|
1. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603-619. 2. Chen, L.H., Li, X.Y., Rooke, J.C., Zhang, Y.H., Yang, X.Y., Tang, Y., Xiao, F.S., and Su, B.L., Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381-17403. 3. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., and Flanigen, E.M., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Acs Sym. Ser. 1983, 218, 79-106. 4. Notari, B., Microporous crystalline titanium silicates. Adv. Catal. 1996, 41, 253-334. 5. Breck, D.W., Zeolite molecular sieves: structure, chemistry, and use. J. Chromatogr. Sci. 1973, 13, 18A. 6. Barrer, D.W., (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. London: Academic Press. 7. Morris, R.E., Modular materials from zeolite-like building blocks. J. Mater. Chem. 2005, 15, 931-938. 8. McCusker, L.B., Liebau, F., and Engelhardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure Appl. Chem. 2001, 73, 381-394. 9. Zhao, X.S., Lu, G.Q.M., and Millar, G.J., Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075-2090. 10. Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271, 512-516. 11. Olson, D.H., Kokotailo, G.T., Lawton, S.L., and Meier, W.M., Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 1981, 85, 2238-2243. 12. Vankoningsveld, H., Vanbekkum, H., and Jansen, J.C., On the Location and Disorder of the Tetrapropylammonium (TPA) Ion in Zeolite ZSM-5 with Improved Framework Accuracy. Acta Crystallogr. B 1987, 43, 127-132. 13. Olson, D.H., (2007) Atlas of Zeolite Framework Types, New York: Elsevier. 14. Olson, D.H., Haag, W.O., and Lago, R.M., Chemical and physical properties of the ZSM-5 substitutional series. J. Catal. 1980, 61, 390-396. 15. Foster, M.D., Rivin, I., Treacy, M.M.J., and Friedrichs, O.D., A geometric solution to the largest-free-sphere problem in zeolite frameworks. Micropor. Mesopor. Mat. 2006, 90, 32-38. 16. Barrer, R.M., Syntheses and reactions of mordenite. J. Chem. Soc. 1948, 435, 2158-2163. 17. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 2005, 82, 1-78. 18. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663-701. 19. Persson, A.E., Schoeman, B.J., Sterte, J., and Ottesstedt, J.E., The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites, 1994, 14, 557-567. 20. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use. J. Chromatogr. Sci. 1975, 13, 18A. 21. van Donk, S., Bitter, J.H., Verberckmoes, A., Versluijs-Helder, M., Broersma, A., and de Jong, K.P., Physicochemical characterization of porous materials: Spatially resolved accessibility of zeolite crystals. Angew. Chem. Int. Edit. 2005, 44, 1360-1363. 22. Perez-Ramirez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., and Groen, J.C., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530-2542. 23. Burton, A., Elomari, S., Chen, C.Y., Harris, T.V., and Vittoratos, E.S., SSZ-53 and SSZ-59: Two novel extra-large pore zeolites. Chem. Eur. J. 2003, 9, 5737-5748. 24. Corma, A., Diaz-Cabanas, M.J., Jorda, J.L., Rey, F., Sastre, G., and Strohmaier, K.G., A Zeolitic Structure (ITQ-34) with Connected 9-and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. J. Am. Chem. Soc. 2008, 130, 16482-16483. 25. Corma, A., Diaz-Cabanas, M., Martinez-Triguero, J., Rey, F., and Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418, 514-517. 26. Freyhardt, C.C., Tsapatsis, M., Lobo, R.F., Balkus, K.J., and Davis, M.E., A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381, 295-298. 27. Huang, L.R., Cox, E.C., Austin, R.H., and Sturm, J.C., Continuous particle separation through deterministic lateral displacement. Science, 2004, 304, 987-990. 28. Strohmaier, K.G. and Vaughan, D.E.W., Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34. J. Am. Chem. Soc. 2003, 125, 16035-16039. 29. Wagner, P., Yoshikawa, M., Lovallo, M., Tsuji, K., Tsapatsis, M., and Davis, M.E., CIT-5: a high-silica zeolite with 14-ring pores. Chem. Commun. 1997, 0, 2179-2180. 30. Tosheva, L. and Valtchev, V.P., Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 2005, 17, 2494-2513. 31. Larsen, S.C., Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. J. Phys. Chem. C, 2007, 111, 18464-18474. 32. Hsu, C.Y., Chiang, A.S.T., Selvin, R., and Thompson, R.W., Rapid synthesis of MFI zeolite nanocrystals. J. Phys. Chem. B, 2005, 109, 18804-18814. 33. Schoeman, B.J., Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Micropor. Mesopor. Mat. 1998, 22, 9-22. 34. Mintova, S., Valtchev, V., and Kanev, I., A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites, 1993, 13, 102-106. 35. Goa, Y., Yoshitake, H., Wu, P., and Tatsumi, T., Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes. Micropor. Mesopor. Mat. 2004, 70, 93-101. 36. Pavel, C.C., Park, S.H., Dreier, A., Tesche, B., and Schmidt, W., Structural defects induced in ETS-10 by postsynthesis treatment with H2O2 solution. Chem. Mater. 2006, 18, 3813-3820. 37. Pavel, C.C. and Schmidt, W., Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chem. Commun. 2006, 0, 882-884. 38. Jones, C.W., Hwang, S.J., Okubo, T., and Davis, M.E., Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem. Mater. 2001, 13, 1041-1050. 39. Sano, T., Tadenuma, R., Wang, Z.B., and Soga, K., Realumination of dealuminated HZSM-5 zeolites by acid treatment. Chem. Commun. 1997, 46, 1945-1946. 40. Datka, J., Kolidziejski, W., Klinowski, J., and Sulikowski, B., Dealumination of zeolite Y by H4EDTA. Catal. Lett. 1993, 19, 159-165. 41. Fejes, P., Kiricsi, I., Hannus, I., Kiss, A., and Schobel, G., A novel method for the dealumination of zeolites. React. Kinet. Catal. L. 1980, 14, 481-488. 42. Parikh, P.A., Subrahmanyam, N., Bhat, Y.S., and Halgeri, A.B., Synthesis of diisopropylbenzene over dealuminated zeolite beta. J. Mol. Catal. 1994, 88, 85-92. 43. Groen, J.C., Peffer, L.A.A., Moulijn, J.A., and Perez-Ramirez, J., Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chem.-Eur. J. 2005, 11, 4983-4994. 44. Janssen, A.H., Koster, A.J., and de Jong, K.P., On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis. J. Phys. Chem. B, 2002, 106, 11905-11909. 45. Carrott, M., Russo, P.A., Carvalhal, C., Carrott, P.J.M., Marques, J.P., Lopes, J.M., Gener, I., Guisnet, M., and Ribeiro, F.R., Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites. Micropor. Mesopor. Mater. 2005, 81, 259-267. 46. Dessau, R.M., Valyocsik, E.W., and Goeke, N.H., Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites, 1992, 12, 776-779. 47. Cizmek, A., Subotic, B., Aiello, R., Crea, F., Nastro, A., and Tuoto, C., Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Mater. 1995, 4, 159-168. 48. Groen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 2007, 46, 4193-4201. 49. Groen, J.C., Abello, S., Villaescusa, L.A., and Perez-Ramirez, J., Mesoporous beta zeolite obtained by desilication. Micropor. Mesopor. Mat. 2008, 114, 93-102. 50. Groen, J.C., Sano, T., Moulijn, J.A., and Perez-Ramirez, J., Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal. 2007, 251, 21-27. 51. Perez-Ramirez, J., Verboekend, D., Bonilla, A., and Abello, S., Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Adv. Funct. Mater. 2009, 19, 3972-3979. 52. Groen, J.C., Jansen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B, 2004, 108, 13062-13065. 53. Boisen, A., Schmidt, I., Carlsson, A., Dahl, S., Brorson, M., and Jacobsen, C.J.H., TEM stereo-imaging of mesoporous zeolite single crystals. Chem. Commun. 2003, 958-959. 54. Chu, N.B., Wang, J.Q., Zhang, Y., Yang, J.H., Lu, J.M., and Yin, D.H., Nestlike Hollow Hierarchical MCM-22 Microspheres: Synthesis and Exceptional Catalytic Properties. Chem. Mater. 2010, 22, 2757-2763. 55. Yang, Z.X., Xia, Y.D., and Mokaya, R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv. Mater. 2004, 16, 727-732. 56. Jacobsen, C.J.H., Madsen, C., Houzvicka, J., Schmidt, I., and Carlsson, A., Mesoporous zeolite single crystals. J. Am. Chem. Soc. 2000, 122, 7116-7117. 57. Fan, W., Snyder, M.A., Kumar, S., Lee, P.S., Yoo, W.C., McCormick, A.V., Penn, R.L., Stein, A., and Tsapatsis, M., Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat. Mater. 2008, 7, 984-991. 58. Chen, H.Y., Wydra, J., Zhang, X.Y., Lee, P.S., Wang, Z.P., Fan, W., and Tsapatsis, M., Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 2011, 133, 12390-12393. 59. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712. 60. Na, K., Choi, M., and Ryoo, R. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19. 61. Karlsson, A., Stocker, M., and Schmidt, R., Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mat. 1999, 27, 181-192. 62. Wang, H. and Pinnavaia, T.J., MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Edit. 2006, 45, 7603-7606. 63. Choi, M., Srivastava, R., and Ryoo, R., Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem. Commun. 2006, 4380-4382. 64. Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., and Ryoo, R., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-251. 65. Park, W., Yu, D., Na, K., Jelfs, K.E., Slater, B., Sakamoto, Y., and Ryoo, R., Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chem. Mater. 2011, 23, 5131-5137. 66. Chaikittisilp, W., Suzuki, Y., Mukti, R.R., Suzuki, T., Sugita, K., Itabashi, K., Shimojima, A., and Okubo, T., Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem. Int. Ed., 2013, 52, 3355-3359. 67. Chang, A., Hsiao, H.M., Chen, T.H., Chu, M.W., and Yang, C.M., Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement. Chem. Commun. 2016, 52, 11939-11942. 68. Shen, X.F., Mao, W.T., Ma, Y.H., Xu, D.D., Wu, P., Terasaki, O., Han, L., and Che, S.N., A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure. Angew. Chem. Int. Edit. 2018, 57, 724-728. 69. Shen, X.F., Mao, W.T., Ma, Y.H., Peng, H.G., Xu, D.D., Wu, P., Han, L., and Che, S.A., Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group. Chem.-Eur. J. 2018, 24, 8615-8623. 70. Liu, L., Ye, X.P., and Bozell, J.J., A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. Chemsuschem, 2012, 5, 1162-1180. 71. Bracey, C.L., Carley, A.F., Edwards, J.K., Ellis, P.R., and Hutchings, G.J., Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catal. Sci. Technol. 2011, 1, 76-85. 72. Bettahar, M.M., Costentin, G., Savary, L., and Lavalley, J.C., On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A-Gen. 1996, 145, 1-48. 73. Adams, C.R. and Jennings, T.J., Mechanism Studies of the Catalytic Oxidation of Propylene. J. Catal. 1964, 3, 549-558. 74. Yu, J.S. and Kevan, L., Catalytic partial oxidation of propylene to acrolein over copper(II)-exchanged M-X and M-Y zeolites where M = Mg2+, Ca2+, Li+, Na+, K+, and H+: evidence for separate pathways for partial and complete oxidation. J. Phys. Chem. 1991, 95, 3262-3271. 75. Yu, J.S. and Kevan, L., Effects of reoxidation and water vapor on selective partial oxidation of propylene to acrolein in copper(II)-exchanged X and Y zeolites. J. Phys. Chem. 1991, 95, 6648-6653. 76. Liu, C.H., Lai, N.C., Lee, J.F., Chen, C.S., and Yang, C.M., SBA-15-supported highly dispersed copper catalysts: Vacuum-thermal preparation and catalytic studies in propylene partial oxidation to acrolein. J. Catal. 2014, 316, 231-239. 77. Reitz, J.B. and Solomon, E.I., Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120, 11467-11478. 78. Haber, J. and Turek, W., Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene. J. Catal. 2000, 190, 320-326. 79. Voge, H.H., Wagner, C.D., and Stevenson, D.P., Mechanism of propylene oxidation over cuprous oxide. J. Catal. 1963, 2, 58-62. 80. Adams, C.R. and Jennings, T.J., Investigation of the mechanism of catalytic oxidation of propylene to acrolein and acrylonitrile. J. Catal. 1963, 2, 63-68. 81. Schulz, K.H. and Cox, D.F., Propene adsorption on Cu2O single-crystal surfaces. Surf. Sci. 1992, 262, 318-334. 82. Schulz, K.H. and Cox, D.F., Propene Oxidation over Cu2O Single-Crystal Surfaces: A Surface Science Study of Propene Activation at 1 atm and 300 K. J. Catal. 1993, 143, 464-480. 83. Akimoto, M., Akiyama, M., and Echigoya, E., Nature of Oxygen Species Incorporated into Acrylaldehyde in Vapor-Phase Oxidation of Propylene over Supported Copper Catalyst. B. Chem. Soc. Jpn. 1976, 49, 3367-3371. 84. Su, W.G., Wang, S.G., Ying, P.L., Feng, Z.C., and Li, C., A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J. Catal. 2009, 268, 165-174. 85. He, J.L., Zhai, Q.G., Zhang, Q.H., Deng, W.P., and Wang, Y., Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J. Catal. 2013, 299, 53-66. 86. Duzenli, D., Atmaca, D.O., Gezer, M.G., and Onal, I., A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces. Appl. Surf. Sci. 2015, 355, 660-666. 87. Zhu, W.M., Zhang, Q.H., and Wang, Y., Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J. Phys. Chem. C, 2008, 112, 7731-7734. 88. Wang, Y., Chu, H., Zhu, W.M., and Zhang, Q.H., Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catal. Today, 2008, 131, 496-504. 89. Vaughan, O.P.H., Kyriakou, G., Macleod, N., Tikhov, M., and Lambert, R.M., Copper as a selective catalyst for the epoxidation of propene. J. Catal. 2005, 236, 401-404. 90. Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., and Ryoo, R., Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332. 91. Chen, L., Zhu, S.Y., Wang, Y.M., and He, M.Y., One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New J. Chem. 2010, 34, 2328-2334. 92. Xue, T., Liu, H.P., Zhang, Y., Wu, H.H., Wu, P., and He, M.Y., Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Micropor. Mesopor. Mat. 2017, 242, 190-199. 93. Varoon, K., Zhang, X.Y., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.Y., Cococcioni, M., Francis, L.F., McCormick, A.V., Mkhoyan, K.A., and Tsapatsis, M., Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science, 2011, 334, 72-75. 94. J. Peisach, W.E.B., Structural Implications Derived from the Analysis of Electron Paramagnetic Resonance Spectra of Natural and Artificial Copper Proteins. Arch. Biochem. Biophys., 1974, 165, 691-708. 95. Tu, C.H., Wang, A.Q., Zheng, M.Y., Wang, X.D., and Zhang, T., Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A-Gen. 2006, 297, 40-47. 96. Zhang, X.W., Huang, N., Wang, G., Dong, W.J., Yang, M., Luan, Y., and Shi, Z., Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol. Micropor. Mesopor. Mat. 2013, 177, 47-53. 97. Chen, L.F., Guo, P.J., Zhu, L.J., Qiao, M.H., Shen, W., Xu, H.L., and Fan, K.N., Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl. Catal. A-Gen. 2009, 356, 129-136. 98. Yin, Y., Jiang, W.J., Liu, X.Q., Li, Y.H., and Sun, L.B., Dispersion of copper species in a confined space and their application in thiophene capture. J. Mater. Chem. 2012, 22, 18514-18521. 99. Kau, L.S., Spirasolomon, D.J., Pennerhahn, J.E., Hodgson, K.O., and Solomon, E.I., X-ray Absorption-edge Determination of the Oxidation-state and Coordination Number of Copper Application to the Type-3 Site in Rhusvernicifera Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc., 1987, 109, 6433-6442. 100. Kristiansen, T., Mathisen, K., Einarsrud, M.A., Bjorgen, M., and Nicholson, D.G., Single-Site Copper by Incorporation in Ambient Pressure Dried Silica Aerogel and Xerogel Systems: An X-ray Absorption Spectroscopy Study. J. Phys. Chem. C, 2011, 115, 19260-19268. 101. Zhang, R.Q. and McEwen, J.S., Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles. J. Phys. Chem. Lett. 2018, 9, 3035-3042. 102. Frenkel, A.I., Korshin, G.V., and Ankudinov, A.L., XANES study of Cu2+ binding sites in aquatic humic substances. Environ. Sci. Technol. 2000, 34, 2138-2142. 103. Mingos, D.M.P.D., (2012) Molecular Electronic Structures of Transition Metal Complexes II. New york: Spronger Science & Business Media. 104. Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059-4063.
|