|
1. Kent, S. B., Total chemical synthesis of proteins. Chem. Soc. Rev. 2009, 38, 338-351. 2. Pauling, L.; Itano, H. A.; Singer, S. J.; Wells, I. C., Sickle cell anemia, a molecular disease. Science 1949, 110, 543-548. 3. Green, M.; Loewenstein, P. M., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988, 55, 1179-1188. 4. Harper, J. D.; Lansbury Jr, P. T., Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem 1997, 66, 385-407. 5. Selkoe, D. J., Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature cell biology 2004, 6, 1054. 6. Kent, S. B., Bringing the science of proteins into the realm of organic chemistry: total chemical synthesis of SEP (synthetic erythropoiesis protein). Angew. Chem. Int. Ed. 2013, 52, 11988-11996. 7. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154. 8. Merrifield, R. B., Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. 1985, 24, 799-810. 9. Carpino, L. A.; Han, G. Y., 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc. 1970, 92, 5748-5749. 10. El-Faham, A.; Albericio, F., Peptide coupling reagents, more than a letter soup. Chem. Rev. 2011, 111, 6557-6602. 11. Williams, A.; Ibrahim, I. T., Carbodiimide chemistry: recent advances. Chem. Rev. 1981, 81 (6), 589-636. 12. Castro, B.; Dormoy, J.; Evin, G.; Selve, C., Reactifs de couplage peptidique I (1)-l'hexafluorophosphate de benzotriazolyl N-oxytrisdimethylamino phosphonium (BOP). Tetrahedron Lett. 1975, 16, 1219-1222. 13. Dourtoglou, V.; Ziegler, J.-C.; Gross, B., L'hexafluorophosphate de O-benzotriazolyl-N, N-tetramethyluronium: Un reactif de couplage peptidique nouveau et efficace. Tetrahedron Lett. 1978, 19, 1269-1272. 14. Han, S.-Y.; Kim, Y.-A., Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 2004, 60, 2447-2467. 15. Humphrey, J. M.; Chamberlin, A. R., Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 1997, 97, 2243-2266. 16. Yu, H. M.; Chen, S. T.; Wang, K. T., Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J. Org. Chem. 1992, 57, 4781-4784. 17. Erdelyi, M.; Gogoll, A., Rapid microwave-assisted solid phase peptide synthesis. Synthesis 2002, 2002, 1592-1596. 18. Collins, J. M., Microwave enhanced N-fmoc deprotection in peptide synthesis. Google Patents: 2012. 19. Collins, J. M.; Collins, M. J., Microwave-enhanced solid-phase peptide synthesis. ChemInform 2008, 39 (46). 20. Staudinger, H., New organic compounds of phosphorus. III. Phosphine-methylene derivatives and phosphinimines. Helv. Chim. Acta 1919, 2, 635-646. 21. Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007-2010. 22. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T., Staudinger Ligation: A Peptide from a Thioester and Azide. Org. Lett. 2000, 2, 1939-1941. 23. Tam, A.; Soellner, M. B.; Raines, R. T., Water-soluble phosphinothiols for traceless Staudinger ligation and integration with expressed protein ligation. J. Am. Chem. Soc. 2007, 129, 11421-11430. 24. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R., A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2000, 2, 2141-2143. 25. Kemp, D.; Grattan, J. A.; Reczek, J., Peptide bond formation by the prior amine capture principle. J. Org. Chem. 1975, 40, 3465-3466. 26. Liu, C.-F.; Tam, J. P., Chemical ligation approach to form a peptide bond between unprotected peptide segments. Concept and model study. J. Am. Chem. Soc. 1994, 116, 4149-4153. 27. Li, X.; Lam, H. Y.; Zhang, Y.; Chan, C. K., Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites. Org. Lett. 2010, 12, 1724-1727. 28. Lee, C. L.; Liu, H.; Wong, C. T.; Chow, H. Y.; Li, X., Enabling N-to-C Ser/Thr ligation for convergent protein synthesis via combining chemical ligation approaches. J. Am. Chem. Soc. 2016, 138, 10477-10484. 29. Raj, M.; Wu, H.; Blosser, S. L.; Vittoria, M. A.; Arora, P. S., Aldehyde capture ligation for synthesis of native peptide bonds. J. Am. Chem. Soc. 2015, 137, 6932-6940. 30. Bode, J. W.; Fox, R. M.; Baucom, K. D., Chemoselective amide ligations by decarboxylative condensations of N‐alkylhydroxylamines and α‐ketoacids. Angew. Chem. Int. Ed. 2006, 45, 1248-1252. 31. Kemp, D.; Galakatos, N. G.; Bowen, B.; Tan, K., Peptide synthesis by prior thiol capture. 2. Design of templates for intramolecular O, N-acyl transfer. 4, 6-Disubstituted dibenzofurans as optimal spacing elements. J. Org. Chem. 1986, 51, 1829-1838. 32. Kemp, D.; Galakatos, N. G.; Dranginis, S.; Ashton, C.; Fotouhi, N.; Curran, T. P., Peptide synthesis by prior thiol capture. 4. Amide bond formation. The effect of a side-chain substituent on the rates of intramolecular O, N-acyl transfer. J. Org. Chem. 1986, 51, 3320-3324. 33. Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H. U.; Lau, H., Über Peptidsynthesen. 8. Mitteilung Bildung von S‐haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Justus Liebigs Annalen der Chemie 1953, 583, 129-149. 34. Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S., Synthesis of proteins by native chemical ligation. Science 1994, 266, 776-779. 35. Hackeng, T. M.; Griffin, J. H.; Dawson, P. E., Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10068-10073. 36. Johnson, E. C.; Kent, S. B., Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 2006, 128, 6640-6646. 37. Thompson, R. E.; Liu, X. Y.; Alonso-Garcia, N.; Pereira, P. J. B.; Jolliffe, K. A.; Payne, R. J., Trifluoroethanethiol: An Additive for Efficient One-Pot Peptide Ligation-Desulfurization Chemistry. J. Am. Chem. Soc. 2014, 136, 8161-8164. 38. Yan, L. Z.; Dawson, P. E., Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 2001, 123, 526-533. 39. Crich, D.; Banerjee, A., Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 2007, 129, 10064-10065. 40. Haase, C.; Rohde, H.; Seitz, O., Native chemical ligation at valine. Angew. Chem. Int. Ed. 2008, 47, 6807-6810. 41. Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J. L.; Danishefsky, S. J., Native Chemical Ligation at Valine: A Contribution to Peptide and Glycopeptide Synthesis. Angew. Chem. Int. Ed. 2008, 47, 8521-8524. 42. Kumar, K. S. A.; Haj-Yahya, M.; Olschewski, D.; Lashuel, H. A.; Brik, A., Highly Efficient and Chemoselective Peptide Ubiquitylation. Angew. Chem. Int. Ed. 2009, 48, 8090-8094. 43. Yang, R. L.; Pasunooti, K. K.; Li, F. P.; Liu, X. W.; Liu, C. F., Dual Native Chemical Ligation at Lysine. J. Am. Chem. Soc. 2009, 131, 13592-13593. 44. Merkx, R.; de Bruin, G.; Kruithof, A.; van den Bergh, T.; Snip, E.; Lutz, M.; El Oualid, F.; Ovaa, H., Scalable synthesis of gamma-thiolysine starting from lysine and a side by side comparison with delta-thiolysine in non-enzymatic ubiquitination. Chem Sci 2013, 4, 4494-4498. 45. Harpaz, Z.; Siman, P.; Kumar, K. S. A.; Brik, A., Protein Synthesis Assisted by Native Chemical Ligation at Leucine. Chembiochem 2010, 11, 1232-1235. 46. Hojo, H.; Ozawa, C.; Katayama, H.; Ueki, A.; Nakahara, Y.; Nakahara, Y., The Mercaptomethyl Group Facilitates an Efficient One-Pot Ligation at Xaa-Ser/Thr for (Glyco)peptide Synthesis. Angew. Chem. Int. Ed. 2010, 49, 5318-5321. 47. Shang, S. Y.; Tan, Z. P.; Dong, S. W.; Danishefsky, S. J., An Advance in Proline Ligation. J. Am. Chem. Soc. 2011, 133, 10784-10786. 48. Siman, P.; Karthikeyan, S. V.; Brik, A., Native Chemical Ligation at Glutamine. Org. Lett. 2012, 14, 1520-1523. 49. Guan, X. Y.; Drake, M. R.; Tan, Z. P., Total Synthesis of Human Galanin-Like Peptide through an Aspartic Acid Ligation. Org. Lett. 2013, 15, 6128-6131. 50. Thompson, R. E.; Chan, B.; Radom, L.; Jolliffe, K. A.; Payne, R. J., Chemoselective Peptide Ligation-Desulfurization at Aspartate. Angew. Chem. Int. Ed. 2013, 52, 9723-9727. 51. Cergol, K. M.; Thompson, R. E.; Malins, L. R.; Turner, P.; Payne, R. J., One-Pot Peptide Ligation-Desulfurization at Glutamate. Org. Lett. 2014, 16, 290-293. 52. Malins, L. R.; Cergol, K. M.; Payne, R. J., Chemoselective sulfenylation and peptide ligation at tryptophan. Chem. Sci. 2014, 5, 260-266. 53. Metanis, N.; Keinan, E.; Dawson, P. E., Traceless Ligation of Cysteine Peptides Using Selective Deselenization. Angew. Chem. Int. Ed. 2010, 49, 7049-7053. 54. Reddy, P. S.; Dery, S.; Metanis, N., Chemical Synthesis of Proteins with Non-Strategically Placed Cysteines Using Selenazolidine and Selective Deselenization. Angew. Chem. Int. Ed. 2016, 55, 992-995. 55. Botti, P.; Carrasco, M. R.; Kent, S. B., Native chemical ligation using removable Nα-(1-phenyl-2-mercaptoethyl) auxiliaries. Tetrahedron Lett. 2001, 42, 1831-1833. 56. Offer, J.; Boddy, C.; Dawson, P. E., Extending synthetic access to proteins with a removable acyl transfer auxiliary. J. Am. Chem. Soc. 2002, 124, 4642-4646. 57. Kawakami, T.; Aimoto, S., A photoremovable ligation auxiliary for use in polypeptide synthesis. Tetrahedron Lett. 2003, 44 (32), 6059-6061. 58. Marinzi, C.; Offer, J.; Longhi, R.; Dawson, P. E., An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications. Biorg. Med. Chem. 2004, 12, 2749-2757. 59. Nadler, C.; Nadler, A.; Hansen, C.; Diederichsen, U., A photocleavable auxiliary for extended native chemical ligation. Eur. J. Org. Chem. 2015, 2015, 3095-3102. 60. Loibl, S. F.; Harpaz, Z.; Seitz, O., A type of auxiliary for native chemical peptide ligation beyond cysteine and glycine junctions. Angew. Chem. Int. Ed. 2015, 54, 15055-15059. 61. Harpaz, Z.; Loibl, S.; Seitz, O., Native chemical ligation at a base-labile 4-mercaptobutyrate Nα-auxiliary. Bioorg. Med. Chem. Lett. 2016, 26, 1434-1437. 62. Canne, L. E.; Bark, S. J.; Kent, S. B., Extending the applicability of native chemical ligation. J. Am. Chem. Soc. 1996, 118, 5891-5896. 63. Weller, C. E.; Dhall, A.; Ding, F.; Linares, E.; Whedon, S. D.; Senger, N. A.; Tyson, E. L.; Bagert, J. D.; Li, X.; Augusto, O., Aromatic thiol-mediated cleavage of N–O bonds enables chemical ubiquitylation of folded proteins. Nat. Commun. 2016, 7, 12979. 64. Brik, A.; Ficht, S.; Yang, Y.-Y.; Bennett, C. S.; Wong, C.-H., Sugar-assisted ligation of N-linked glycopeptides with broad sequence tolerance at the ligation junction. J. Am. Chem. Soc. 2006, 128, 15026-15033. 65. Brik, A.; Yang, Y.-Y.; Ficht, S.; Wong, C.-H., Sugar-assisted glycopeptide ligation. J. Am. Chem. Soc. 2006, 128, 5626-5627. 66. Payne, R. J.; Ficht, S.; Tang, S.; Brik, A.; Yang, Y.-Y.; Case, D. A.; Wong, C.-H., Extended sugar-assisted glycopeptide ligations: development, scope, and applications. J. Am. Chem. Soc. 2007, 129, 13527-13536. 67. Lutsky, M.-Y.; Nepomniaschiy, N.; Brik, A., Peptide ligation via side-chain auxiliary. Chem. Commun. 2008, 1229-1231. 68. Kumar, K. A.; Harpaz, Z.; Haj-Yahya, M.; Brik, A., Side-chain assisted ligation in protein synthesis. Bioorg. Med. Chem. Lett. 2009, 19, 3870-3874. 69. von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger, A. G.; Beyermann, M., Peptide (alpha)thioester formation using standard Fmoc-chemistry. Tetrahedron Lett. 2003, 44, 3551-3554. 70. Flemer, S., Efficient method of circumventing insolubility problems with fully protected peptide carboxylates via in situ direct thioesterification reactions. J. Pept. Sci. 2009, 15, 693-696. 71. Botti, P.; Villain, M.; Manganiello, S.; Gaertner, H., Native chemical ligation through in situ O to S acyl shift. Org. Lett. 2004, 6, 4861-4864. 72. Liu, F.; Mayer, J. P., An Fmoc Compatible, O to S Shift-Mediated Procedure for the Preparation of C-Terminal Thioester Peptides. J. Org. Chem. 2013, 78, 9848-9856. 73. Kawakami, T.; Sumida, M.; Nakamura, K.; Vorherr, T.; Aimoto, S., Peptide thioester preparation based on an N-S acyl shift reaction mediated by a thiol ligation auxiliary. Tetrahedron Lett. 2005, 46, 8805-8807. 74. Ollivier, N.; Behr, J. B.; El-Mahdi, O.; Blanpain, A.; Melnyk, O., Fmoc solid-phase synthesis of peptide thioesters using an intramolecular N,S-acyl shift. Org. Lett. 2005, 7, 2647-2650. 75. Nagaike, F.; Onuma, Y.; Kanazawa, C.; Hojo, H.; Ueki, A.; Nakahara, Y.; Nakahara, Y., Efficient microwave-assisted tandem N- to S-acyl transfer and thioester exchange for the preparation of a glycosylated peptide thioester. Org. Lett. 2006, 8, 4465-4468. 76. Ohta, Y.; Itoh, S.; Shigenaga, A.; Shintaku, S.; Fujii, N.; Otaka, A., Cysteine-derived S-protected oxazolidinones: Potential chemical devices for the preparation of peptide thioesters. Org. Lett. 2006, 8, 467-470. 77. Hojo, H.; Onuma, Y.; Akimoto, Y.; Nakahara, Y.; Nakahara, Y., N-alkyl cysteine-assisted thioesterification of peptides. Tetrahedron Lett. 2007, 48, 1299-1299. 78. Kawakami, T.; Aimoto, S., Sequential peptide ligation by using a controlled cysteinyl prolyl ester (CPE) autoactivating unit. Tetrahedron Lett. 2007, 48, 1903-1905. 79. Sato, K.; Shigenaga, A.; Tsuji, K.; Tsuda, S.; Sumikawa, Y.; Sakamoto, K.; Otaka, A., N-Sulfanylethylanilide Peptide as a Crypto-Thioester Peptide. Chembiochem 2011, 12, 1840-1844. 80. Hou, W.; Zhang, X. H.; Li, F. P.; Liu, C. F., Peptidyl N,N-Bis(2-mercaptoethyl)-amides as Thioester Precursors for Native Chemical Ligation. Org. Lett. 2011, 13, 386-389. 81. Dheur, J.; Ollivier, N.; Melnyk, O., Synthesis of Thiazolidine Thioester Peptides and Acceleration of Native Chemical Ligation. Org. Lett. 2011, 13, 1560-1563. 82. Zheng, J. S.; Chang, H. N.; Wang, F. L.; Liu, L., Fmoc Synthesis of Peptide Thioesters without Post-Chain-Assembly Manipulation. J. Am. Chem. Soc. 2011, 133, 11080-11083. 83. Zheng, J. S.; Chen, X.; Tang, S.; Chang, H. N.; Wang, F. L.; Zuo, C., A New Method for Synthesis of Peptide Thioesters via Irreversible N-to-S Acyl Transfer. Org. Lett. 2014, 16, 4908-4911. 84. Burlina, F.; Papageorgiou, G.; Morris, C.; White, P. D.; Offer, J., In situ thioester formation for protein ligation using alpha-methylcysteine. Chem. Sci. 2014, 5, 766-770. 85. Tailhades, J.; Patil, N. A.; Hossain, M. A.; Wade, J. D., Intramolecular acyl transfer in peptide and protein ligation and synthesis. J. Pept. Sci. 2015, 21, 139-147. 86. Tsuda, S.; Mochizuki, M.; Sakamoto, K.; Denda, M.; Nishio, H.; Otaka, A.; Yoshiya, T., N-Sulfanylethylaminooxybutyramide (SEAoxy): A Crypto-Thioester Compatible with Fmoc Solid-Phase Peptide Synthesis. Org. Lett. 2016, 18, 5940-5943. 87. Terrier, V. P.; Adihou, H.; Arnould, M.; Delmas, A. F.; Aucagne, V., A straightforward method for automated Fmoc-based synthesis of bio-inspired peptide crypto-thioesters. Chem. Sci. 2016, 7, 339-345. 88. Kenner, G.; McDermott, J.; Sheppard, R., The safety catch principle in solid phase peptide synthesis. Chem. Commun. 1971, 636-637. 89. Ingenito, R.; Bianchi, E.; Fattori, D.; Pessi, A., Solid phase synthesis of peptide C-terminal thioesters by Fmoc/t-Bu chemistry. J. Am. Chem. Soc. 1999, 121, 11369-11374. 90. Blanco‐Canosa, J. B.; Dawson, P. E., An efficient Fmoc‐SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 2008, 47, 6851-6855. 91. Blanco-Canosa, J. B.; Nardone, B.; Albericio, F.; Dawson, P. E., Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J. Am. Chem. Soc. 2015, 137, 7197-7209. 92. Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L., Peptide o‐aminoanilides as crypto‐thioesters for protein chemical synthesis. Angew. Chem. Int. Ed. 2015, 54, 2194-2198. 93. Selvaraj, A.; Chen, H.-T.; Huang, A. Y.-T.; Kao, C.-L., Expedient on-resin modification of a peptide C-terminus through a benzotriazole linker. Chem. Sci. 2018, 9, 345-349. 94. Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L., Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 2011, 50, 7645-7649. 95. Flood, D. T.; Hintzen, J. C.; Bird, M. J.; Cistrone, P. A.; Chen, J. S.; Dawson, P. E., Leveraging the Knorr Pyrazole Synthesis for the Facile Generation of Thioester Surrogates for use in Native Chemical Ligation. Angew. Chem. Int. Ed. 2018, 130, 11808-11813. 96. 王瑋皜. 以天然化學連接法合成不具有半胱胺酸單元之胜肽. 國立清華大學, 2015. 97. 林芝蘭. 光解基團修飾之天門冬胺酸進行側鏈輔助天然化學連接法. 國立清華大學, 2017. 98. 張浙杰. 以修飾光解輔助基團之天門冬醯胺進行天然化學連接法. 國立清華大學, 2017. 99. Pelliccioli, A. P.; Wirz, J., Photoremovable protecting groups: reaction mechanisms and applications. Photochemical & Photobiological Sciences 2002, 1, 441-458. 100. Eckhardt, B. J.; Gulick, R. M., 152 - Drugs for HIV Infection. In Infectious Diseases (Fourth Edition), Cohen, J.; Powderly, W. G.; Opal, S. M., Eds. Elsevier: 2017; pp 1293-1308.e2. 101. Kumar, A.; Bachhawat, A. K., Pyroglutamic acid: throwing light on a lightly studied metabolite. Curr Sci 2012, 102, 288-97. 102. Liu, Y. D.; Goetze, A. M.; Bass, R. B.; Flynn, G. C., N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. J. Biol. Chem. 2011, 286, 11211-11217. 103. Nagana Gowda, G.; Gowda, Y. N.; Raftery, D., Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy. Anal. Chem. 2015, 87, 3800-3805. 104. Alsaab, H. O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S. K.; Iyer, A. K., PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in pharmacology 2017, 8, 561. 105. Li, Q.; Quan, L.; Lyu, J.; He, Z.; Wang, X.; Meng, J.; Zhao, Z.; Zhu, L.; Liu, X.; Li, H., Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor. Oncotarget 2016, 7, 64967. 106. Zhang, Y. F.; Xu, C.; Lam, H. Y.; Lee, C. L.; Li, X. C., Protein chemical synthesis by serine and threonine ligation. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 6657-6662. 107. Kaul, R.; Brouillette, Y.; Sajjadi, Z.; Hansford, K. A.; Lubell, W. D., Selective tert-Butyl Ester Deprotection in the Presence of Acid Labile Protecting Groups with Use of ZnBr2. J. Org. Chem. 2004, 69, 6131-6133. 108. Parlow, J. J.; Burney, M. W.; Case, B. L.; Girard, T. J.; Hall, K. A.; Harris, P. K.; Hiebsch, R. R.; Huff, R. M.; Lachance, R. M.; Mischke, D. A.; Rapp, S. R.; Woerndle, R. S.; Ennis, M. D., Piperazinyl Glutamate Pyridines as Potent Orally Bioavailable P2Y12 Antagonists for Inhibition of Platelet Aggregation. J. Med. Chem. 2010, 53, 2010-2037.
|