帳號:guest(3.149.245.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張格愷
作者(外文):Chang, Ko-Kai
論文名稱(中文):新穎含銅多層次沸石的製備與其丙烯選擇性氧化反應的催化研究
論文名稱(外文):Novel Copper-Containing Hierarchical Zeolites: Preparation and Catalytic Study on Selective Oxidation of Propylene
指導教授(中文):楊家銘
指導教授(外文):Yang, Chia-Min
口試委員(中文):鄭淑芬
張淑閔
口試委員(外文):Cheng, Soofin
Chang, Sue-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023506
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:115
中文關鍵詞:多層次沸石丙烯選擇性氧化結構導向試劑
外文關鍵詞:Hierarchical zeolitesStructure-directing agentSelective oxidation of propylene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:255
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多層次孔洞沸石由於有高比表面積且含有中孔洞,因此在催化過程中氣體反應物更容易接觸材料中的活性位點,再加上物質傳遞效率的提升,使得多層次孔洞沸石的催化效率比一般沸石塊材高。要在不摻雜鋁的沸石中放入金屬最常見的方法為含浸法,但是含浸法並不能控制金屬在材料中的分布位置以及分散性,本論文成功設計出具螯合官能基之結構導向試劑,C6H13-N+(CH3)2-(CH2)6-N+(CH3)2-(CH2)6-NH-(CH2)2-NH-(CH2)6-N+(CH3)2-(CH2)6-N+(CH3)2-C6H13(4Br-), 簡寫為 N2-En-N2,利用此結構導向試劑能夠合成出具有金屬螯合能力且奈米層板以十字交錯方式進行自我支撐的多層次孔洞 silicalite-1,利用位在層狀結構間的金屬螯合官能基可以與銅離子形成穩定的錯合物,進而得到負載高分散銅的多層次孔洞沸石催化劑,並將其應用於丙烯的選擇性氧化反應,且在180 ℃ 下有高丙烯醛選擇性。
Hierarchical silicalite-1 zeolites with high surface areas, high pore volume ratios, high accessibilities, and ready mass transport properties have better catalytic performance than bulk silicalite-1. However, the most common strategy to prepare metal-containing silicalite-1 is impregnation which could not easily control the position and dispersity of metal. Here, we successfully synthesize a new type triblock structure-directing agent (SDA) with metal chelating group in the middle. The triblock SDA is C6H13-N+(CH3)2-(CH2)6-N+(CH3)2-(CH2)6-NH-(CH2)2-NH-(CH2)6-N+(CH3)2-(CH2)6-N+(CH3)2-C6H13(4Br-), abbreviated to N2-En-N2. By using this new type SDA, we could synthesize hierarchical silicalite-1 comprising highly-branched, self-pillared, orthogonally-stacked and metal chelating agent at the same time. The highly disperse copper complexes which are between two MFI nanosheets could be prepared by aid of chelating part. We applied this catalyst to selective oxidation of propylene catalytic reaction, and high acrolein selectivity at 180℃ could be obtained.
摘要 I
Abstract II
誌謝辭 III
目錄 V
圖目錄 X
表目錄 XVI
第一章 緒論 1
1-1 沸石材料介紹 1
1-1-1 沸石簡介 1
1-1-2 沸石結構與分類 3
1-1-3 MFI 沸石 5
1-1-4 MFI 沸石合成 7
1-2 具多重孔洞的沸石材料 8
1-2-1 後合成法 11
1-2-2 硬模板法 14
1-2-3 軟模板法 17
1-3 丙烯選擇性氧化 25
1-4 研究動機 31
第二章 實驗部分 32
2-1 實驗藥品 32
2-2 樣品製備 34
2-2-1 C66合成 34
2-2-2 C666Br合成 34
2-2-3 N2-En 合成 35
2-2-4 N2-En-N2 合成 35
2-2-5 以四乙氧基矽烷為矽源合成 silicalite-1 36
2-2-6以水玻璃為矽源合成silicalite-1 36
2-2-7 以 N2-En為結構導向試劑一步驟合成含銅 silicalite-1 37
2-2-8 以 N2-En-N2 為結構導向試劑一步驟合成含銅 hierarchical silicalite-1 37
2-2-9 後修飾合成含銅多層次 silicalite-1 38
2-2-10 以含浸法製備含銅多層次 silicalite-1 38
2-2-11 以含浸法製備含銅傳統 silicalite-1 38
2-3 丙烯選擇性氧化反應 40
2-4 樣品命名 42
2-5 材料鑑定與分析技術簡介 44
2-5-1 X 光粉末繞射(Powder X-Ray Diffraction, PXRD) 44
2-5-2 氮氣物理吸脫附(N2 Physisorption) 45
2-5-3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 49
2-5-4 穿透式電子顯微術(Transmission Electron Microscopy, TEM) 50
2-5-5 能量散射光譜 (Energy Dispersive X-Ray Spectroscopy, 51
2-5-6 紫外/可見光吸收光譜(UV-Visible Spectroscopy) 52
2-5-7 感應耦合電漿質譜分析(Inductively Coupled Plasma-Mass Spectroscopy, ICP-MS) 52
2-5-8 核磁共振光譜儀(Nuclear Magnetic Resonance Spectroscopy, NMR) 53
2-5-9 固態核磁共振光譜(Solid State Nuclear Magnetic Resonance ) 54
2-5-10 氫氣程溫還原(Hydrogen Temperature Programmed 54
2-5-11 X 光吸收光譜(X-ray Absorption Spectroscopy, XAS) 55
2-5-12 熱重分析儀(Thermo Gravimetric Analyzer, TGA) 59
2-5-13 質譜儀(mass spectrometer) 60
2-5-14 電子順磁共振光譜儀(electron paramagnetic resonance, EPR) 60
第三章 結果與討論 62
3-1 新穎結構導向試劑合成與鑑定 62
3-1-1 結構導向試劑之親水端C666Br合成 62
3-1-2 結構導向試劑 N2-En合成 64
3-1-3 結構導向試劑 N2-En-N2合成 65
3-2 多層次沸石的合成與鑑定 67
3-2-1以四乙氧基矽烷為矽源之合成研究 67
3-2-2 以水玻璃為矽源之合成研究 69
3-3 一步驟合成含銅多層次沸石 81
3-3-1 以 N2-En 為結構導向試劑一步驟合成含銅 silicalite-1 81
3-3-2以 N2-En-N2 為結構導向試劑一步驟合成含銅 silicalite-1 82
3-4 後修飾法合成含銅多層次沸石 85
3-4-1 ICP 鑑定材料的銅含量 85
3-4-2 UV-vis. 光譜鑑定 86
3-4-3 電子順磁共振光譜鑑定 87
3-4-4 氫氣程溫還原鑑定 88
3-4-5 材料之 X 光吸收光譜鑑定 92
3-4-6 材料之 TEM 元素掃描鑑定 100
3-4-7 WG-D-S 為模板之含銅多層次沸石 102
3-5 丙烯選擇性氧化 103
第四章 結論 106
第五章 參考資料 107
1. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57, 603-619.
2. Chen, L.H., Li, X.Y., Rooke, J.C., Zhang, Y.H., Yang, X.Y., Tang, Y., Xiao, F.S., and Su, B.L., Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381-17403.
3. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., and Flanigen, E.M., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Acs Sym. Ser. 1983, 218, 79-106.
4. Notari, B., Microporous crystalline titanium silicates. Adv. Catal. 1996, 41, 253-334.
5. Breck, D.W., Zeolite molecular sieves: structure, chemistry, and use. J. Chromatogr. Sci. 1973, 13, 18A.
6. Barrer, D.W., (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. London: Academic Press.
7. Morris, R.E., Modular materials from zeolite-like building blocks. J. Mater. Chem. 2005, 15, 931-938.
8. McCusker, L.B., Liebau, F., and Engelhardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure Appl. Chem. 2001, 73, 381-394.
9. Zhao, X.S., Lu, G.Q.M., and Millar, G.J., Advances in mesoporous molecular sieve MCM-41. Ind. Eng. Chem. Res. 1996, 35, 2075-2090.
10. Flanigen, E.M., Bennett, J.M., Grose, R.W., Cohen, J.P., Patton, R.L., Kirchner, R.M., and Smith, J.V., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271, 512-516.
11. Olson, D.H., Kokotailo, G.T., Lawton, S.L., and Meier, W.M., Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 1981, 85, 2238-2243.
12. Vankoningsveld, H., Vanbekkum, H., and Jansen, J.C., On the Location and Disorder of the Tetrapropylammonium (TPA) Ion in Zeolite ZSM-5 with Improved Framework Accuracy. Acta Crystallogr. B 1987, 43, 127-132.
13. Olson, D.H., (2007) Atlas of Zeolite Framework Types, New York: Elsevier.
14. Olson, D.H., Haag, W.O., and Lago, R.M., Chemical and physical properties of the ZSM-5 substitutional series. J. Catal. 1980, 61, 390-396.
15. Foster, M.D., Rivin, I., Treacy, M.M.J., and Friedrichs, O.D., A geometric solution to the largest-free-sphere problem in zeolite frameworks. Micropor. Mesopor. Mat. 2006, 90, 32-38.
16. Barrer, R.M., Syntheses and reactions of mordenite. J. Chem. Soc. 1948, 435, 2158-2163.
17. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Micropor. Mesopor. Mat. 2005, 82, 1-78.
18. Cundy, C.S. and Cox, P.A., The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev. 2003, 103, 663-701.
19. Persson, A.E., Schoeman, B.J., Sterte, J., and Ottesstedt, J.E., The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites, 1994, 14, 557-567.
20. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use. J. Chromatogr. Sci. 1975, 13, 18A.
21. van Donk, S., Bitter, J.H., Verberckmoes, A., Versluijs-Helder, M., Broersma, A., and de Jong, K.P., Physicochemical characterization of porous materials: Spatially resolved accessibility of zeolite crystals. Angew. Chem. Int. Edit. 2005, 44, 1360-1363.
22. Perez-Ramirez, J., Christensen, C.H., Egeblad, K., Christensen, C.H., and Groen, J.C., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 2008, 37, 2530-2542.
23. Burton, A., Elomari, S., Chen, C.Y., Harris, T.V., and Vittoratos, E.S., SSZ-53 and SSZ-59: Two novel extra-large pore zeolites. Chem. Eur. J. 2003, 9, 5737-5748.
24. Corma, A., Diaz-Cabanas, M.J., Jorda, J.L., Rey, F., Sastre, G., and Strohmaier, K.G., A Zeolitic Structure (ITQ-34) with Connected 9-and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. J. Am. Chem. Soc. 2008, 130, 16482-16483.
25. Corma, A., Diaz-Cabanas, M., Martinez-Triguero, J., Rey, F., and Rius, J., A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418, 514-517.
26. Freyhardt, C.C., Tsapatsis, M., Lobo, R.F., Balkus, K.J., and Davis, M.E., A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381, 295-298.
27. Huang, L.R., Cox, E.C., Austin, R.H., and Sturm, J.C., Continuous particle separation through deterministic lateral displacement. Science, 2004, 304, 987-990.
28. Strohmaier, K.G. and Vaughan, D.E.W., Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34. J. Am. Chem. Soc. 2003, 125, 16035-16039.
29. Wagner, P., Yoshikawa, M., Lovallo, M., Tsuji, K., Tsapatsis, M., and Davis, M.E., CIT-5: a high-silica zeolite with 14-ring pores. Chem. Commun. 1997, 0, 2179-2180.
30. Tosheva, L. and Valtchev, V.P., Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 2005, 17, 2494-2513.
31. Larsen, S.C., Nanocrystalline zeolites and zeolite structures: Synthesis, characterization, and applications. J. Phys. Chem. C, 2007, 111, 18464-18474.
32. Hsu, C.Y., Chiang, A.S.T., Selvin, R., and Thompson, R.W., Rapid synthesis of MFI zeolite nanocrystals. J. Phys. Chem. B, 2005, 109, 18804-18814.
33. Schoeman, B.J., Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Micropor. Mesopor. Mat. 1998, 22, 9-22.
34. Mintova, S., Valtchev, V., and Kanev, I., A correlation between the fundamental properties of templates and the kinetics of ZSM-5 crystallization. Zeolites, 1993, 13, 102-106.
35. Goa, Y., Yoshitake, H., Wu, P., and Tatsumi, T., Controlled detitanation of ETS-10 materials through the post-synthetic treatment and their applications to the liquid-phase epoxidation of alkenes. Micropor. Mesopor. Mat. 2004, 70, 93-101.
36. Pavel, C.C., Park, S.H., Dreier, A., Tesche, B., and Schmidt, W., Structural defects induced in ETS-10 by postsynthesis treatment with H2O2 solution. Chem. Mater. 2006, 18, 3813-3820.
37. Pavel, C.C. and Schmidt, W., Generation of hierarchical pore systems in the titanosilicate ETS-10 by hydrogen peroxide treatment under microwave irradiation. Chem. Commun. 2006, 0, 882-884.
38. Jones, C.W., Hwang, S.J., Okubo, T., and Davis, M.E., Synthesis of hydrophobic molecular sieves by hydrothermal treatment with acetic acid. Chem. Mater. 2001, 13, 1041-1050.
39. Sano, T., Tadenuma, R., Wang, Z.B., and Soga, K., Realumination of dealuminated HZSM-5 zeolites by acid treatment. Chem. Commun. 1997, 46, 1945-1946.
40. Datka, J., Kolidziejski, W., Klinowski, J., and Sulikowski, B., Dealumination of zeolite Y by H4EDTA. Catal. Lett. 1993, 19, 159-165.
41. Fejes, P., Kiricsi, I., Hannus, I., Kiss, A., and Schobel, G., A novel method for the dealumination of zeolites. React. Kinet. Catal. L. 1980, 14, 481-488.
42. Parikh, P.A., Subrahmanyam, N., Bhat, Y.S., and Halgeri, A.B., Synthesis of diisopropylbenzene over dealuminated zeolite beta. J. Mol. Catal. 1994, 88, 85-92.
43. Groen, J.C., Peffer, L.A.A., Moulijn, J.A., and Perez-Ramirez, J., Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent. Chem.-Eur. J. 2005, 11, 4983-4994.
44. Janssen, A.H., Koster, A.J., and de Jong, K.P., On the shape of the mesopores in zeolite Y: A three-dimensional transmission electron microscopy study combined with texture analysis. J. Phys. Chem. B, 2002, 106, 11905-11909.
45. Carrott, M., Russo, P.A., Carvalhal, C., Carrott, P.J.M., Marques, J.P., Lopes, J.M., Gener, I., Guisnet, M., and Ribeiro, F.R., Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites. Micropor. Mesopor. Mater. 2005, 81, 259-267.
46. Dessau, R.M., Valyocsik, E.W., and Goeke, N.H., Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites, 1992, 12, 776-779.
47. Cizmek, A., Subotic, B., Aiello, R., Crea, F., Nastro, A., and Tuoto, C., Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Mater. 1995, 4, 159-168.
48. Groen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Alkaline posttreatment of MFI zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 2007, 46, 4193-4201.
49. Groen, J.C., Abello, S., Villaescusa, L.A., and Perez-Ramirez, J., Mesoporous beta zeolite obtained by desilication. Micropor. Mesopor. Mat. 2008, 114, 93-102.
50. Groen, J.C., Sano, T., Moulijn, J.A., and Perez-Ramirez, J., Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions. J. Catal. 2007, 251, 21-27.
51. Perez-Ramirez, J., Verboekend, D., Bonilla, A., and Abello, S., Zeolite Catalysts with Tunable Hierarchy Factor by Pore-Growth Moderators. Adv. Funct. Mater. 2009, 19, 3972-3979.
52. Groen, J.C., Jansen, J.C., Moulijn, J.A., and Perez-Ramirez, J., Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B, 2004, 108, 13062-13065.
53. Boisen, A., Schmidt, I., Carlsson, A., Dahl, S., Brorson, M., and Jacobsen, C.J.H., TEM stereo-imaging of mesoporous zeolite single crystals. Chem. Commun. 2003, 958-959.
54. Chu, N.B., Wang, J.Q., Zhang, Y., Yang, J.H., Lu, J.M., and Yin, D.H., Nestlike Hollow Hierarchical MCM-22 Microspheres: Synthesis and Exceptional Catalytic Properties. Chem. Mater. 2010, 22, 2757-2763.
55. Yang, Z.X., Xia, Y.D., and Mokaya, R., Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Adv. Mater. 2004, 16, 727-732.
56. Jacobsen, C.J.H., Madsen, C., Houzvicka, J., Schmidt, I., and Carlsson, A., Mesoporous zeolite single crystals. J. Am. Chem. Soc. 2000, 122, 7116-7117.
57. Fan, W., Snyder, M.A., Kumar, S., Lee, P.S., Yoo, W.C., McCormick, A.V., Penn, R.L., Stein, A., and Tsapatsis, M., Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat. Mater. 2008, 7, 984-991.
58. Chen, H.Y., Wydra, J., Zhang, X.Y., Lee, P.S., Wang, Z.P., Fan, W., and Tsapatsis, M., Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. J. Am. Chem. Soc. 2011, 133, 12390-12393.
59. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710-712.
60. Na, K., Choi, M., and Ryoo, R. Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19.
61. Karlsson, A., Stocker, M., and Schmidt, R., Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Micropor. Mesopor. Mat. 1999, 27, 181-192.
62. Wang, H. and Pinnavaia, T.J., MFI zeolite with small and uniform intracrystal mesopores. Angew. Chem. Int. Edit. 2006, 45, 7603-7606.
63. Choi, M., Srivastava, R., and Ryoo, R., Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem. Commun. 2006, 4380-4382.
64. Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., and Ryoo, R., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-251.
65. Park, W., Yu, D., Na, K., Jelfs, K.E., Slater, B., Sakamoto, Y., and Ryoo, R., Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chem. Mater. 2011, 23, 5131-5137.
66. Chaikittisilp, W., Suzuki, Y., Mukti, R.R., Suzuki, T., Sugita, K., Itabashi, K., Shimojima, A., and Okubo, T., Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angew. Chem. Int. Ed., 2013, 52, 3355-3359.
67. Chang, A., Hsiao, H.M., Chen, T.H., Chu, M.W., and Yang, C.M., Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement. Chem. Commun. 2016, 52, 11939-11942.
68. Shen, X.F., Mao, W.T., Ma, Y.H., Xu, D.D., Wu, P., Terasaki, O., Han, L., and Che, S.N., A Hierarchical MFI Zeolite with a Two-Dimensional Square Mesostructure. Angew. Chem. Int. Edit. 2018, 57, 724-728.
69. Shen, X.F., Mao, W.T., Ma, Y.H., Peng, H.G., Xu, D.D., Wu, P., Han, L., and Che, S.A., Mesoporous MFI Zeolite with a 2D Square Structure Directed by Surfactants with an Azobenzene Tail Group. Chem.-Eur. J. 2018, 24, 8615-8623.
70. Liu, L., Ye, X.P., and Bozell, J.J., A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. Chemsuschem, 2012, 5, 1162-1180.
71. Bracey, C.L., Carley, A.F., Edwards, J.K., Ellis, P.R., and Hutchings, G.J., Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catal. Sci. Technol. 2011, 1, 76-85.
72. Bettahar, M.M., Costentin, G., Savary, L., and Lavalley, J.C., On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl. Catal. A-Gen. 1996, 145, 1-48.
73. Adams, C.R. and Jennings, T.J., Mechanism Studies of the Catalytic Oxidation of Propylene. J. Catal. 1964, 3, 549-558.
74. Yu, J.S. and Kevan, L., Catalytic partial oxidation of propylene to acrolein over copper(II)-exchanged M-X and M-Y zeolites where M = Mg2+, Ca2+, Li+, Na+, K+, and H+: evidence for separate pathways for partial and complete oxidation. J. Phys. Chem. 1991, 95, 3262-3271.
75. Yu, J.S. and Kevan, L., Effects of reoxidation and water vapor on selective partial oxidation of propylene to acrolein in copper(II)-exchanged X and Y zeolites. J. Phys. Chem. 1991, 95, 6648-6653.
76. Liu, C.H., Lai, N.C., Lee, J.F., Chen, C.S., and Yang, C.M., SBA-15-supported highly dispersed copper catalysts: Vacuum-thermal preparation and catalytic studies in propylene partial oxidation to acrolein. J. Catal. 2014, 316, 231-239.
77. Reitz, J.B. and Solomon, E.I., Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120, 11467-11478.
78. Haber, J. and Turek, W., Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene. J. Catal. 2000, 190, 320-326.
79. Voge, H.H., Wagner, C.D., and Stevenson, D.P., Mechanism of propylene oxidation over cuprous oxide. J. Catal. 1963, 2, 58-62.
80. Adams, C.R. and Jennings, T.J., Investigation of the mechanism of catalytic oxidation of propylene to acrolein and acrylonitrile. J. Catal. 1963, 2, 63-68.
81. Schulz, K.H. and Cox, D.F., Propene adsorption on Cu2O single-crystal surfaces. Surf. Sci. 1992, 262, 318-334.
82. Schulz, K.H. and Cox, D.F., Propene Oxidation over Cu2O Single-Crystal Surfaces: A Surface Science Study of Propene Activation at 1 atm and 300 K. J. Catal. 1993, 143, 464-480.
83. Akimoto, M., Akiyama, M., and Echigoya, E., Nature of Oxygen Species Incorporated into Acrylaldehyde in Vapor-Phase Oxidation of Propylene over Supported Copper Catalyst. B. Chem. Soc. Jpn. 1976, 49, 3367-3371.
84. Su, W.G., Wang, S.G., Ying, P.L., Feng, Z.C., and Li, C., A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J. Catal. 2009, 268, 165-174.
85. He, J.L., Zhai, Q.G., Zhang, Q.H., Deng, W.P., and Wang, Y., Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification. J. Catal. 2013, 299, 53-66.
86. Duzenli, D., Atmaca, D.O., Gezer, M.G., and Onal, I., A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces. Appl. Surf. Sci. 2015, 355, 660-666.
87. Zhu, W.M., Zhang, Q.H., and Wang, Y., Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J. Phys. Chem. C, 2008, 112, 7731-7734.
88. Wang, Y., Chu, H., Zhu, W.M., and Zhang, Q.H., Copper-based efficient catalysts for propylene epoxidation by molecular oxygen. Catal. Today, 2008, 131, 496-504.
89. Vaughan, O.P.H., Kyriakou, G., Macleod, N., Tikhov, M., and Lambert, R.M., Copper as a selective catalyst for the epoxidation of propene. J. Catal. 2005, 236, 401-404.
90. Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., and Ryoo, R., Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.
91. Chen, L., Zhu, S.Y., Wang, Y.M., and He, M.Y., One-step synthesis of hierarchical pentasil zeolite microspheres using diamine with linear carbon chain as single template. New J. Chem. 2010, 34, 2328-2334.
92. Xue, T., Liu, H.P., Zhang, Y., Wu, H.H., Wu, P., and He, M.Y., Synthesis of ZSM-5 with hierarchical porosity: In-situ conversion of the mesoporous silica-alumina species to hierarchical zeolite. Micropor. Mesopor. Mat. 2017, 242, 190-199.
93. Varoon, K., Zhang, X.Y., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.Y., Cococcioni, M., Francis, L.F., McCormick, A.V., Mkhoyan, K.A., and Tsapatsis, M., Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science, 2011, 334, 72-75.
94. J. Peisach, W.E.B., Structural Implications Derived from the Analysis of Electron Paramagnetic Resonance Spectra of Natural and Artificial Copper Proteins. Arch. Biochem. Biophys., 1974, 165, 691-708.
95. Tu, C.H., Wang, A.Q., Zheng, M.Y., Wang, X.D., and Zhang, T., Factors influencing the catalytic activity of SBA-15-supported copper nanoparticles in CO oxidation. Appl. Catal. A-Gen. 2006, 297, 40-47.
96. Zhang, X.W., Huang, N., Wang, G., Dong, W.J., Yang, M., Luan, Y., and Shi, Z., Synthesis of highly loaded and well dispersed CuO/SBA-15 via an ultrasonic post-grafting method and its application as a catalyst for the direct hydroxylation of benzene to phenol. Micropor. Mesopor. Mat. 2013, 177, 47-53.
97. Chen, L.F., Guo, P.J., Zhu, L.J., Qiao, M.H., Shen, W., Xu, H.L., and Fan, K.N., Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl. Catal. A-Gen. 2009, 356, 129-136.
98. Yin, Y., Jiang, W.J., Liu, X.Q., Li, Y.H., and Sun, L.B., Dispersion of copper species in a confined space and their application in thiophene capture. J. Mater. Chem. 2012, 22, 18514-18521.
99. Kau, L.S., Spirasolomon, D.J., Pennerhahn, J.E., Hodgson, K.O., and Solomon, E.I., X-ray Absorption-edge Determination of the Oxidation-state and Coordination Number of Copper Application to the Type-3 Site in Rhusvernicifera Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc., 1987, 109, 6433-6442.
100. Kristiansen, T., Mathisen, K., Einarsrud, M.A., Bjorgen, M., and Nicholson, D.G., Single-Site Copper by Incorporation in Ambient Pressure Dried Silica Aerogel and Xerogel Systems: An X-ray Absorption Spectroscopy Study. J. Phys. Chem. C, 2011, 115, 19260-19268.
101. Zhang, R.Q. and McEwen, J.S., Local Environment Sensitivity of the Cu K-Edge XANES Features in Cu-SSZ-13: Analysis from First-Principles. J. Phys. Chem. Lett. 2018, 9, 3035-3042.
102. Frenkel, A.I., Korshin, G.V., and Ankudinov, A.L., XANES study of Cu2+ binding sites in aquatic humic substances. Environ. Sci. Technol. 2000, 34, 2138-2142.
103. Mingos, D.M.P.D., (2012) Molecular Electronic Structures of Transition Metal Complexes II. New york: Spronger Science & Business Media.
104. Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1999, 1, 4059-4063.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *