of New Nanobubble Ultrasound Contrast Agents. Ultrasound in Medicine & Biology 2013, 39 (11), 2137-2146. 39. Wang, Y.; Liu, G.; Hu, H.; Li, T. Y.; Johri, A. M.; Li, X.; Wang, J., Stable Encapsulated Air Nanobubbles in Water. Angewandte Chemie International Edition 2015, 54 (48), 14291-14294. 40. Gorce, J.-M.; Arditi, M.; Schneider, M., Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents. 2000; Vol. 35, p 661-71. 41. Rapoport, N.; Christensen, D.; Fain, H.; Barrows, L.; Gao, Z.-G., Ultrasound-triggered drug targeting of tumors in vitro and in vivo. 2004; Vol. 42, p 943-50. 42. Sheeran, P. S.; Wong, V. P.; Luois, S.; McFarland, R. J.; Ross, W. D.; Feingold, S.; Matsunaga, T. O.; Dayton, P. A., Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound in Medicine & Biology 2011, 37 (9), 1518-1530. 43. Ho, Y.-J.; Chang, Y.-C.; Yeh, C.-K., Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics 2016, 6 (3), 392-403. 44. Mannaris, C.; Bau, L.; Grundy, M.; Gray, M.; Lea-Banks, H.; Seth, A.; Teo, B.; Carlisle, R.; Stride, E.; Coussios, C. C., Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Ultrasound in Medicine & Biology 2019, 45 (4), 954-967. 45. Hayward, A. T. J., The role of stabilized gas nuclei in hydrodynamic cavitation inception. Journal of Physics D: Applied Physics 1970, 3 (4), 574-579. 46. Thomas, R. G.; Jonnalagadda, U. S.; Kwan, J. J., Biomedical Applications for Gas-Stabilizing Solid Cavitation Agents. Langmuir 2019. 47. Liu, J.; Levine, A. L.; Mattoon, J. S.; Yamaguchi, M.; Lee, R. J.; Pan, X.; Rosol, T. J., Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology 2006, 51 (9), 2179-2189. 48. Foroutan, F.; Jokerst, J. V.; Gambhir, S. S.; Vermesh, O.; Kim, H.-W.; Knowles, J. C., Sol–Gel Synthesis and Electrospraying of Biodegradable (P2O5)55–(CaO)30–(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging. ACS Nano 2015, 9 (2), 1868-1877. 49. Chen, F.; Ma, M.; Wang, J.; Wang, F.; Chen, S.; Zhao, E.; Darmadi, S.; Jhunjhunwala, A.; Chen, H.; V Jokerst, J., Exosome-like silica nanoparticles: A novel ultrasound contrast agent for stem cell imaging. 2016; Vol. 9. 50. Ma, M.; Chen, H.; Shi, J., Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. 2015; Vol. 60, p 1170-1183. 51. Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z., pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy. Advanced Healthcare Materials 2018, 7 (5), 1700957. 52. Zhao, Y.; Zhu, Y.; Fu, J.; Wang, L., Effective Cancer Cell Killing by Hydrophobic Nanovoid-Enhanced Cavitation under Safe Low-Energy Ultrasound. 2014; Vol. 9. 53. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goldscheitter, G. M.; Goodwin, A. P., Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents. Advanced Healthcare Materials 2016, 5 (11), 1290-1298. 54. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goodwin, A. P., Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy. Chemistry of Materials 2016, 28 (16), 5962-5972. 55. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Shi, D.; Kumar, K.; Goodwin, A. P., Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Advanced Healthcare Materials 2017, 6 (18), 10.1002/adhm.201700514. 56. Jin, Q.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yeh, C.-K., Inertial Cavitation Initiated by Polytetrafluoroethylene Nanoparticles under Pulsed Ultrasound Stimulation. 2016; Vol. 32. 57. Jin, Q.; Lin, C.-Y.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yang, C.-M.; Yeh, C.-K., Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrasonics Sonochemistry 2017, 36, 262-269. 58. Jin, Q.; Lin, C.-Y.; Chang, Y.-C.; Yang, C.-M.; Yeh, C.-K., Roles of Textural and Surface Properties of Nanoparticles in Ultrasound-Responsive Systems. Langmuir 2018, 34 (4), 1256-1265. 59. Wang, J.; Jiao, Y.; Shao, Y., Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials 2018, 11 (10). 60. de Gennes, P. G., Wetting: statics and dynamics. Reviews of Modern Physics 1985, 57 (3), 827-863. 61. Zisman, W. A., Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. In Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY: 1964; Vol. 43, pp 1-51. 62. Li, X.; He, J., Synthesis of Raspberry-Like SiO2–TiO2 Nanoparticles toward Antireflective and Self-Cleaning Coatings. ACS Applied Materials & Interfaces 2013, 5 (11), 5282-5290. 63. Wang, S.; Jiang, L., Definition of Superhydrophobic States. Advanced Materials 2007, 19 (21), 3423-3424. 64. Boinovich, L. B.; Emelyanenko, A. M., Anti-icing Potential of Superhydrophobic Coatings. Mendeleev Communications 2013, 23 (1), 3-10. 65. Lu, Y.; Sathasivam, S.; Song, J.; Chen, F.; Xu, W.; Carmalt, C. J.; Parkin, I. P., Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. Journal of Materials Chemistry A 2014, 2 (30), 11628-11634. 66. Bhushan, B.; Jung, Y. C.; Koch, K., Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces. Langmuir 2009, 25 (5), 3240-3248. 67. Marmur, A., Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? Langmuir 2003, 19 (20), 8343-8348. 68. 柯清平, 李., 郝天歌, 何濤, 超疏水模型及其机理. 化學進展 2010, 22, 286. 69. Wikipedia contributors Ultrahydrophobicity. https://en.wikipedia.org/w/index.php?title=Ultrahydrophobicity&oldid=890565898 (accessed 17 June 2019 07:48 UTC). 70. Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y., The Lowest Surface Free Energy Based on −CF3 Alignment. Langmuir 1999, 15 (13), 4321-4323. 71. Hare, E. F.; Shafrin, E. G.; Zisman, W. A., Properties of Films of Adsorbed Fluorinated Acids. The Journal of Physical Chemistry 1954, 58 (3), 236-239. 72. Nagappan, S.; Park, S.-S.; Ha, C.-S., Recent Advances in Superhydrophobic Nanomaterials and Nanoscale Systems. 2014; Vol. 14, p 1441-62. 73. Petcu, C.; Purcar, V.; Spătaru, C.-I.; Alexandrescu, E.; Şomoghi, R.; Trică, B.; Niţu, S. G.; Panaitescu, D. M.; Donescu, D.; Jecu, M.-L., The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids. Nanomaterials (Basel) 2017, 7 (2), 47. 74. Xu, S.; Hartvickson, S.; Zhao, J. X., Increasing Surface Area of Silica Nanoparticles With a Rough Surface. ACS Applied Materials & Interfaces 2011, 3 (6), 1865-1872. 75. Wang, W.; Wang, P.; Tang, X.; Elzatahry, A. A.; Wang, S.; Al-Dahyan, D.; Zhao, M.; Yao, C.; Hung, C.-T.; Zhu, X.; Zhao, T.; Li, X.; Zhang, F.; Zhao, D., Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization. ACS Central Science 2017, 3 (8), 839-846. 76. Falde, E. J.; Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W., Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87-103. 77. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang, C.-M.; Ho, J.-a. A., Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. ACS Nano 2010, 4 (8), 4371-4379. 78. Şardan Ekiz, M.; Yildirim, A.; Mumcuoglu, D.; Tekinay, A.; Guler, M., Noncovalent functionalization of mesoporous silica nanoparticles with amphiphilic peptides. 2014; Vol. 2. 79. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials 2016, 28 (12), 4243-4258. 80. Bagwe, R. P.; Hilliard, L. R.; Tan, W., Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22 (9), 4357-4362. 81. Lai, N.; Lin, C.; Ku, P.; Chang, L.; Liao, K.; Lin, W.; Yang, C., Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Research 2014, 7 (10), 1439-1448. 82. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251. 83. Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Ogawa, M., Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews 2011, 40 (2), 801-828. 84. Croissant, J. G.; Fatieiev, Y.; Almalik, A.; Khashab, N. M., Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials 2018, 7 (4), 1700831. 85. Park, D. S.; Yun, D.; Choi, Y.; Kim, T. Y.; Oh, S.; Cho, J.-H.; Yi, J., Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst. Chemical Engineering Journal 2013, 228, 889-895. 86. Xue, X.-L.; Lang, W.-Z.; Yan, X.; Guo, Y.-J., Dispersed Vanadium in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Active and Stable Catalysts for the Oxidative Dehydrogenation of Propane in the Presence of CO2. ACS Applied Materials & Interfaces 2017, 9 (18), 15408-15423. 87. Zhang, H.; Li, Z.; Xu, P.; Wu, R.; Jiao, Z., A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chemical Communications 2010, 46 (36), 6783-6785. 88. Ran, Z.; Sun, Y.; Chang, B.; Ren, Q.; Yang, W., Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier. 2013; Vol. 410. 89. Qu, Q.; Si, Y.; Xuan, H.; Zhang, K.; Chen, X.; Ding, Y.; Feng, S.; Yu, H.-Q., Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Materials Letters 2018, 211, 40-42. 90. Sekhar, A. C. S.; Meera, C. J.; Ziyad, K. V.; Gopinath, C. S.; Vinod, C. P., Synthesis and catalytic activity of monodisperse gold–mesoporous silica core–shell nanocatalysts. Catalysis Science & Technology 2013, 3 (5), 1190-1193. 91. Shen, D.; Yang, J.; Li, X.; Zhou, L.; Zhang, R.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D., Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters 2014, 14 (2), 923-932. 92. Baumann, B.; Wittig, R.; Lindén, M., Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 2017, 9 (34), 12379-12390. 93. Maxwell, A. D.; Cain, C. A.; Hall, T. L.; Fowlkes, J. B.; Xu, Z., Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials. Ultrasound in Medicine & Biology 2013, 39 (3), 449-465. 94. Kang, S.-T.; Lin, J.-L.; Wang, C.-H.; Chang, Y.-C.; Yeh, C.-K., Internal polymer scaffolding in lipid-coated microbubbles for control of inertial cavitation in ultrasound theranostics. Journal of Materials Chemistry B 2015, 3 (29), 5938-5941. 95. Bhattacharjee, S., DLS and zeta potential – What they are and what they are not? Journal of Controlled Release 2016, 235, 337-351. 96. Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D. Y.; Zink, J. I.; Nel, A. E., Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano 2011, 5 (5), 4131-4144. 97. Lin, Y.-S.; Abadeer, N.; Haynes, C. L., Stability of small mesoporous silica nanoparticles in biological media. Chemical Communications 2011, 47 (1), 532-534. 98. Graf, C.; Gao, Q.; Schütz, I.; Noufele, C. N.; Ruan, W.; Posselt, U.; Korotianskiy, E.; Nordmeyer, D.; Rancan, F.; Hadam, S.; Vogt, A.; Lademann, J.; Haucke, V.; Rühl, E., Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells. Langmuir 2012, 28 (20), 7598-7613. 99. Cho, S.-H.; Kim, J.-Y.; Chun, J.-H.; Kim, J.-D., Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 269 (1), 28-34. 100. Ruckenstein, E., Nanodispersions of bubbles and oil drops in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 423, 112-114. 101. Jia, W.; Ren, S.; Hu, B., Effect of Water Chemistry on Zeta Potential of Air Bubbles. 2013; Vol. 8, p 5828-5837. 102. Wang, R.; Liu, T.; Ning, F.; Ou, W.; Zhang, L.; Wang, Z.; Peng, L.; Sun, J.; Liu, Z.; Li, T.; Sun, H.; Jiang, G., Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study. Journal of Energy Chemistry 2019, 30, 90-100. 103. Kinetics and Structure of Colloidal Aggregates. https://www.ethz.ch/content/dam/ethz/special-interest/chab/icb/morbidelli-dam/documents/Education/PRCE/DOC_2016/Chapter7.pdf. (accessed 17 June 2019 09:10 UTC). 104. Paris, J. L.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M.; Vallet-Regí, M., Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science 2017, 52 (15), 8761-8771. 105. Du, X.; Kleitz, F.; Li, X.; Huang, H.; Zhang, X.; Qiao, S.-Z., Disulfide-Bridged Organosilica Frameworks: Designed Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. 2018; p 1707325. 106. Izquierdo-Barba, I.; Colilla, M.; Manzano, M.; Vallet-Regí, M., In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials 2010, 132 (3), 442-452. 107. Dove, P. M.; Crerar, D. A., Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta 1990, 54 (4), 955-969. 108. Ramón-Torregrosa, P. J.; Rodríguez-Valverde, M. A.; Amirfazli, A.; Cabrerizo-Vílchez, M. A., Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 323 (1), 83-93.
|