帳號:guest(3.133.122.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林家巡
作者(外文):Lin, Chia-Hsun
論文名稱(中文):功能化中孔洞二氧化矽奈米顆粒的製備與其於超音波生醫應用的研究
論文名稱(外文):Preparation of Functionalized Mesoporous Silica Nanopaticles for Ultrasound Biomedical Applications
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):洪嘉呈
葉秩光
口試委員(外文):Horng, Jia-Cherng
Yeh, Chih-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023511
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:109
中文關鍵詞:中孔洞二氧化矽奈米顆粒疏水性穩定性超音波慣性穴蝕效應
外文關鍵詞:Mesoporous Silica NanopaticlesHydrophobicityStabilityUltrasoundInertial Cavitation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:150
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中孔洞二氧化矽奈米顆粒(MSNs)作為顯影劑的研究日益發展,而具中空形貌MSNs相較非空心MSNs有更高的藥物裝載量和降解速率。本論文以全氟癸烷官能基全表面修飾於中空MSNs,MMT-2,形成之F-MMT-2與文獻中的超疏水性非空心MSNs在慣性穴蝕效應劑量(ICD)上有相似的效果。為增加疏水顆粒於水中的分散性以及降解性,本研究進一步以3-(Trihydroxysilyl)propyl methylphosphonate, monosodium salt solution (THMP)或Carboxyethylsilanetriol, disodium salt (CES)嫁接於F-MMT-2外表面,同時藉由調控修飾程度,探討表面性質對ICD以及顆粒在水溶液中穩定性的影響,研究結果顯示所有顆粒皆於純水中穩定分散至少一天,而在離子濃度較高的磷酸鹽緩衝生理鹽水中,顆粒穩定性因表面電位下降以及二氧化矽溶解而隨時間下降。相較於全表面修飾全氟癸烷之顆粒,THMP或CES之修飾雖未改善疏水顆粒在磷酸鹽緩衝生理鹽水中的穩定性,但顆粒降解性明顯提高。
同時,本研究藉由於MMT-2外表面成長放射狀中孔洞二氧化矽層以改變表面粗糙度,並觀察其對ICD之影響。於顆粒全表面修飾全氟癸烷後之ICD結果顯示未經二次成長之F-MMT-2具有最高之ICD,而具有小於10 nm的孔洞之表面粗糙度變化對ICD之影響可忽略。
Recently, mesoporous silica nanoparticles (MSNs) as contrast agents have attracted significant attention due to their capacity for sustained cavitation duration under ultrasound irradiation. In this thesis, a type of hollow MSNs, designated as MMT-2, with ~110 nm diameter and Ia3d mesopore symmetry is modified with differrent functional groups for evaluating the effect of particle surface property on ultrasound bio-application efficacy. Functionalization of the outer surface with hydrophilic (phosphonate or carboxylic acid) group, followed by functionalization of hydrophobic (perfluorodecy group on the inner surface generate particles. Compared to the non-hollow and just perfluorodecy group functionalized counterpart MCM-48 reported by our group previously, the dual-functionalized MMT-2 particles had similar inertial cavitation dose (ICD) but degradated faster in phosphate buffered saline (PBS, pH = 7.4). Meanwhile, surface roughness of MMT-2 was modified by growing radial mesopore on the outer surface via an oil−water biphase stratification reaction system. The silica growth on MMT-2 did increase surface roughness, as indicated by increase of contact angle, yet the influence on ICD value was subtle.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 超音波效應與顯影劑 1
1-1-1 超音波效應...... 1
1-1-2 超音波顯影劑的發展 5
1-1-3 中孔洞二氧化矽奈米顆粒與超音波顯影劑 7
1-2 疏水材料 9
1-2-1 接觸角...... 10
1-2-2 介面奈米氣泡與慣性穴蝕效應 12
1-2-3 材料的疏水性 13
1-2-4 疏水材料在溶液中的分散性 15
1-3 中孔洞二氧化矽奈米顆粒 17
1-3-1 中空中孔洞二氧化矽奈米顆粒MMT-2簡介 17
1-3-2 中孔洞二氧化矽奈米顆粒與表面修飾 19
1-3-3 中空放射狀中孔洞二氧化矽奈米複合球 22
1-4 研究動機 26
第二章 實驗部分 27
2-1 實驗藥品 27
2-2 中孔洞二氧化矽的製備 29
2-2-1 MMT-2和MCM-48的合成 29
2-2-2 中空放射狀中孔洞二氧化矽奈米複合球的合成 29
2-3 嫁接官能基於中孔洞二氧化矽 30
2-3-1 全表面嫁接PFDTS 30
2-3-2 全表面嫁接THMP 31
2-3-3 全表面嫁接CES 31
2-3-4 選擇性表面嫁接THMP和PFDTS 31
2-3-5 選擇性表面嫁接CES和PFDTS 32
2-4 材料鑑定與分析方法 35
2-4-1 X光粉末繞射法 (Powder X-Ray Diffraction, PXRD) 35
2-4-2 29Si固態核磁共振光譜術(Solid State 29Si MAS NMR,29Si MAS NMR) 36
2-4-3 氮氣物理吸脫附法 (Nitrogen Physisorption) 37
2-4-4 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 41
2-4-5 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 41
2-4-6 接觸角測試儀(Contact Angle Meter) 42
2-5 慣性穴蝕效應偵測與分析 42
2-5-1 樣品配置 .....................................................................................................................42
2-5-2 慣性穴蝕效應偵測架構與操作方式 43
2-5-3 數值分析 .....................................................................................................................45
2-6 MMT-2的分散性及穩定性測試 46
2-6-1 動態光散射粒徑分析儀 (Dynamic Light Scattering ,DLS)與介面電位量測儀(Zeta Potential Analyzer) 46
2-6-2 在DI water中分散性測試 48
2-6-3 在DI water或PBS中穩定性測試 48
第三章 結果與討論 50
3-1 中孔洞二氧化矽的分析與鑑定 50
3-1-1 MMT-2及MCM-48 50
3-1-2 全表面修飾與選擇性修飾 52
3-2 MMT-2分散性和慣性穴蝕效應之研究 60
3-2-1 MCM-48與MMT-2於慣性穴蝕效應之比較 60
3-2-2 表面修飾程度對分散性之影響 62
3-2-3 表面修飾程度對慣性穴蝕效應之影響 64
3-3 MMT-2於DI water及PBS中穩定性之研究 67
3-3-1 MMT-2於DI water中的穩定性 67
3-3-2 MMT-2於PBS中的穩定性 76
3-4 中空放射狀中孔洞二氧化矽奈米複合球 92
3-4-1 中空放射狀中孔洞二氧化矽奈米複合球之鑑定 92
3-4-2 全表面修飾 96
3-4-3 粗糙度對慣性穴蝕效應之影響 99
第四章 結論 100
參考文獻 101





參考文獻
1. Shriki, J., Ultrasound Physics. Critical Care Clinics 2014, 30 (1), 1-24.
2. Quaia, E., Microbubble ultrasound contrast agents: an update. European Radiology 2007, 17 (8), 1995-2008.
3. Cosgrove, D., Ultrasound contrast agents: An overview. European Journal of Radiology 2006, 60 (3), 324-330.
4. Klibanov, A. L., Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging. Medical & Biological Engineering & Computing 2009, 47 (8), 875-882.
5. Schutt, E. G.; Klein, D. H.; Mattrey, R. M.; Riess, J. G., Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals. Angewandte Chemie International Edition 2003, 42 (28), 3218-3235.
6. Goss, S. A.; Johnston, R. L.; Dunn, F., Compilation of empirical ultrasonic properties of mammalian tissues. II. The Journal of the Acoustical Society of America 1980, 68 (1), 93-108.
7. Mitragotri, S., Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery 2005, 4 (3), 255-260.
8. Manzano, M.; Vallet-Regí, M., Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications 2019, 55 (19), 2731-2740.
9. J. Ernsting, M.; Worthington, A.; May, J.; Tagami, T.; Kolios, M.; Li, S.-D., Ultrasound drug targeting to tumors with thermosensitive liposomes. 2011; p 1-4.
10. Geers, B.; Lentacker, I.; Sanders, N. N.; Demeester, J.; Meairs, S.; De Smedt, S. C., Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. Journal of Controlled Release 2011, 152 (2), 249-256.
11. Wang, J.; Pelletier, M.; Zhang, H.; Xia, H.; Zhao, Y., High-Frequency Ultrasound-Responsive Block Copolymer Micelle. Langmuir 2009, 25 (22), 13201-13205.
12. Zeqiri, B., Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms: (NCRP Report No. 140) National Council on Radiation Protection and Measurements (NCRP), 2002. Ultrasound in Medicine and Biology 2003, 29 (12), 1809.
13. van den Bijgaart, R. J. E.; Eikelenboom, D. C.; Hoogenboom, M.; Fütterer, J. J.; den Brok, M. H.; Adema, G. J., Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunology, Immunotherapy 2017, 66 (2), 247-258.
14. Boissenot, T.; Bordat, A.; Fattal, E.; Tsapis, N., Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. Journal of Controlled Release 2016, 241, 144-163.
15. Dalecki, D., Mechanical Bioeffects of Ultrasound. Annual Review of Biomedical Engineering 2004, 6 (1), 229-248.
16. Magnin, R.; Rabusseau, F.; Salabartan, F.; Mériaux, S.; Aubry, J.-F.; Le Bihan, D.; Dumont, E.; Larrat, B., Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound 2015, 3, 22-22.
17. Aryal, M.; Arvanitis, C. D.; Alexander, P. M.; McDannold, N., Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Advanced Drug Delivery Reviews 2014, 72, 94-109.
18. Ohl, C.-D.; Arora, M.; Ikink, R.; de Jong, N.; Versluis, M.; Delius, M.; Lohse, D., Sonoporation from Jetting Cavitation Bubbles. Biophysical Journal 2006, 91 (11), 4285-4295.
19. Rychak, J. J.; Klibanov, A. L., Nucleic acid delivery with microbubbles and ultrasound. Advanced Drug Delivery Reviews 2014, 72, 82-93.
20. Liu, H.-L.; Fan, C.-H.; Ting, C.-Y.; Yeh, C.-K., Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 2014, 4 (4), 432-444.
21. Kwan, J. J.; Coussios, C. C., Triggered Drug Release and Enhanced Drug Transport from Ultrasound-Responsive Nanoparticles. In Design and Applications of Nanoparticles in Biomedical Imaging, Bulte, J. W. M.; Modo, M. M. J., Eds. Springer International Publishing: Cham, 2017; pp 277-297.
22. Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M., Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. Journal of Hazardous Materials 2010, 178 (1), 1007-1014.
23. Feng, Y.; Zhao, L.; ter Haar, G.; Wan, M., Cavitation Mechanobiology and Applications. In Cavitation in Biomedicine: Principles and Techniques, Wan, M.; Feng, Y.; Haar, G. t., Eds. Springer Netherlands: Dordrecht, 2015; pp 457-503.
24. O'Brien, W. D., Jr., Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007, 93 (1-3), 212-255.
25. Kentish, S.; Ashokkumar, M., The Physical and Chemical Effects of Ultrasound. In Ultrasound Technologies for Food and Bioprocessing, Feng, H.; Barbosa-Canovas, G.; Weiss, J., Eds. Springer New York: New York, NY, 2011; pp 1-12.
26. Qian, X.; Zheng, Y.; Chen, Y., Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials 2016, 28 (37), 8097-8129.
27. Jong, N. d., Improvements in ultrasound contrast agents. IEEE Engineering in Medicine and Biology Magazine 1996, 15 (6), 72-82.
28. Bouakaz, A.; de Jong, N.; Cachard, C.; Jouini, K., On the effect of lung filtering and cardiac pressure on the standard properties of ultrasound contrast agent. Ultrasonics 1998, 36 (1), 703-708.
29. Lindner, J. R.; Song, J.; Jayaweera, A. R.; Sklenar, J.; Kaul, S., Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. Journal of the American Society of Echocardiography 2002, 15 (5), 396-403.
30. Hvattum, E.; Trygve Normann, P.; Oulie, I.; Uran, S.; Ringstad, O.; Skotland, T., Determination of perfluorobutane in rat blood by automatic headspace capillary gas chromatography and selected ion monitoring mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2001, 24 (3), 487-494.
31. Sponheim, N.; Hoff, L.; Waaler, A.; Muan, B.; Morris, H.; Holm, S.; Myrum, M.; Jong, N. d.; Skotland, T. In Albunex-a new ultrasound contrast agent, International Conference on Acoustic Sensing and Imaging, 1993., 29-30 March 1993; 1993; pp 103-108.
32. Paefgen, V.; Doleschel, D.; Kiessling, F., Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 2015, 6, 197-197.
33. Senior, R.; Becher, H.; Monaghan, M.; Agati, L.; Zamorano, J.; Vanoverschelde, J. L.; Nihoyannopoulos, P., Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. European Heart Journal - Cardiovascular Imaging 2009, 10 (2), 194-212.
34. Escoffre, J. M.; Novell, A.; Serrière, S.; Lecomte, T.; Bouakaz, A., Irinotecan Delivery by Microbubble-Assisted Ultrasound: In Vitro Validation and a Pilot Preclinical Study. Molecular Pharmaceutics 2013, 10 (7), 2667-2675.
35. Kotopoulis, S.; Dimcevski, G.; Helge Gilja, O.; Hoem, D.; Postema, M., Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study. Medical Physics 2013, 40 (7), 072902.
36. Smith, D. A. B.; Vaidya, S. S.; Kopechek, J. A.; Huang, S.-L.; Klegerman, M. E.; McPherson, D. D.; Holland, C. K., Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound in Medicine & biology 2010, 36 (1), 145-157.
37. Wheatley, M. A.; Forsberg, F.; Dube, N.; Patel, M.; Oeffinger, B. E., Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound in Medicine and Biology 2006, 32 (1), 83-93.
38. Wu, H.; Rognin, N. G.; Krupka, T. M.; Solorio, L.; Yoshiara, H.; Guenette, G.; Sanders, C.; Kamiyama, N.; Exner, A. A., Acoustic Characterization and Pharmacokinetic Analyses of New Nanobubble Ultrasound Contrast Agents. Ultrasound in Medicine & Biology 2013, 39 (11), 2137-2146.
39. Wang, Y.; Liu, G.; Hu, H.; Li, T. Y.; Johri, A. M.; Li, X.; Wang, J., Stable Encapsulated Air Nanobubbles in Water. Angewandte Chemie International Edition 2015, 54 (48), 14291-14294.
40. Gorce, J.-M.; Arditi, M.; Schneider, M., Influence of Bubble Size Distribution on the Echogenicity of Ultrasound Contrast Agents. 2000; Vol. 35, p 661-71.
41. Rapoport, N.; Christensen, D.; Fain, H.; Barrows, L.; Gao, Z.-G., Ultrasound-triggered drug targeting of tumors in vitro and in vivo. 2004; Vol. 42, p 943-50.
42. Sheeran, P. S.; Wong, V. P.; Luois, S.; McFarland, R. J.; Ross, W. D.; Feingold, S.; Matsunaga, T. O.; Dayton, P. A., Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound in Medicine & Biology 2011, 37 (9), 1518-1530.
43. Ho, Y.-J.; Chang, Y.-C.; Yeh, C.-K., Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics 2016, 6 (3), 392-403.
44. Mannaris, C.; Bau, L.; Grundy, M.; Gray, M.; Lea-Banks, H.; Seth, A.; Teo, B.; Carlisle, R.; Stride, E.; Coussios, C. C., Microbubbles, Nanodroplets and Gas-Stabilizing Solid Particles for Ultrasound-Mediated Extravasation of Unencapsulated Drugs: An Exposure Parameter Optimization Study. Ultrasound in Medicine & Biology 2019, 45 (4), 954-967.
45. Hayward, A. T. J., The role of stabilized gas nuclei in hydrodynamic cavitation inception. Journal of Physics D: Applied Physics 1970, 3 (4), 574-579.
46. Thomas, R. G.; Jonnalagadda, U. S.; Kwan, J. J., Biomedical Applications for Gas-Stabilizing Solid Cavitation Agents. Langmuir 2019.
47. Liu, J.; Levine, A. L.; Mattoon, J. S.; Yamaguchi, M.; Lee, R. J.; Pan, X.; Rosol, T. J., Nanoparticles as image enhancing agents for ultrasonography. Physics in Medicine and Biology 2006, 51 (9), 2179-2189.
48. Foroutan, F.; Jokerst, J. V.; Gambhir, S. S.; Vermesh, O.; Kim, H.-W.; Knowles, J. C., Sol–Gel Synthesis and Electrospraying of Biodegradable (P2O5)55–(CaO)30–(Na2O)15 Glass Nanospheres as a Transient Contrast Agent for Ultrasound Stem Cell Imaging. ACS Nano 2015, 9 (2), 1868-1877.
49. Chen, F.; Ma, M.; Wang, J.; Wang, F.; Chen, S.; Zhao, E.; Darmadi, S.; Jhunjhunwala, A.; Chen, H.; V Jokerst, J., Exosome-like silica nanoparticles: A novel ultrasound contrast agent for stem cell imaging. 2016; Vol. 9.
50. Ma, M.; Chen, H.; Shi, J., Construction of smart inorganic nanoparticle-based ultrasound contrast agents and their biomedical applications. 2015; Vol. 60, p 1170-1183.
51. Feng, Q.; Zhang, W.; Yang, X.; Li, Y.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z., pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy. Advanced Healthcare Materials 2018, 7 (5), 1700957.
52. Zhao, Y.; Zhu, Y.; Fu, J.; Wang, L., Effective Cancer Cell Killing by Hydrophobic Nanovoid-Enhanced Cavitation under Safe Low-Energy Ultrasound. 2014; Vol. 9.
53. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goldscheitter, G. M.; Goodwin, A. P., Stable Encapsulation of Air in Mesoporous Silica Nanoparticles: Fluorocarbon-Free Nanoscale Ultrasound Contrast Agents. Advanced Healthcare Materials 2016, 5 (11), 1290-1298.
54. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Goodwin, A. P., Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy. Chemistry of Materials 2016, 28 (16), 5962-5972.
55. Yildirim, A.; Chattaraj, R.; Blum, N. T.; Shi, D.; Kumar, K.; Goodwin, A. P., Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation. Advanced Healthcare Materials 2017, 6 (18), 10.1002/adhm.201700514.
56. Jin, Q.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yeh, C.-K., Inertial Cavitation Initiated by Polytetrafluoroethylene Nanoparticles under Pulsed Ultrasound Stimulation. 2016; Vol. 32.
57. Jin, Q.; Lin, C.-Y.; Kang, S.-T.; Chang, Y.-C.; Zheng, H.; Yang, C.-M.; Yeh, C.-K., Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrasonics Sonochemistry 2017, 36, 262-269.
58. Jin, Q.; Lin, C.-Y.; Chang, Y.-C.; Yang, C.-M.; Yeh, C.-K., Roles of Textural and Surface Properties of Nanoparticles in Ultrasound-Responsive Systems. Langmuir 2018, 34 (4), 1256-1265.
59. Wang, J.; Jiao, Y.; Shao, Y., Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials 2018, 11 (10).
60. de Gennes, P. G., Wetting: statics and dynamics. Reviews of Modern Physics 1985, 57 (3), 827-863.
61. Zisman, W. A., Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. In Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY: 1964; Vol. 43, pp 1-51.
62. Li, X.; He, J., Synthesis of Raspberry-Like SiO2–TiO2 Nanoparticles toward Antireflective and Self-Cleaning Coatings. ACS Applied Materials & Interfaces 2013, 5 (11), 5282-5290.
63. Wang, S.; Jiang, L., Definition of Superhydrophobic States. Advanced Materials 2007, 19 (21), 3423-3424.
64. Boinovich, L. B.; Emelyanenko, A. M., Anti-icing Potential of Superhydrophobic Coatings. Mendeleev Communications 2013, 23 (1), 3-10.
65. Lu, Y.; Sathasivam, S.; Song, J.; Chen, F.; Xu, W.; Carmalt, C. J.; Parkin, I. P., Creating superhydrophobic mild steel surfaces for water proofing and oil–water separation. Journal of Materials Chemistry A 2014, 2 (30), 11628-11634.
66. Bhushan, B.; Jung, Y. C.; Koch, K., Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces. Langmuir 2009, 25 (5), 3240-3248.
67. Marmur, A., Wetting on Hydrophobic Rough Surfaces:  To Be Heterogeneous or Not To Be? Langmuir 2003, 19 (20), 8343-8348.
68. 柯清平, 李., 郝天歌, 何濤, 超疏水模型及其机理. 化學進展 2010, 22, 286.
69. Wikipedia contributors Ultrahydrophobicity. https://en.wikipedia.org/w/index.php?title=Ultrahydrophobicity&oldid=890565898 (accessed 17 June 2019 07:48 UTC).
70. Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y., The Lowest Surface Free Energy Based on −CF3 Alignment. Langmuir 1999, 15 (13), 4321-4323.
71. Hare, E. F.; Shafrin, E. G.; Zisman, W. A., Properties of Films of Adsorbed Fluorinated Acids. The Journal of Physical Chemistry 1954, 58 (3), 236-239.
72. Nagappan, S.; Park, S.-S.; Ha, C.-S., Recent Advances in Superhydrophobic Nanomaterials and Nanoscale Systems. 2014; Vol. 14, p 1441-62.
73. Petcu, C.; Purcar, V.; Spătaru, C.-I.; Alexandrescu, E.; Şomoghi, R.; Trică, B.; Niţu, S. G.; Panaitescu, D. M.; Donescu, D.; Jecu, M.-L., The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids. Nanomaterials (Basel) 2017, 7 (2), 47.
74. Xu, S.; Hartvickson, S.; Zhao, J. X., Increasing Surface Area of Silica Nanoparticles With a Rough Surface. ACS Applied Materials & Interfaces 2011, 3 (6), 1865-1872.
75. Wang, W.; Wang, P.; Tang, X.; Elzatahry, A. A.; Wang, S.; Al-Dahyan, D.; Zhao, M.; Yao, C.; Hung, C.-T.; Zhu, X.; Zhao, T.; Li, X.; Zhang, F.; Zhao, D., Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization. ACS Central Science 2017, 3 (8), 839-846.
76. Falde, E. J.; Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W., Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87-103.
77. Wang, L.-S.; Wu, L.-C.; Lu, S.-Y.; Chang, L.-L.; Teng, I. T.; Yang, C.-M.; Ho, J.-a. A., Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. ACS Nano 2010, 4 (8), 4371-4379.
78. Şardan Ekiz, M.; Yildirim, A.; Mumcuoglu, D.; Tekinay, A.; Guler, M., Noncovalent functionalization of mesoporous silica nanoparticles with amphiphilic peptides. 2014; Vol. 2.
79. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
80. Bagwe, R. P.; Hilliard, L. R.; Tan, W., Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22 (9), 4357-4362.
81. Lai, N.; Lin, C.; Ku, P.; Chang, L.; Liao, K.; Lin, W.; Yang, C., Hollow mesoporous Ia3d silica nanospheres with singleunit-cell-thick shell: Spontaneous formation and drug delivery application. Nano Research 2014, 7 (10), 1439-1448.
82. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
83. Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Ogawa, M., Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews 2011, 40 (2), 801-828.
84. Croissant, J. G.; Fatieiev, Y.; Almalik, A.; Khashab, N. M., Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials 2018, 7 (4), 1700831.
85. Park, D. S.; Yun, D.; Choi, Y.; Kim, T. Y.; Oh, S.; Cho, J.-H.; Yi, J., Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst. Chemical Engineering Journal 2013, 228, 889-895.
86. Xue, X.-L.; Lang, W.-Z.; Yan, X.; Guo, Y.-J., Dispersed Vanadium in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Active and Stable Catalysts for the Oxidative Dehydrogenation of Propane in the Presence of CO2. ACS Applied Materials & Interfaces 2017, 9 (18), 15408-15423.
87. Zhang, H.; Li, Z.; Xu, P.; Wu, R.; Jiao, Z., A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release. Chemical Communications 2010, 46 (36), 6783-6785.
88. Ran, Z.; Sun, Y.; Chang, B.; Ren, Q.; Yang, W., Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier. 2013; Vol. 410.
89. Qu, Q.; Si, Y.; Xuan, H.; Zhang, K.; Chen, X.; Ding, Y.; Feng, S.; Yu, H.-Q., Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Materials Letters 2018, 211, 40-42.
90. Sekhar, A. C. S.; Meera, C. J.; Ziyad, K. V.; Gopinath, C. S.; Vinod, C. P., Synthesis and catalytic activity of monodisperse gold–mesoporous silica core–shell nanocatalysts. Catalysis Science & Technology 2013, 3 (5), 1190-1193.
91. Shen, D.; Yang, J.; Li, X.; Zhou, L.; Zhang, R.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D., Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters 2014, 14 (2), 923-932.
92. Baumann, B.; Wittig, R.; Lindén, M., Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 2017, 9 (34), 12379-12390.
93. Maxwell, A. D.; Cain, C. A.; Hall, T. L.; Fowlkes, J. B.; Xu, Z., Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials. Ultrasound in Medicine & Biology 2013, 39 (3), 449-465.
94. Kang, S.-T.; Lin, J.-L.; Wang, C.-H.; Chang, Y.-C.; Yeh, C.-K., Internal polymer scaffolding in lipid-coated microbubbles for control of inertial cavitation in ultrasound theranostics. Journal of Materials Chemistry B 2015, 3 (29), 5938-5941.
95. Bhattacharjee, S., DLS and zeta potential – What they are and what they are not? Journal of Controlled Release 2016, 235, 337-351.
96. Meng, H.; Xue, M.; Xia, T.; Ji, Z.; Tarn, D. Y.; Zink, J. I.; Nel, A. E., Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model. ACS Nano 2011, 5 (5), 4131-4144.
97. Lin, Y.-S.; Abadeer, N.; Haynes, C. L., Stability of small mesoporous silica nanoparticles in biological media. Chemical Communications 2011, 47 (1), 532-534.
98. Graf, C.; Gao, Q.; Schütz, I.; Noufele, C. N.; Ruan, W.; Posselt, U.; Korotianskiy, E.; Nordmeyer, D.; Rancan, F.; Hadam, S.; Vogt, A.; Lademann, J.; Haucke, V.; Rühl, E., Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells. Langmuir 2012, 28 (20), 7598-7613.
99. Cho, S.-H.; Kim, J.-Y.; Chun, J.-H.; Kim, J.-D., Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 269 (1), 28-34.
100. Ruckenstein, E., Nanodispersions of bubbles and oil drops in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 423, 112-114.
101. Jia, W.; Ren, S.; Hu, B., Effect of Water Chemistry on Zeta Potential of Air Bubbles. 2013; Vol. 8, p 5828-5837.
102. Wang, R.; Liu, T.; Ning, F.; Ou, W.; Zhang, L.; Wang, Z.; Peng, L.; Sun, J.; Liu, Z.; Li, T.; Sun, H.; Jiang, G., Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study. Journal of Energy Chemistry 2019, 30, 90-100.
103. Kinetics and Structure of Colloidal Aggregates. https://www.ethz.ch/content/dam/ethz/special-interest/chab/icb/morbidelli-dam/documents/Education/PRCE/DOC_2016/Chapter7.pdf.
(accessed 17 June 2019 09:10 UTC).
104. Paris, J. L.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M.; Vallet-Regí, M., Tuning mesoporous silica dissolution in physiological environments: a review. Journal of Materials Science 2017, 52 (15), 8761-8771.
105. Du, X.; Kleitz, F.; Li, X.; Huang, H.; Zhang, X.; Qiao, S.-Z., Disulfide-Bridged Organosilica Frameworks: Designed Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. 2018; p 1707325.
106. Izquierdo-Barba, I.; Colilla, M.; Manzano, M.; Vallet-Regí, M., In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials 2010, 132 (3), 442-452.
107. Dove, P. M.; Crerar, D. A., Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta 1990, 54 (4), 955-969.
108. Ramón-Torregrosa, P. J.; Rodríguez-Valverde, M. A.; Amirfazli, A.; Cabrerizo-Vílchez, M. A., Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008, 323 (1), 83-93.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *