帳號:guest(3.141.47.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪迎馨
作者(外文):Hung, Ying-Hsin
論文名稱(中文):具高晶面之金-鈀奈米合金的製備及其表面催化特性
論文名稱(外文):Synthesis of Au-Pd nanoalloys with high-index facets and the facet-dependent catalytic activity
指導教授(中文):黃國柱
指導教授(外文):Hwang, Kuo-Chu
口試委員(中文):吳劍侯
徐雍鎣
口試委員(外文):Wu, Chien-Hou
Hsu, Yung-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023503
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:127
中文關鍵詞:金-鈀奈米合金高晶面你表面催化氧化酶及過氧化酶特性
外文關鍵詞:Au-Pd nanoalloysHigh-index facetsFacet-dependent catalytic activityOxidase and peroxidase like activityPropargyl cleavage
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於雙金屬奈米材料的諸多特性都優於其單一成分的材料,使得雙金屬奈米材料的發展逐漸受到重視。雙金屬材料的表面電漿共振效應、催化特性及穩定性都和單一成分的材料有極大的差異。而奈米材料的催化特性和其表面原子排列方式息息相關。在本篇論文中,我們透過植晶法合成一系列具高晶面的金-鈀奈米合金。材料的形貌隨著溴化鉀濃度的降低而改變,形貌從具有{722}晶面的octapod轉變為具{611}和{110}晶面的tetradecapod以及具{221}晶面的trisoctahedron. 在此三種金-鈀奈米合金材料中,octapod的形貌具有極佳的對硝基苯酚還原催化特性也同時展現了優良的氧化酶、過氧化酶催化特性。Octapod 優良的催化特性是因為其{722}的表面較不平整、表面原子密度較低。另一項有趣的發現是,以980 nm的雷射活化反應後,octapod形貌的金-鈀奈米合金對炔基離去反應的催化效率明顯提升,具有
應用於生物體內催化的潛力。
Recently, bimetallic nanomaterials have received a lot of attention because their properties are often advantageous over the single component systems. The LSPR effect, catalytic activity and stability of bimetallic nanomaterials are different from each of metal counterpart. It is well known that the catalytic activity of nanomaterials is dependent on the surface atomic arrangement. In this scenario, we have demonstrated a seed mediated method to prepare various Au-Pd nanoalloys with high-index facets. The morphology of as-synthesis products evolve from octapod enclosed by {722} facets to tetradecapod enclosed by {611}, {110} facets and trisoctahedron enclosed by {221} facets when we decrease the concentration of KBr. Among three nanostructures, Au-Pd alloy octapod has great catalytic activity in 4-nitrophenol reduction reaction and octapod also has excellent oxidase and peroxidase like properties owing to the high surface step density and low surface atom density. On top of that, the Au-Pd alloy octapod shows superior propargyl cleavage activity (a pro-drug cleavage like reaction) when introducing 980 nm laser with
low power.
摘要 i
Abstract ii
Acknowledgement iii
Table of contents iv
Table of figures vi
Tables of tables xii
Chapter 1 1
Introduction of nanomaterials 1
1.1 What are nanomaterials? 1
1.2 Characteristics of nanomaterials 2
1.2.1 Quantum Confinement Effect 3
1.2.2 Surface Effect 4
1.2.3 Thermal Properties 5
1.2.4 Optical Properties 6
1.3 Noble metal nanomaterials 8
1.3.1 Au nanomaterials 13
1.3.2 Pd nanomaterials 23
1.4 Au-Pd bimetallic materials 35
1.4.1 Shape-controlled synthesis of Au-Pd core shell structures 36
1.4.2 Shape-controlled synthesis of Au-Pd alloy structures 38
1.5 The application of nanomaterial 45
1.5.1 Photo thermal and dynamic therapy 45
1.5.2 In vivo catalysis 46
CHAPTER 2 48
Experiment 48
2.1 Motivation 48
2.2 Chemicals and Instruments 49
2.2.1 Chemicals 49
2.2.2 Instruments 50
2.3 Experimental section 51
2.3.1 Synthesis of Small Pd Nanocubes as Seeds 51
2.3.2 Synthesis a serious of Au-Pd nanoalloys 51
2.3.3 Characterization of Materials 52
2.3.4 Catalytic Reduction of 4-Nitrophenol (4-NP) 52
2.3.5 Oxidase-like activity measurement (TMB as a probe) 53
2.3.6 Oxidase-like activity measurement (AA as a probe) 53
2.3.7 Singlet oxygen detection 53
2.3.8 Peroxidase-like activity measurement 54
2.3.9 Synthesis of coumarin probe 54
2.3.10 Catalytic propargyl cleavage of coumarin probe 55
CHAPTER 3 56
Results and Discussion 56
3.1 Synthesis a series of Au-Pd nanoalloys with High-Index Facets 56
3.1.1 Synthesis of Au-Pd alloy octapod 56
3.1.2 Growth mechanism of Au-Pd alloy octapod 61
3.2 Characterization of tetradecapod and trisoctahedron nanoalloy 68
3.3 Comparison between Au-Pd alloy octapod, tetradecapod and trisoctahedron 77
3.4 Facets dependent catalytic activity 85
3.4.1 4-nitrophenol reduction 85
3.4.2 Oxidase and peroxidase like activity 89
3.4.3 Propargyl cleavage 99
CHAPTER 4 105
Conclusion 105
Reference 106
Supporting Information 124

1. Amin, M.; Alazba, A. and Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, pp.1-24.
2. Rabouw, F. and de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry, 374(5).
3. Peierls, R. Quantum theory of solids. Oxford: Clarendon Press
4. de Mello Donega, C. Synthesis and Properties of Colloidal Heteronanocrystals. ChemInform, 42(20), p.no-no.
5. Environmental Nanotechnology: Volume 1. Springer International PU, 2018.
6. Jeevanandam, J.; Barhoum, A.; Chan, Y.; Dufresne, A. and Danquah, M. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, pp.1050-1074.
7. Mineva, B. [online] Dspace.cvut.cz. Available at: https://dspace.cvut.cz/bitstream/handle/10467/74901/FBMI-DP-2017-Mineva-Andrea-prace.pdf?sequence=-1 [Accessed 24 Jun. 2019].
8. Roduner, E. Size Matters: Why Nanomaterials Are Different. ChemInform, 37(39).
9. Guisbiers, G. Size and Shape Dependencies of Nanomaterial Properties: Thermodynamic Considerations. MRS Proceedings, 1371.
10. Chen, Q.; Jia, Y.; Xie, S. and Xie, Z. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chemical Society Reviews, 45(11), pp.3207-3220.
11. Takasu, Y.; Itaya, H.; Iwazaki, T.; Miyoshi, R.; Murakami, Y. Size effects of ultrafine Pt–Ru particles on theelectrocatalytic oxidation of methanol. Chem. Commun. 2001, 341–342.
12. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. Chemistry and Properties of Nanocrystals of Different Shapes. ChemInform 2005, 36.
13. Narayanan, R.; El-Sayed, M. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. ChemInform 2005, 36.
14. Bratlie, K.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Letters 2007, 7, 3097-3101.
15. Nicholas, J.; Otte, H. An Atlas of Models of Crystal Surfaces. Physics Today 1965, 18, 67-68.
16. Tian, N.; Zhou, Z.; Sun, S. Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. The Journal of Physical Chemistry C 2008, 112, 19801-19817.
17. Zhou, Z.; Tian, N.; Huang, Z.; Chen, D.; Sun, S. Nanoparticlecatalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss. 2009, 140, 81-92.
18. Proussevitch, A.; Sahagian, D. Recognition and separation of discrete objects within complex 3D voxelized structures. Computers & Geosciences. 2001, 27, 441-454.
19. El-Sayed, M. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research. 2001, 34, 257-264.
20. Tao, A.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small. 2008, 4, 310-325.
21. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics. Angewandte Chemie International Edition. 2008, 48, 60-103.
22. Wen, Y.; Zhang, J. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Communications. 2007, 144, 163-167.
23. Zhang, J.; Ma, F.; Xu, K. Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science. 2004, 229, 34-42.
24. DAVEY, W. Crystal Growth. H. E. Buckley. New York: Wiley; London: Chapman & Hall, Science. 1951, 113, 533-533.
25. Wu, H.; Kuo, C.; Huang, M. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir. 2010, 26, 12307-12313.
26. Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angewandte Chemie International Edition. 2008, 47, 8901-8904.
27. Chung, P.; Lyu, L.; Huang, M. Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chemistry - A European Journal. 2011, 17, 9746-9752.
28. Harris, D. Quantitative chemical analysis; W.H. Freeman and Co.: New York, N.Y., 2007.
29. Halas, N.; Lal, S.; Chang, W.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews. 2011, 111, 3913-3961.
30. Alvarez-Puebla, R.; Agarwal, A.; Manna, P.; Khanal, B.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E.; Kotov, N. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences. 2011, 108, 8157-8161.
31. Wijaya, A.; Schaffer, S.; Pallares, I.; Hamad-Schifferli, K. Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano. 2008, 3, 80-86.
32. Dreaden, E.; Alkilany, A.; Murphy, C.; El-Sayed, M. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
33. Cobley, C.; Chen, J.; Cho, E.; Wang, L.; Xia, Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44-56.
34. Kabashin, A.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.; Atkinson, R.; Pollard, R.; Podolskiy, V.; Zayats, A. Plasmonic nanorod metamaterials for biosensing. Nature Materials. 2009, 8, 867-871.
35. Huang, X.; El-Sayed, I.; Qian, W.; El-Sayed, M. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society. 2006, 128, 2115-2120.
36. Knight, M.; Sobhani, H.; Nordlander, P.; Halas, N. Photodetection with Active Optical Antennas. Science 2011, 332, 702-704.
37. Gao, J.; Bender, C.; Murphy, C. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir. 2003, 19, 9065-9070.
38. Smith, D.; Korgel, B. The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods. Langmuir. 2008, 24, 644-649.
39. Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. The Role of Bromide Ions in Seeding Growth of Au Nanorods. Langmuir. 2010, 26, 10271-10276.
40. Jana, N.; Gearheart, L.; Murphy, C. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials. 2001, 13, 1389-1393.
41. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters. 2013, 13, 765-771.
42. Li, L.; Peng, Y.; Yue, Y.; Hu, Y.; Liang, X.; Yin, P.; Guo, L. Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity. Chemical Communications. 2015, 51, 11591-11594.
43. Wang, F.; Li, C.; Sun, L.; Wu, H.; Ming, T.; Wang, J.; Yu, J.; Yan, C. Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society. 2011, 133, 1106-1111.
44. Niu, W.; Zhang, L.; Xu, G. Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano. 2010, 4, 1987-1996.
45. Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. Journal of the American Chemical Society. 2009, 131, 697-703.
46. Niu, W.; Li, Z.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes. Crystal Growth & Design. 2008, 8, 4440-4444.
47. Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-Mediated Synthesis of Pd Nanocrystals:  Factors Influencing a Kinetic- or Thermodynamic-Controlled Growth Regime. The Journal of Physical Chemistry C. 2007, 111, 5915-5925.
48. Habas, S.; Lee, H.; Radmilovic, V.; Somorjai, G.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials 2007, 6, 692-697.
49. Fan, F.-R.; Attia, A.; Sur, K. U.; Chen, J.-B.; Xie, Z.-X.; Li, J.-F.; Ren, B.; Tian, Z.-Q. An Effective Strategy for RoomTemperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Cryst. Growth Des. 2009, 9, 2335–2340
50. Ha, T. H.; Koo, H. J.; Chung, B. H. Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions. J. Phys. Chem. C. 2007, 111, 1123–1130.
51. Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles. Nano Lett. 2008, 8, 2526–2529.
52. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675.
53. Liu, S.; Shen, Y.; Chiu, C.; Rej, S.; Lin, P.; Tsao, Y.; Huang, M. Direct Synthesis of Palladium Nanocrystals in Aqueous Solution with Systematic Shape Evolution. Langmuir 2015, 31, 6538-6545.
54. Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis of Pd−Rh Core−Frame Concave Nanocubes and Their Conversion to Rh Cubic Nanoframes by Selective Etching of the Pd Cores. Angew. Chem., Int. Ed. 2012, 51, 10266−10270
55. Xia, X.; Choi, S.-I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H.-C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. Facile Synthesis of Palladium Right Bipyramids and Their Use as Seeds for Overgrowth and as Catalysts for Formic Acid Oxidation. J. Am. Chem. Soc. 2013,135, 15706−15709.
56. Peng, H.-C.; Xie, S.; Park, J.; Xia, X.; Xia, Y. Quantitative Analysis of the Coverage Density of Br− Ions on Pd{100} Facets and Its Role in Controlling the Shape of Pd Nanocrystals. J. Am. Chem. Soc. 2013, 135, 3780−3783.
57. Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.
58. Jin, Y. Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine. Advanced Materials. 2012, 24, 5153-5165.
59. Niu, W.; Zhang, W.; Firdoz, S.; Lu, X. Controlled Synthesis of Palladium Concave Nanocubes with Sub-10-Nanometer Edges and Corners for Tunable Plasmonic Property. Chemistry of Materials. 2014, 26, 2180-2186.
60. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society. 2009, 131, 16350-16351.
61. Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching Growth under Surface Confinement: An Effective Strategy To Prepare Mesocrystalline Pd Nanocorolla. Journal of the American Chemical Society. 2011, 133, 15946-15949.
62. Langille, M.; Personick, M.; Zhang, J.; Mirkin, C. Bottom-Up Synthesis of Gold Octahedra with Tailorable Hollow Features. Journal of the American Chemical Society. 2011, 133, 10414-10417.
63. Ye, X.; Gao, Y.; Chen, J.; Reifsnyder, D.; Zheng, C.; Murray, C. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures. Nano Letters 2013, 13, 2163-2171.
64. King, M.; Personick, M. Bimetallic Nanoparticles: Bimetallic Nanoparticles with Exotic Facet Structures via Iodide-Assisted Reduction of Palladium. Particle & Particle Systems Characterization. 2017, 34.
65. Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009, 4, 143-164.
66. Stamenkovic, V.; Fowler, B.; Mun, B.; Wang, G.; Ross, P.; Lucas, C.; Markovic, N. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science. 2007, 315, 493-497.
67. Costi, R.; Saunders, A.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angewandte Chemie International Edition. 2010, 49, 4878-4897.
68. Langille, M.; Zhang, J.; Mirkin, C. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angewandte Chemie. 2011, 123, 3605-3609.
69. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science. 2007, 315, 220-222.
70. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M.; Li, Z.; Rycenga, M.; Xia, Y. Synthesis of Pd−Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society. 2010, 132, 2506-2507.
71. (10) Herzing, A.; Watanabe, M.; Kiely, C.; Solsona, B.; Edwards, J.; Landon, P.; Carley, A.; Hutchings, G. Microstructural Investigations of High Productivity Au-Pd Catalysts for the Synthesis of Hydrogen Peroxide via Direct Combination of H2 and O2. Microscopy and Microanalysis. 2005, 11.
72. Zhou, W.; Lee, J. Highly active core–shell Au@Pd catalyst for formic acid electrooxidation. Electrochemistry Communications. 2007, 9, 1725-1729.
73. Li, J.; Zheng, Y.; Zeng, J.; Xia, Y. Controlling the Size and Morphology of Au@Pd Core-Shell Nanocrystals by Manipulating the Kinetics of Seeded Growth. Chemistry - A European Journal. 2012, 18, 8150-8156.
74. Yang, C.; Chanda, K.; Lin, P.; Wang, Y.; Liao, C.; Huang, M. Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society. 2011, 133, 19993-20000.
75. Gao, F.; Wang, Y.; Goodman, D. CO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. Journal of the American Chemical Society. 2009, 131, 5734-5735.
76. Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y. Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society. 2010, 132, 10398-10406.
77. Fan, F.; Liu, D.; Wu, Y.; Duan, S.; Xie, Z.; Jiang, Z.; Tian, Z. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. Journal of the American Chemical Society. 2008, 130, 6949-6951.
78. Yang, C.; Chanda, K.; Lin, P.; Wang, Y.; Liao, C.; Huang, M. Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society. 2011, 133, 19993-20000.
79. Kuo, C.; Huang, M. Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. The Journal of Physical Chemistry C. 2008, 112, 18355-18360.
80. Fan, F.; Attia, A.; Sur, U.; Chen, J.; Xie, Z.; Li, J.; Ren, B.; Tian, Z. An Effective Strategy for Room-Temperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Crystal Growth & Design 2009, 9, 2335-2340.
81. Wang, F.; Li, C.; Sun, L.; Wu, H.; Ming, T.; Wang, J.; Yu, J.; Yan, C. Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society. 2011, 133, 1106-1111.
82. Costi, R.; Saunders, A.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angewandte Chemie International Edition .2010, 49, 4878-4897.
83. Rodriguez, J. Physical and chemical properties of bimetallic surfaces. Surface Science Reports. 1996, 24, 223-287.
84. Gao, F.; Goodman, D. Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chemical Society Reviews. 2012, 41, 8009.
85. Lee, Y.; Kim, D.; Hong, J.; Kang, S.; Lee, S.; Han, S. Alloy Nanocrystals: Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by High-Index Facets: Au-Pd Hexoctahedra. Small. 2013, 9, 646-646.
86. Bi, C.; Song, Y.; He, H.; Wu, C.; Du, W.; Huang, L.; Moehwald, H.; Xia, H. Simple synthesis and surface facet-tuning of ultrathin alloy-shells of Au@AuPd nanoparticles via silver-assisted co-reduction onto facet-controlled Au nanoparticles. Journal of Materials Chemistry A. 2018, 6, 7675-7685.
87. Hsu, S.; Chuang, Y.; Sneed, B.; Cullen, D.; Chiu, T.; Kuo, C. Turning the Halide Switch in the Synthesis of Au–Pd Alloy and Core–Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis. Nano Letters. 2016, 16, 5514-5520.
88. Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N. AuBr2–-Engaged Galvanic Replacement for Citrate-Capped Au–Ag Alloy Nanostructures and Their Solution-Based Surface-Enhanced Raman Scattering Activity. The Journal of Physical Chemistry C .2015, 119, 28597-28604.
89. Langille, M.; Personick, M.; Zhang, J.; Mirkin, C. Defining Rules for the Shape Evolution of Gold Nanoparticles. Journal of the American Chemical Society. 2012, 134, 14542-14554.
90. Bower, M.; DeSantis, C.; Skrabalak, S. A Quantitative Analysis of Anions and pH on the Growth of Bimetallic Nanostructures. The Journal of Physical Chemistry C. 2014, 118, 18762-18770.
91. de Melo-Diogo, D.; Pais-Silva, C.; Dias, D.; Moreira, A.; Correia, I. Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. Advanced Healthcare Materials. 2017, 6, 1700073.
92. Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials. 2013, 34, 7715-7724.
93. Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.; Pugliese, G. et al. Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano. 2015, 9, 1788-1800.
94. Hu, J.; Cheng, Y.; Zhang, X. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale. 2018, 10, 22657-22672.
95. Vankayala, R.; Hwang, K. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials. 2018, 30, 1706320.
96. Yi, G.; Hong, S.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quantitative Imaging in Medicine and Surgery. 2018, 8, 433-443.
97. Li, J.; Chen, P. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology. 2016, 12, 129-137.
98. Spicer, C.; Davis, B. Selective chemical protein modification. Nature Communications. 2014, 5.
99. Rebelein, J.; Ward, T. In vivo catalyzed new-to-nature reactions. Current Opinion in Biotechnology. 2018, 53, 106-114.
100. Clavadetscher, J.; Indrigo, E.; Chankeshwara, S.; Lilienkampf, A.; Bradley, M. In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts. Angewandte Chemie. 2017, 129, 6968-6972.
101. Zheng, Z.; Tachikawa, T.; Majima, T. Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd–Au Nanorods Studied at the Single-Particle Level. Journal of the American Chemical Society. 2015, 137, 948-957.
102. Ding, Y.; Zhao, S.; Wang, Q.; Yu, X.; Zhang, W. Construction of a coumarin based fluorescent sensing platform for palladium and hydrazine detection. Sensors and Actuators B: Chemical. 2018, 256, 1107-1113.
103. Rastogi, D. Coumarins as ligands. Studies on metal complexes of 8-Amino-7-hydroxy-4-methylcoumarin and 7-Hydroxy-4-methylcoumarin-6-carboxylic acid. Australian Journal of Chemistry. 1972, 25, 729.
104. Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G. et al. Gold-Triggered Uncaging Chemistry in Living Systems for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols. 2018, 13, 1506-1520.
105. Kim, D.; Lee, Y.; Lee, S.; Han, S. Convex Polyhedral Au@Pd Core-Shell Nanocrystals with High-Index Facets. Angewandte Chemie. 2011, 124, 163-167.
106. Wang, L.; Wang, Y.; Guo, H.; Huang, J.; Zhao, Y.; Liu, Q.; Wu, X.; Zeng, J. Au-Pd Alloy Octapods with High Electrocatalytic Activity for the Oxidation of Formic Acid. Particle & Particle Systems Characterization. 2014, 32, 295-300.
107. Singh, S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Frontiers in Chemistry. 2019, 7.
108. Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-like activity of the Co3O4nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016, 8, 5938-5945.
109. Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.; Gao, X. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society. 2015, 137, 15882-15891.
110. He, W.; Han, X.; Jia, H.; Cai, J.; Zhou, Y.; Zheng, Z. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Scientific Reports. 2017, 7.
111. Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.; Ge, C.; Zhou, R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications. 2018, 9.
112. Lee, K.; Kim, M.; Kim, H. Catalytic nanoparticles being facet-controlled. Journal of Materials Chemistry. 2010, 20, 3791.
113. Sun, L.; Zhang, Q.; Li, G.; Villarreal, E.; Fu, X.; Wang, H. Multifaceted Gold–Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities. ACS Nano. 2017, 11, 3213-3228.
114. Kunz, M.; McClain, S.; Chen, D.; Koczkur, K.; Weiner, R.; Skrabalak, S. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd–Cu nanostructures. Nanoscale. 2017, 9, 7570-7576.
115. Meng, M.; Fang, Z.; Zhang, C.; Su, H.; He, R.; Zhang, R.; Li, H.; Li, Z.; Wu, X.; Ma, C. et al. Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core–Shell Planar Tetrapods with Size-Dependent Optical Properties. Nano Letters. 2016, 16, 3036-3041.
116. Bi, C.; Feng, C.; Miao, T.; Song, Y.; Wang, D.; Xia, H. Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale. 2015, 7, 20105-20116.
117. Khawaji, M.; Chadwick, D. Selective catalytic oxidation over Au-Pd/titanate nanotubes and the influence of the catalyst preparation method on the activity. Catalysis Today. 2019, 334, 122-130.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *