|
1. Amin, M.; Alazba, A. and Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, pp.1-24. 2. Rabouw, F. and de Mello Donega, C. Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics in Current Chemistry, 374(5). 3. Peierls, R. Quantum theory of solids. Oxford: Clarendon Press 4. de Mello Donega, C. Synthesis and Properties of Colloidal Heteronanocrystals. ChemInform, 42(20), p.no-no. 5. Environmental Nanotechnology: Volume 1. Springer International PU, 2018. 6. Jeevanandam, J.; Barhoum, A.; Chan, Y.; Dufresne, A. and Danquah, M. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, pp.1050-1074. 7. Mineva, B. [online] Dspace.cvut.cz. Available at: https://dspace.cvut.cz/bitstream/handle/10467/74901/FBMI-DP-2017-Mineva-Andrea-prace.pdf?sequence=-1 [Accessed 24 Jun. 2019]. 8. Roduner, E. Size Matters: Why Nanomaterials Are Different. ChemInform, 37(39). 9. Guisbiers, G. Size and Shape Dependencies of Nanomaterial Properties: Thermodynamic Considerations. MRS Proceedings, 1371. 10. Chen, Q.; Jia, Y.; Xie, S. and Xie, Z. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes. Chemical Society Reviews, 45(11), pp.3207-3220. 11. Takasu, Y.; Itaya, H.; Iwazaki, T.; Miyoshi, R.; Murakami, Y. Size effects of ultrafine Pt–Ru particles on theelectrocatalytic oxidation of methanol. Chem. Commun. 2001, 341–342. 12. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. Chemistry and Properties of Nanocrystals of Different Shapes. ChemInform 2005, 36. 13. Narayanan, R.; El-Sayed, M. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. ChemInform 2005, 36. 14. Bratlie, K.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Letters 2007, 7, 3097-3101. 15. Nicholas, J.; Otte, H. An Atlas of Models of Crystal Surfaces. Physics Today 1965, 18, 67-68. 16. Tian, N.; Zhou, Z.; Sun, S. Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles. The Journal of Physical Chemistry C 2008, 112, 19801-19817. 17. Zhou, Z.; Tian, N.; Huang, Z.; Chen, D.; Sun, S. Nanoparticlecatalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss. 2009, 140, 81-92. 18. Proussevitch, A.; Sahagian, D. Recognition and separation of discrete objects within complex 3D voxelized structures. Computers & Geosciences. 2001, 27, 441-454. 19. El-Sayed, M. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research. 2001, 34, 257-264. 20. Tao, A.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small. 2008, 4, 310-325. 21. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics. Angewandte Chemie International Edition. 2008, 48, 60-103. 22. Wen, Y.; Zhang, J. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Communications. 2007, 144, 163-167. 23. Zhang, J.; Ma, F.; Xu, K. Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied Surface Science. 2004, 229, 34-42. 24. DAVEY, W. Crystal Growth. H. E. Buckley. New York: Wiley; London: Chapman & Hall, Science. 1951, 113, 533-533. 25. Wu, H.; Kuo, C.; Huang, M. Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures. Langmuir. 2010, 26, 12307-12313. 26. Ma, Y.; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L. Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angewandte Chemie International Edition. 2008, 47, 8901-8904. 27. Chung, P.; Lyu, L.; Huang, M. Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures. Chemistry - A European Journal. 2011, 17, 9746-9752. 28. Harris, D. Quantitative chemical analysis; W.H. Freeman and Co.: New York, N.Y., 2007. 29. Halas, N.; Lal, S.; Chang, W.; Link, S.; Nordlander, P. Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews. 2011, 111, 3913-3961. 30. Alvarez-Puebla, R.; Agarwal, A.; Manna, P.; Khanal, B.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E.; Kotov, N. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences. 2011, 108, 8157-8161. 31. Wijaya, A.; Schaffer, S.; Pallares, I.; Hamad-Schifferli, K. Selective Release of Multiple DNA Oligonucleotides from Gold Nanorods. ACS Nano. 2008, 3, 80-86. 32. Dreaden, E.; Alkilany, A.; Murphy, C.; El-Sayed, M. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779. 33. Cobley, C.; Chen, J.; Cho, E.; Wang, L.; Xia, Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40, 44-56. 34. Kabashin, A.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.; Atkinson, R.; Pollard, R.; Podolskiy, V.; Zayats, A. Plasmonic nanorod metamaterials for biosensing. Nature Materials. 2009, 8, 867-871. 35. Huang, X.; El-Sayed, I.; Qian, W.; El-Sayed, M. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American Chemical Society. 2006, 128, 2115-2120. 36. Knight, M.; Sobhani, H.; Nordlander, P.; Halas, N. Photodetection with Active Optical Antennas. Science 2011, 332, 702-704. 37. Gao, J.; Bender, C.; Murphy, C. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir. 2003, 19, 9065-9070. 38. Smith, D.; Korgel, B. The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods. Langmuir. 2008, 24, 644-649. 39. Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. The Role of Bromide Ions in Seeding Growth of Au Nanorods. Langmuir. 2010, 26, 10271-10276. 40. Jana, N.; Gearheart, L.; Murphy, C. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials. 2001, 13, 1389-1393. 41. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters. 2013, 13, 765-771. 42. Li, L.; Peng, Y.; Yue, Y.; Hu, Y.; Liang, X.; Yin, P.; Guo, L. Synthesis of concave gold nanocuboids with high-index facets and their enhanced catalytic activity. Chemical Communications. 2015, 51, 11591-11594. 43. Wang, F.; Li, C.; Sun, L.; Wu, H.; Ming, T.; Wang, J.; Yu, J.; Yan, C. Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society. 2011, 133, 1106-1111. 44. Niu, W.; Zhang, L.; Xu, G. Shape-Controlled Synthesis of Single-Crystalline Palladium Nanocrystals. ACS Nano. 2010, 4, 1987-1996. 45. Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. Journal of the American Chemical Society. 2009, 131, 697-703. 46. Niu, W.; Li, Z.; Shi, L.; Liu, X.; Li, H.; Han, S.; Chen, J.; Xu, G. Seed-Mediated Growth of Nearly Monodisperse Palladium Nanocubes with Controllable Sizes. Crystal Growth & Design. 2008, 8, 4440-4444. 47. Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-Mediated Synthesis of Pd Nanocrystals: Factors Influencing a Kinetic- or Thermodynamic-Controlled Growth Regime. The Journal of Physical Chemistry C. 2007, 111, 5915-5925. 48. Habas, S.; Lee, H.; Radmilovic, V.; Somorjai, G.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials 2007, 6, 692-697. 49. Fan, F.-R.; Attia, A.; Sur, K. U.; Chen, J.-B.; Xie, Z.-X.; Li, J.-F.; Ren, B.; Tian, Z.-Q. An Effective Strategy for RoomTemperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Cryst. Growth Des. 2009, 9, 2335–2340 50. Ha, T. H.; Koo, H. J.; Chung, B. H. Shape-Controlled Syntheses of Gold Nanoprisms and Nanorods Influenced by Specific Adsorption of Halide Ions. J. Phys. Chem. C. 2007, 111, 1123–1130. 51. Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Iodide Ions Control Seed-Mediated Growth of Anisotropic Gold Nanoparticles. Nano Lett. 2008, 8, 2526–2529. 52. Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. J. Am. Chem. Soc. 2007, 129, 3665–3675. 53. Liu, S.; Shen, Y.; Chiu, C.; Rej, S.; Lin, P.; Tsao, Y.; Huang, M. Direct Synthesis of Palladium Nanocrystals in Aqueous Solution with Systematic Shape Evolution. Langmuir 2015, 31, 6538-6545. 54. Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis of Pd−Rh Core−Frame Concave Nanocubes and Their Conversion to Rh Cubic Nanoframes by Selective Etching of the Pd Cores. Angew. Chem., Int. Ed. 2012, 51, 10266−10270 55. Xia, X.; Choi, S.-I.; Herron, J. A.; Lu, N.; Scaranto, J.; Peng, H.-C.; Wang, J.; Mavrikakis, M.; Kim, M. J.; Xia, Y. Facile Synthesis of Palladium Right Bipyramids and Their Use as Seeds for Overgrowth and as Catalysts for Formic Acid Oxidation. J. Am. Chem. Soc. 2013,135, 15706−15709. 56. Peng, H.-C.; Xie, S.; Park, J.; Xia, X.; Xia, Y. Quantitative Analysis of the Coverage Density of Br− Ions on Pd{100} Facets and Its Role in Controlling the Shape of Pd Nanocrystals. J. Am. Chem. Soc. 2013, 135, 3780−3783. 57. Chen, H.; Shao, L.; Li, Q.; Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724. 58. Jin, Y. Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine. Advanced Materials. 2012, 24, 5153-5165. 59. Niu, W.; Zhang, W.; Firdoz, S.; Lu, X. Controlled Synthesis of Palladium Concave Nanocubes with Sub-10-Nanometer Edges and Corners for Tunable Plasmonic Property. Chemistry of Materials. 2014, 26, 2180-2186. 60. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L.; Wang, J.; Yan, C. Growth of Tetrahexahedral Gold Nanocrystals with High-Index Facets. Journal of the American Chemical Society. 2009, 131, 16350-16351. 61. Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching Growth under Surface Confinement: An Effective Strategy To Prepare Mesocrystalline Pd Nanocorolla. Journal of the American Chemical Society. 2011, 133, 15946-15949. 62. Langille, M.; Personick, M.; Zhang, J.; Mirkin, C. Bottom-Up Synthesis of Gold Octahedra with Tailorable Hollow Features. Journal of the American Chemical Society. 2011, 133, 10414-10417. 63. Ye, X.; Gao, Y.; Chen, J.; Reifsnyder, D.; Zheng, C.; Murray, C. Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures. Nano Letters 2013, 13, 2163-2171. 64. King, M.; Personick, M. Bimetallic Nanoparticles: Bimetallic Nanoparticles with Exotic Facet Structures via Iodide-Assisted Reduction of Palladium. Particle & Particle Systems Characterization. 2017, 34. 65. Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today. 2009, 4, 143-164. 66. Stamenkovic, V.; Fowler, B.; Mun, B.; Wang, G.; Ross, P.; Lucas, C.; Markovic, N. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science. 2007, 315, 493-497. 67. Costi, R.; Saunders, A.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angewandte Chemie International Edition. 2010, 49, 4878-4897. 68. Langille, M.; Zhang, J.; Mirkin, C. Plasmon-Mediated Synthesis of Heterometallic Nanorods and Icosahedra. Angewandte Chemie. 2011, 123, 3605-3609. 69. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science. 2007, 315, 220-222. 70. Lim, B.; Kobayashi, H.; Yu, T.; Wang, J.; Kim, M.; Li, Z.; Rycenga, M.; Xia, Y. Synthesis of Pd−Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society. 2010, 132, 2506-2507. 71. (10) Herzing, A.; Watanabe, M.; Kiely, C.; Solsona, B.; Edwards, J.; Landon, P.; Carley, A.; Hutchings, G. Microstructural Investigations of High Productivity Au-Pd Catalysts for the Synthesis of Hydrogen Peroxide via Direct Combination of H2 and O2. Microscopy and Microanalysis. 2005, 11. 72. Zhou, W.; Lee, J. Highly active core–shell Au@Pd catalyst for formic acid electrooxidation. Electrochemistry Communications. 2007, 9, 1725-1729. 73. Li, J.; Zheng, Y.; Zeng, J.; Xia, Y. Controlling the Size and Morphology of Au@Pd Core-Shell Nanocrystals by Manipulating the Kinetics of Seeded Growth. Chemistry - A European Journal. 2012, 18, 8150-8156. 74. Yang, C.; Chanda, K.; Lin, P.; Wang, Y.; Liao, C.; Huang, M. Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society. 2011, 133, 19993-20000. 75. Gao, F.; Wang, Y.; Goodman, D. CO Oxidation over AuPd(100) from Ultrahigh Vacuum to Near-Atmospheric Pressures: The Critical Role of Contiguous Pd Atoms. Journal of the American Chemical Society. 2009, 131, 5734-5735. 76. Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y. Biphasic Pd−Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society. 2010, 132, 10398-10406. 77. Fan, F.; Liu, D.; Wu, Y.; Duan, S.; Xie, Z.; Jiang, Z.; Tian, Z. Epitaxial Growth of Heterogeneous Metal Nanocrystals: From Gold Nano-octahedra to Palladium and Silver Nanocubes. Journal of the American Chemical Society. 2008, 130, 6949-6951. 78. Yang, C.; Chanda, K.; Lin, P.; Wang, Y.; Liao, C.; Huang, M. Fabrication of Au–Pd Core–Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. Journal of the American Chemical Society. 2011, 133, 19993-20000. 79. Kuo, C.; Huang, M. Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. The Journal of Physical Chemistry C. 2008, 112, 18355-18360. 80. Fan, F.; Attia, A.; Sur, U.; Chen, J.; Xie, Z.; Li, J.; Ren, B.; Tian, Z. An Effective Strategy for Room-Temperature Synthesis of Single-Crystalline Palladium Nanocubes and Nanodendrites in Aqueous Solution. Crystal Growth & Design 2009, 9, 2335-2340. 81. Wang, F.; Li, C.; Sun, L.; Wu, H.; Ming, T.; Wang, J.; Yu, J.; Yan, C. Heteroepitaxial Growth of High-Index-Faceted Palladium Nanoshells and Their Catalytic Performance. Journal of the American Chemical Society. 2011, 133, 1106-1111. 82. Costi, R.; Saunders, A.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angewandte Chemie International Edition .2010, 49, 4878-4897. 83. Rodriguez, J. Physical and chemical properties of bimetallic surfaces. Surface Science Reports. 1996, 24, 223-287. 84. Gao, F.; Goodman, D. Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chemical Society Reviews. 2012, 41, 8009. 85. Lee, Y.; Kim, D.; Hong, J.; Kang, S.; Lee, S.; Han, S. Alloy Nanocrystals: Kinetically Controlled Growth of Polyhedral Bimetallic Alloy Nanocrystals Exclusively Bound by High-Index Facets: Au-Pd Hexoctahedra. Small. 2013, 9, 646-646. 86. Bi, C.; Song, Y.; He, H.; Wu, C.; Du, W.; Huang, L.; Moehwald, H.; Xia, H. Simple synthesis and surface facet-tuning of ultrathin alloy-shells of Au@AuPd nanoparticles via silver-assisted co-reduction onto facet-controlled Au nanoparticles. Journal of Materials Chemistry A. 2018, 6, 7675-7685. 87. Hsu, S.; Chuang, Y.; Sneed, B.; Cullen, D.; Chiu, T.; Kuo, C. Turning the Halide Switch in the Synthesis of Au–Pd Alloy and Core–Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis. Nano Letters. 2016, 16, 5514-5520. 88. Bai, T.; Tan, Y.; Zou, J.; Nie, M.; Guo, Z.; Lu, X.; Gu, N. AuBr2–-Engaged Galvanic Replacement for Citrate-Capped Au–Ag Alloy Nanostructures and Their Solution-Based Surface-Enhanced Raman Scattering Activity. The Journal of Physical Chemistry C .2015, 119, 28597-28604. 89. Langille, M.; Personick, M.; Zhang, J.; Mirkin, C. Defining Rules for the Shape Evolution of Gold Nanoparticles. Journal of the American Chemical Society. 2012, 134, 14542-14554. 90. Bower, M.; DeSantis, C.; Skrabalak, S. A Quantitative Analysis of Anions and pH on the Growth of Bimetallic Nanostructures. The Journal of Physical Chemistry C. 2014, 118, 18762-18770. 91. de Melo-Diogo, D.; Pais-Silva, C.; Dias, D.; Moreira, A.; Correia, I. Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials. Advanced Healthcare Materials. 2017, 6, 1700073. 92. Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials. 2013, 34, 7715-7724. 93. Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.; Pugliese, G. et al. Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano. 2015, 9, 1788-1800. 94. Hu, J.; Cheng, Y.; Zhang, X. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale. 2018, 10, 22657-22672. 95. Vankayala, R.; Hwang, K. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Advanced Materials. 2018, 30, 1706320. 96. Yi, G.; Hong, S.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quantitative Imaging in Medicine and Surgery. 2018, 8, 433-443. 97. Li, J.; Chen, P. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology. 2016, 12, 129-137. 98. Spicer, C.; Davis, B. Selective chemical protein modification. Nature Communications. 2014, 5. 99. Rebelein, J.; Ward, T. In vivo catalyzed new-to-nature reactions. Current Opinion in Biotechnology. 2018, 53, 106-114. 100. Clavadetscher, J.; Indrigo, E.; Chankeshwara, S.; Lilienkampf, A.; Bradley, M. In-Cell Dual Drug Synthesis by Cancer-Targeting Palladium Catalysts. Angewandte Chemie. 2017, 129, 6968-6972. 101. Zheng, Z.; Tachikawa, T.; Majima, T. Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd–Au Nanorods Studied at the Single-Particle Level. Journal of the American Chemical Society. 2015, 137, 948-957. 102. Ding, Y.; Zhao, S.; Wang, Q.; Yu, X.; Zhang, W. Construction of a coumarin based fluorescent sensing platform for palladium and hydrazine detection. Sensors and Actuators B: Chemical. 2018, 256, 1107-1113. 103. Rastogi, D. Coumarins as ligands. Studies on metal complexes of 8-Amino-7-hydroxy-4-methylcoumarin and 7-Hydroxy-4-methylcoumarin-6-carboxylic acid. Australian Journal of Chemistry. 1972, 25, 729. 104. Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G. et al. Gold-Triggered Uncaging Chemistry in Living Systems for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols. 2018, 13, 1506-1520. 105. Kim, D.; Lee, Y.; Lee, S.; Han, S. Convex Polyhedral Au@Pd Core-Shell Nanocrystals with High-Index Facets. Angewandte Chemie. 2011, 124, 163-167. 106. Wang, L.; Wang, Y.; Guo, H.; Huang, J.; Zhao, Y.; Liu, Q.; Wu, X.; Zeng, J. Au-Pd Alloy Octapods with High Electrocatalytic Activity for the Oxidation of Formic Acid. Particle & Particle Systems Characterization. 2014, 32, 295-300. 107. Singh, S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Frontiers in Chemistry. 2019, 7. 108. Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-like activity of the Co3O4nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016, 8, 5938-5945. 109. Shen, X.; Liu, W.; Gao, X.; Lu, Z.; Wu, X.; Gao, X. Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society. 2015, 137, 15882-15891. 110. He, W.; Han, X.; Jia, H.; Cai, J.; Zhou, Y.; Zheng, Z. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide. Scientific Reports. 2017, 7. 111. Fang, G.; Li, W.; Shen, X.; Perez-Aguilar, J.; Chong, Y.; Gao, X.; Chai, Z.; Chen, C.; Ge, C.; Zhou, R. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications. 2018, 9. 112. Lee, K.; Kim, M.; Kim, H. Catalytic nanoparticles being facet-controlled. Journal of Materials Chemistry. 2010, 20, 3791. 113. Sun, L.; Zhang, Q.; Li, G.; Villarreal, E.; Fu, X.; Wang, H. Multifaceted Gold–Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities. ACS Nano. 2017, 11, 3213-3228. 114. Kunz, M.; McClain, S.; Chen, D.; Koczkur, K.; Weiner, R.; Skrabalak, S. Seed-mediated co-reduction in a large lattice mismatch system: synthesis of Pd–Cu nanostructures. Nanoscale. 2017, 9, 7570-7576. 115. Meng, M.; Fang, Z.; Zhang, C.; Su, H.; He, R.; Zhang, R.; Li, H.; Li, Z.; Wu, X.; Ma, C. et al. Integration of Kinetic Control and Lattice Mismatch To Synthesize Pd@AuCu Core–Shell Planar Tetrapods with Size-Dependent Optical Properties. Nano Letters. 2016, 16, 3036-3041. 116. Bi, C.; Feng, C.; Miao, T.; Song, Y.; Wang, D.; Xia, H. Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale. 2015, 7, 20105-20116. 117. Khawaji, M.; Chadwick, D. Selective catalytic oxidation over Au-Pd/titanate nanotubes and the influence of the catalyst preparation method on the activity. Catalysis Today. 2019, 334, 122-130.
|