帳號:guest(3.144.98.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝爾蓋
作者(外文):Makovetskyi, Serhii Olegovych
論文名稱(中文):具有酮亞胺配基的雙核與三核過渡金屬錯合物
論文名稱(外文):Ketimide supported di- and trinuclear complexes of transition metals
指導教授(中文):蔡易州
指導教授(外文):Tsai, Yi-Chou
口試委員(中文):尤禎祥
林峻毅
口試委員(外文):Yu, Jen-Shiang K.
Lin, Chun-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023421
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:47
中文關鍵詞:酮亞胺槳輪複合體四重債券穩定化金屬與金屬的相互作用分子間偶聯
外文關鍵詞:ketimidePaddlewheel complexQuadruple bondStabilizationmetal-metal interactionIntermolecular coupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:585
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
通篇研究主要的目的為製備與分析具有雙/三過渡金屬的有機金屬錯合物。我們製備具有不對稱結構的配位基HNC(Ph)N(H)Dipp,並用其來穩定第六族過渡金屬(鉬; 鉻),成功合成出具有雙鉬/鉻金屬四重鍵的燈籠形錯合物M2(NC(Ph)NDipp)4 (M = Cr (2) and Mo (3))。
此外,相似的配位基HNC(Me)N(H)Dipp穩定高價數Mn與Fe金屬能夠單離出六當量配位基分別配位於雙金屬的錯合物Li6M2(μ-NC(Me)NDipp)2(κ1-NC(Me)NDipp)4 (M = Mn (5) and Fe (6))。去質子化的配位基與二氯化鈷進行反應能夠單離出三鈷金屬團簇Li3Co3(μ-NC(Me)NDipp)2(μ3-N,N’-NC(Me)NDipp)2(κ1-NC(Me)NDipp)2 (7)。CuCl2能夠催化LiNC(Me)N(Li)Dipp (4) 進行N−N耦合反應,產生雙銅金屬錯合物Li2Cu2(NC(Me)NDipp-NC(Me)NDipp)Cl4 (8)。
2−8的1H-NMR, X-ray crystallography皆已被完整的鑑定。此外,逆磁的8的13C-NMR。具順磁性的5與6也透過SQUID對其磁性進行近一步的探討。
The purpose of this master thesis is mainly based on synthesis and characterization of di and trinulear complexes of transition metals.
The asymmetrical ketamide ligand HNC(Ph)N(H)Dipp was prepared to stabilize the paddle-wheel complexes of group six transition metals, M2(NC(Ph)NDipp)4 (M = Cr (2) and Mo (3)), which featured a quadruply bonded bimetallic core.
Another ketamide ligand HNC(Me)N(H)Dipp was synthesized to stabilize high valent transition metal complexes of Mn and Fe of the type Li6M2(μ-NC(Me)NDipp)2(κ1-NC(Me)NDipp)4 (M = Mn (5) and Fe (6)). 5 and 6 were supported by six ligand scaffolds through their imino nitrogen atoms and each metal center in 5 and 6 possessed a distorted tetrahedral geometry. The antiferromagnetic interaction between the two Mn3+ ions in 5 was disclosed by SQUID magnetametry. In contrast, two Fe3+ ions in 6 exhibit ferromagnetic nature of metal-metal interaction.
On the other hand, a non-linear tricobalt complex Li3Co3(μ2-NC(Me)NDipp)2(μ3-N,N’-NC(Me)NDipp)2(κ1-NC(Me)NDipp)2 (7) was stabilized using HNC(Me)N(H)Dipp as a ligand. Two Co-Co single bonds were observed between the three cobalt atoms in 7 and the trimetallic moiety was supported by six ligand molecules.
Furthermore, while reacting deprotonated ketimide ligand with CuCl2, an inter molecular coupling led to the isolation of a novel dinuclear copper complex Li2Cu2(NC(Me)NDipp-NC(Me)NDipp)Cl4 (8), containing a new N-N single bond.
In short, we have found that the ketamide ligands have a high chemical potential in terms of varieties of reactivity.
Diamagnetic complexes 2, 3 and 8 were characterized by 1H-NMR and 13C-NMR spectroscopy and the single-crystal X-ray crystallography. Complexes 5-7, which have paramagnetic nature, were identidified by X-ray crystallography and were additionally characterized by SQUID.
Сontents
List of Scheme………………………………………………………………………VII
List of Figure……………………………………………………………………VIII
List of Abbreviation…………………………………………………………………X
CHAPTER I: QUADRUPLE BONDED COMPLEXES OF GROUP 6 METALS...............1
1. INTRODUCTION..................................................1
2. STUDY MOTIVATION..............................................5
3. RESULTS AND DISSCUTION........................................5
4. EXPERIMENTAL SECTION.........................................10
5. REFERENCES...................................................12
6. 1H and 13C NMR spectra.......................................14
CHAPTER II: SYNTHESIS OF METAL COMPLEXES IN HIGH OXIDATION STATES SUPPORTED BU KETIMIDE LIGAND.........................................18
1. INTRODUCTION.................................................18
2. STUDY MOTIVATION.............................................21
3. RESULTS AND DISSCUTIONS......................................21
4. EXPERIMENTAL SECTION.........................................27
5. REFERENCES...................................................29
6. SQUID data...................................................31
CHAPTER III: THE UNIQUE REACTIVITY OF ME-KETMIDE LIAGND TOWARD TO CuCl2................................................................34
1. INTRODUCTION.................................................34
2. STUDY MOTIVATION.............................................36
3. RESULTS AND DISSCUTIONS......................................36
4. EXPERIMENTAL SECTION.........................................38
5. REFERENCES...................................................38
6. 1H and 13C NMR spectra.......................................40
X-RAY CRYSTALLOGRAPHIC DATA..........................................42
1. Dahl L. F.; Ishishi E., Rundle R. E. J. Chem. Phys., 1957, 26, 1750-1751.
2. Cotton F. A.; Haas T. E. Inorg. Chem., 1964, 3, 10-17.
3. Cotton F. A.; Harris C. B. Inorg. Chem., 1965, 4, 330-333.
4. S. Hao, S. Gambarotta, C. Bensimon and J. J. H. Edema, Inorg. Chim. Acta, 1993, 213, 65-74.
5. Bino A.; Cotton F. A.; Kaim W. Inorg. Chem., 1979, 18, 3566-3568.
6. Cotton F. A., Daniels L. M., Murillo C. A.; Schooler P., J. Chem. Soc., Dalton Trans. 2000, 2001-2005.
7. Ndambuki S.; Ziegler T. Inorg. Chem., 2013, 52, 3860-3869.
8. Cotton F. A.; Mester Z. C.; T. R. Webb Acta Cryst., 1974, B30, 2768-2770.
9. Tsai Y.-C.; Chen H.-Z.; Chang C.-C.; Yu J.-S. K.; Lee G.-H., Wang Y.; Kuo T.-S. J. Am. Chem. Soc., 2009, 131, 12534-12535.
10. Lu D.-Y.; Kuo T.-S.; Tsai Y.C. Angew. Chem. Int. Ed., 2016, 55, 11614-11618.
11. Tsai Y.-C.; Lin Y.-M.; Yu J.-S. K.; Hwang J.-K. J. Am. Chem. Soc., 2006, 128, 13980-13981.
12. Cotton, F. A.; Murillo, C. A.; Walton R. A., Multiple Bond Between Metal Atoms. 3rd ed.; Springer: Berlin, 2005.
13. Bennett, M. J.; Caulton, K. G.; Cotton, F. A. Inorg. Chem., 1969, 8, 1-6.
14. Cotton, F. A.; Gage, L, D.; Rice, C. E. Inorg. Chem., 1979, 18, 1138-1142.
15. (a) M = Cr: Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1980, 19, 328-331 M = Cu: Morison, B.; Hughes, R. C.; Soos, Z. G. Acta Crystallogr., 1975, B31, 762-770.
16. Whelan E.; Devereux M.; McCannb M.; McKeec V. Chem. Commun., 1997, 427-428.
17. Takamizawa S.; Moil W.; Furihata M.; Takeda M.; Yamaguchi K. Inorg. Chem. Acta, 1998, 283, 268-274.
18. Samanta S. K.; Isaacs L. Coord. Chem. Rev., 2020, 410, 213181.
19. Cotton F. A.; Ren T. J. Am. Chem. Soc. 1992, 114, 2237-2242.
20. Cotton F. A.; Murillo C. A.; Pascual I. Inorg. Chem. 1999, 38, 2182-2187.
21. Maheswari K.; Rajendran N. M.; Meyer J.; Reddy N. D. Organometallics, 2010, 29, 3799-2807.
22. Riedel S.; Kaupp M. Coord. Chem. Rev., 2009, 253, 606-624.
23. Damon P. L.; Liss C. J.; Lewis R. A.; Morochnik S.; Szpunar D. E.; Telser J.; Hayton T. W. Inorg. Chem., 2015, 54, 10081-10095.
24. Richard A. Lewis R. A.; George S. P.; Chapovetsky A.; Wu G.; Figueroa J. S.; Hayton T. W. Chem. Commun., 2013, 49, 2888-2890.
25. Lewis R. A., Wu G.; Hayton T. W. J. Am. Chem. Soc., 2010, 132, 12814-12816.
26. Lewis R. A., Wu G.; Hayton T. W. Inorg. Chem., 2011, 50, 4660-4668 .
27. Soriaga R. A. D.; Nguyen J. M.; Albright T. A.; Hoffman D. M. J. Am. Chem. Soc., 2010, 132, 18014-18016.
28. Lewis R. A.; Morochnik S.; Chapovetsky A.; WuG.; Hayton T. W. Angew. Chem. Int. Ed., 2012, 51, 12772-12775.
29. Yamada J.; Nomura K. Organometallics, 2005, 24, 3621-3623.
30. Dias A. R.; Duarte M. T.; Fernandes A. C.; Fernandes S.; Marques M. M.; Martins A. M.; da Silva J. F.; Rodrigues S. S. J. Organomet. Chem., 2004, 689, 203-213.
31. Nomura K.; Fujita K.; Fujiki M. J. Mol. Catal. A: Chem., 2014, 220, 133-144.
32. Nomura K.; Fujita K.; Fujiki M. Catal. Commun., 2004, 5, 413-417.
33. Wang W.-Z.; Ismayilov R. H.; Wang R.-R.; Huang Y.-L.; Yeh C.-Y.; Leea G.-H. Peng S.-M. Dalton Trans., 2008, 6808-6816.
34. Zhang Q.; Xiang L.; Deng L. Organometallics, 2012, 31, 4537−4543.
35. Maheswari K.; Reddy N. D. Organometallics, 2012, 31, 197-206.
36. Blair L. M.; Sperry H. J. Nat. Prod. 2013, 76, 794−812.
37. Guo Q.; Lu Z. Synthesis, 2017, 49, A-M.
38. Khodair A. I.; Bertrand P. Tetrahedron, 1998, 54, 4859–4872.
39. Pic´on-Ferrer I.; Hueso-Ure˜na F.; Ill˜an-Cabeza N. A.; Jim´enez-Pulido S. B. Mart´ınez-Martos J. M.; Ram´ırez-Exp´osito M. J; et al., J. Inorg. Biochem., 2009, 103, 94–100.
40. Chourasiya S. S.; Kathuria D., Wani A. A.; Bharatam P.V. Org. Biomol. Chem., 2019, 17, 8486-8521.
41. Jayabharathi J.; Thanikachalam V.; Thangamani A.; Padmavathy M. Med. Chem. Res., 2007, 16, 266–279.
42. Safari J.; Gandomi-Ravandi S. RSC Adv., 2014, 4, 46224–46249.
43. Applequist D. E.; Babad H. J. Org. Chem., 1962, 27, 1, 288–290.
44. Brian E. Love B. E.; Tsai L. Synth. Commun., 1992, 22, 3101-3108.
45. Roberta Bertani R.; Biasiolo M.; Darini K.; Michelin R. A.; Mozzon M.; Visentin F.; Zanotto. L. Journal of Organometallic Chemistry, 2002, 642, 32–39.
46. Suri, M.; Jousseaume, T.; Neumann, J. J.; Glorius, F. Green Chem., 2012, 14, 2193-2196.
47. Guru, M. M. Punniyamurthy, T. J. Org. Chem., 2012, 77, 5063-5073.
48. Chen, C.-Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. Org. Lett., 2016, 18, 1690-1693.
49. Cottrell, T. L. The Strengths of Chemical Bonds 2ed.; Butterworths Scientific Publications: Dunfermline, U.K., 1958.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *