帳號:guest(3.133.107.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張一寧
作者(外文):Teoh, Yi Ning
論文名稱(中文):醯基自由基環化反應應用於異扭曲烷骨架之合成
論文名稱(外文):Study the Application of Acyl Radical Cyclization for Constructing Isotwistance Skeleton
指導教授(中文):謝興邦
指導教授(外文):Hsieh, Hsing-Pang
口試委員(中文):林俊成
汪炳鈞
吳學亮
口試委員(外文):Lin, Chun-Cheng
Uang, Biing-Jiun
Wu, Hsyuh-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:106023401
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:290
中文關鍵詞:醯基自由基環化反應異扭曲烷掩飾鄰苯醌同系化反應
外文關鍵詞:acyl radical cyclizationisotwistancemasked ortho-benzoquinoneshomologationDiels-Alder reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文的研究目的在於利用具有醛官能基的雙環[2.2.2]辛烯酮化合物進行醯基自由基環化及重排反應建立天然物常見的異扭曲烷結構,並探討雙環[2.2.2]辛烯酮骨架上的取代基對於此環化反應的影響。自由基反應前驅物醛類雙環[2.2.2]辛烯酮化合物之雙環結構可藉由掩飾鄰苯醌與丙烯醛進行具有位置選擇性的Diels-Alder反應來建立。接著進行同系化反應就可得到反應前驅物醛類化合物。最後,我們進行硫醇輔助醯基自由基反應得到中間體126接著會經由路徑A或B得到具有異扭曲烷結構的異構物,分別為5-exo-trig環化產物以及3-exo-trig重排產物。以上兩種途徑取決於立體效應、羰基效應以及雙環[2.2.2]辛烯酮化合物上二甲基酮之影響。我們從實驗結果發現從雙環[2.2.2]辛烯酮上酮類官能基對重排反應有非常重要的影響。當將雙環[2.2.2]辛烯酮上酮類官能基還原成羥基後,會使反應無法進行3-exo-trig環化反應,因此不會進行重排反應,而最後經路徑A只得到了5-exo-trig環化產物。當R2及R1位置立體障礙越大以及有二甲基取代,會使反應傾向於路徑B得到較多3-exo-trig重排產物;而當取代基為甲基時,將雙環[2.2.2]辛烯酮上二甲基縮酮酮移除,有利於5-exo-trig環化產物的形成。因此,本論文成功以不同條件控制醯基自由基反應得到5-exo-trig異扭曲烷骨架產物或是3-exo-trig重排異扭曲烷骨架產物。

The research focused on utilizing bicyclo[2.2.2]octone derivatives as an experimental platform to examine the substituent effect on the acyl radical cyclization reaction constructing isotwistane skeleton, which can be found in many natural products. The bicyclo[2.2.2]octone derivatives, prepared for the acyl radical cylization reaction, were obtained from the Diels-Alder reactions and followed by the homologation reactions. We successfully constructed isotwistance skeleton by the thiol-mediated acyl radical cyclization reaction. In the experiments, we found that the reaction tendency is affected by the steric hindrance, carbonyl group effect and the dimethoxy effect. Firstly, the carbonyl group in the bicyclo[2.2.2]octone derivatives is the mainly point to affect the rearrangement reaction. If the carbonyl group was reduced to alcohol, the acyl radical reaction would get only 5-exo-trig product. Secondly, the effect of steric hindrance could be observed when the size of the substituent increased in R2 and R1. The cylization reaction would tend avoid cyclizing to the bulky, so the production of the 3-exo-trig rearrangment product was improved Finally, the effect of the methoxy groups showed that the major product was the 5-exo-trig product. Consequently, we successfully controlled the reaction to favor 5-exo-trig or 3-exo-trig product with different conditions in this methodology.
中文摘要 I
目錄 III
圖目錄 IX
表目錄 XI
流程目錄 XII
縮寫對照表 XV
第一章、緒論 1
第一節 異扭曲烷類天然物之簡介 1
第二節 異扭曲烷骨架之合成方法 2
1-2-1 由烷基自由基5-exo-trig環化反應製備異扭曲烷骨架 2
1-2-2 利用C-H鍵插入合成異扭曲烷骨架 (C-H insertion) 3
1-2-3 利用Pinacol偶合作用合成異扭曲烷骨架 4
1-2-4 分子內Diels-Alder反應合成異扭曲烷骨架 5
1-2-5 以內醛醇反應合成異扭曲烷骨架 5
1-2-6 由醯基自由基合成異扭曲烷骨架 6
第三節 醯基自由基(Acyl Radical)介紹 8
1-3-1醯基自由基的生成 8
1-3-2 Radicals的環化反應 14
1-3-3 醯基自由基在合成上的應用 18
第四節 掩飾鄰苯醌相關反應研究 22
第五節 研究動機 26
第二章、實驗結果與討論 32
第一節 醯基自由基環化反應的醛類前驅物之製備 32
2-1-1 單甲基取代的2-甲氧基苯酚之製備 32
2-1-2異丙基取代的2-甲氧基苯酚之製 32
2-1-3 三級丁基取代的2-甲氧基苯酚之製 33
2-1-4 二甲基取代的2-甲氧基苯酚之製 34
2-1-5 R1為雜原子取代基之2-甲氧基苯酚化合物之製備 36
2-1-6雙環[2.2.2]辛烯酮類化合物的製備 37
2-1-6 同系化反應 40
第二節 醯基自由基環化反應 47
2-2-1 單甲基取代的醯基自由基環化反應的影響 47
2-2-2異丙基取代醯基自由基環化反應的影響 56
2-2-3三級丁基取代對醯基自由基環化反應的影響 58
2-2-4羰基效應對醯基自由基環化反應的影響 65
2-2-5 二甲氧基縮酮對醯基自由基環化反應的影響 68
2-2.6 二甲基取代對醯基自由基環化反應的影響 72
2-2-7 異原子對醯基自由基環化反應的影響 73
2-2-8 溶劑、濃度與輔助硫醇對醯基自由基環化反應的影響 75
第三章、結論與未來展望 78
第四章、實驗部分 84
第一節 一般實驗方法 84
第二節 化合物之實驗步驟與光譜資料 86
4-2-1 苯酚127c之合成 86
4-2-2 苯酚127d之合成 86
4-2-3 苯酚127e之合成 87
4-2-4 苯酚127f之合成 88
4-2-5 苯酚127g之合成 89
4-2-6 苯酚127h之合成 90
4-2-7 苯酚127i之合成 91
4-2-8苯酚127j之合成 92
4-2-9 苯酚127l之合成 93
4-2-10 苯酚127m之合成 94
4-2-11 苯酚127n之合成 94
4-2-12 苯酚127o之合成 95
4-2-13 化合物128a之合成 95
4-2-14 化合物128b之合成 96
4-2-15 化合物128c之合成 97
4-2-16 化合物128d之合成 98
4-2-17 化合物128e之合成 99
4-2-18 化合物128f之合成 100
4-2-19 化合物128g之合成 101
4-2-20 化合物128h之合成 102
4-2-21 化合物128i之合成 103
4-2-22 化合物128j之合成 104
4-2-23 化合物128k之合成 104
4-2-24 化合物128l之合成 105
4-2-25 化合物128m之合成 106
4-2-26 化合物128n之合成 107
4-2-27 化合物128o之合成 108
4-2-28 化合物134a之合成 109
4-2-29 化合物134b之合成 110
4-2-30 化合物134c之合成 111
4-2-31 化合物134d之合成 112
4-2-32 化合物134e之合成 112
4-2-33 化合物134f之合成 113
4-2-34 化合物134g之合成 114
4-2-35 化合物134h之合成 115
4-2-36 化合物134i之合成 116
4-2-37 化合物134j之合成 117
4-2-38 化合物134k之合成 117
4-2-39 化合物134l之合成 118
4-2-40 化合物134m之合成 119
4-2-41 化合物134n之合成 120
4-2-42 化合物134o之合成 120
4-2-43 化合物126a之合成 121
4-2-44 化合物126b之合成 122
4-2-45 化合物126c之合成 123
4-2-46 化合物126d之合成 124
4-2-47 化合物126e之合成 124
4-2-48 化合物126f之合成 125
4-2-49 化合物126g之合成 126
4-2-50 化合物126h之合成 126
4-2-51 化合物126i之合成 127
4-2-52 化合物126j之合成 128
4-2-53 化合物126k之合成 129
4-2-54 化合物126l之合成 129
4-2-55 化合物126m之合成 130
4-2-56 化合物126n之合成 131
4-2-57 化合物126o之合成 131
4-2-58 化合物126a1與126a3之合成 132
4-2-59 化合物126b1與126b3之合成 134
4-2-60 化合物126c1與126c3之合成 135
4-2-61 化合物126d1與126d3之合成 137
4-2-62 化合物126e1與126e3之合成 138
4-2-63 化合物126f1與126f3之合成 139
4-2-64 化合物126g1之合成 141
4-2-65 化合物126h與126h3之合成 142
4-2-66 化合物126i5之合成 143
4-2-67 化合物143g之合成 144
4-2-68 化合物143g1與143g4之合成 145
4-2-69 化合物143h之合成 146
4-2-70 化合物143h1之合成 147
4-2-71 化合物146a之合成 148
4-2-72 化合物146a1與146a3之合成 149
4-2-73 化合物146c之合成 150
4-2-74 化合物146c1與146c3之合成 151
4-2-75 化合物126j1與126j3之合成 152
4-2-76 化合物126k1與126k3之合成 153
4-2-77 化合物126l1與126l3之合成 154
4-2-78 化合物126m1與126m3之合成 155
第五章、參考資料 157
附錄一 化合物之X光單晶繞射數據 161
附錄二 化合物之氫核磁共振光譜圖 168
1. (a) Sizemore, N.; Rychnovsky, S. D. Studies toward the Synthesis of Palhinine Lycopodium Alkaloids: A Morita-Baylis-Hillman/Intramolecular Diels-Alder Approach. Org. Lett. 2014, 16, 688–691. (b) Liu, L.; Liu, S.-C.; Jiang, L.-H.; Chen, X.-L.; Guo, L.-D.; Che, Y.-S. Chloropupukeananin, the First Chlorinated Pupukeanane Derivative, and Its Precursors from Pestalotiopsis fici. Org. Lett. 2008, 10, 1397–1400. (c) Liu, L.; Bruhn.T.; Guo, L.-D.; Gotz, D.C.G.; Brun. R.; Stich, A.; Che, Y.-S.; Bringmann, G. Chloropupukeanolides C–E: Cytotoxic Pupukeanane Chlorides with a Spiroketal Skeleton from Pestalotiopsis fici. Chem. Eur. J. 2011, 17, 2604–2613. (d) Torii, M.; Kato, H.; Hitora, Y.; Angjouw, E. D.; Magindaan, R. E. P.; Voogd, N. J. D; Tsukamoto, S. Lamellodysidines A and B, Sesquiterpenes Isolated from the Marine Sponge Lamellodysidea herbacea. J. Nat. Prod. 2017, 80, 2536–2541. (e) Zhang, G.-B.; Wang, F.-X.; Du, J.-Y.; Qu, H.; Ma, X.-Y.; Wei, M.-X.; Wang, C.-T.; Li, Q.; Fan, C.-A. Toward the Total Synthesis of Palhinine A: Expedient Assembly of Multifunctionalized Isotwistane Ring System with Contiguous Quaternary Stereocenters. Org. Lett. 2012, 14, 3696–3699. (f) Duan, S.; Long, D.; Zhao, C.; Zhao, G.; Yuan, Z.; Xie, X.; Fang, J.; She, X. Efficient construction of the A/C/D tricyclic skeleton of palhinine A. Org. Chem. Front. 2016, 3, 1137–1143.
2. (a) Liu, L.; Niu, S.-B.; Lu, X.-H.; Chen, X.-L.; Zhang, H.; Guo, L.-D.; Che, Y.-S. Unique Metabolites of Pestalotiopsis fici Suggest a Biosynthetic Hypothesis Involving a Diels–Alder Reaction and then Mechanistic Diversification. Chem. Commun. 2010, 46, 460–462. (b) Opatz, T.; Kauhl, U.; Emsermann, J. Marine Isonitriles and Their Related Compounds. Mar. Drugs. 2016, 14–16. (c) Yasman.; Edrada, R. A.; Wray, V.; Proksch, P. New 9-Thiocyanatopupukeanane Sesquiterpenes from the Nudibranch Phyllidia varicosa and Its Sponge-Prey Axinyssa aculeate. J. Nat. Prod. 2003, 66, 1512–1514. (d) Tian, D.-S.; Yi, P.; Xia, L.; Xiao, X.; Fan, Y.-M.; Gu, W.; Huang, L.-J.; David, Y.B.; Di, Y.-T.; Yuan, C.-M.; Hao, X.-J. Garmultins A–G, Biogenetically Related Polycyclic Acylphloroglucinols from Garcinia multiflora. Org. Lett. 2016, 18, 5904–5907.
3. (a) Singh, V.; Pal, S.; Mobin, S. M. Cycloaddition between Electron-Deficient π-Systems, Photochemical and Radical-Induced Reactions: A Novel, General, and Stereoselective Route to Polyfunctionalized Bridged Bicyclo[2.2.2]octanes, Bicyclo[3.3.0]octanes, Bicyclo[4.2.0]octanes, and Tricyclo[4.3.1.03,7]decanes. J. Org. Chem. 2006, 71, 3014–3025. (b) Srikrishna, A.; Satyanarayana, G. A Formal Total Synthesis of (±)-9-Isocyanoneopupukeanane. Tetrahedron 2005, 61, 8855–8859. (c) Yoshimitsu, T.; Sasaki, S.; Arano, Y.; Nagaoka, H. Studies on the Total Synthesis of (−)-CP-263,114. J. Org. Chem. 2004, 69, 9262–9268. (d) Gaugele, D.; Maier, M. E. Approach to the Core Structure of the Polycyclic Alkaloid Palhinine A. Synlett 2013, 24, 955–958. (e) Chen, C.-M.; Shiao, H.-Y.; Uang, B.-J.; Hsieh, H.-P. Biomimetic Syntheses of (±)‐Isopalhinine A, (±)‐Palhinine A, and (±)‐Palhinine D. Angew. Chem. Int. Ed. 2018, 57, 15572–15576.
4. Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of Alpha-Hydroxycarbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241-3243.
5. Chatgilialoglu. C; Crich, D.; Komatsu, M.; Ryu, L. Chemistry of Acyl Radicals. Chem. Rev. 1999, 99, 1991–2070.
6. Kharasch, M. S.; Urry, W. H.; Kuderna, B. M. Reactions of Atoms and Free Radicals in Solution. The Addition of Aldehydes to Olefins. J. Org. Chem. 1949, 14, 248–253.
7. Yoshikai, K.; Hayama, T.; Nishimura, K.; Yamada, K.; Tomioka, K. Thiol-Catalyzed Acyl Radical Cyclization of Alkenals. J. Org. Chem. 2005, 70, 681–683.
8. Kuivila, H. G.; Walsh, E. J. The Reaction of Acyl Halides with Organotin Hydrides. The Mechanism of Aldehyde Formation. J. Am. Chem. Soc. 1966, 88, 571–576.
9. Cekovic, Z. Intramolecular Cyclization of Unsaturated Acyl Chlorides by Tributyltin hydride. Tetrahedron Lett. 1972, 13, 749–752.
10. Pfenninger, J.; Heuberger, C.; Graf, W. The Radical Induced Stannane Reduction of Selenoesters and Selenocarbonates: A New Method for the Degradation of Carboxylic Acids to nor‐Alkanes and for Desoxygenation of Alcohols to Alkanes. Helv. Chim. Acta 1980, 63, 2328–2337.
11. Boger, D. L.; Mathvink, R J. Acyl Radicals: Functionalized Free Radicals for Intramolecular Cyclization Reactions. J. Org. Chem. 1988, 53, 3377–3379.
12. Barton, D. H. R; George, M. V.; Tomoeda, M. Photochemical Transformations. Part XIII. A New Method for the pProduction of Acyl Radicals. J. Chem. Soc. 1962, 1967–1974.
13. (a) Coveney, D. J.; Patel, V. F.; Pattenden, G. Acylcobalt Salophen Reagents. Precursors to Acyl Radical Intermediates for Inter- and Intra-molecular Oxidative Michael Addition reactions. Tetrahedron Lett. 1987, 28, 5949–1952; (b) Patel, V. F.; Pattenden, G. Free Radical Reactions Initiated by Organocobalt Complexes. A New Method for the Degradation of Carboxylic Acids to Functionalised nor-Alkanes via Acylcobalt Salophen Intermediates. Tetrahedron Lett. 1988, 29, 707–710.
14. (a) Chen, C.; Crich, D.; Papadatos, A. The Chemistry of Acyl Tellurides: Generation and Trapping of Acyl Radicals, Including Aryltellurium Group Transfer. J. Am. Chem. Soc. 1992, 114, 8313–8314; (b) Chen, C.; Crich, D. The Free Radical Chemistry of Acyl Tellurides: Mechanistic Studies and Synthetic Applications. Tetrahedron Lett. 1993, 34, 1545–1548.
15. Ryu, I.; Kusano, K.; Ogawa, N.; Kambe, N.; Sonoda, N. Free Radical Carbonylation. Efficient Trapping of Carbon Monoxide by Carbon Radicals. J. Am. Chem. Soc. 1990, 112, 1295–1297.
16. Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummings: Menlo Park, 1978.
17. Fuente, J. D. La; Lissi, E. A.; Rozas, R. Electrogenerated Luminescence in the Kolbe Reactions of Pyruvic and Phenylglyoxylic Acids. Can. J. Chem. 1984, 62, 2117–2122.
18. Walsh, E. J.; Messinger II, J. M.; Groudoski, D. A.: Allchin, C. A. The Cyclization Reaction of 5-Hexenoyl chloride with Tri-n-butyltin hydride. Tetrahedron Lett. 1980, 21, 4409–4412.
19. Beckwith, A. L. J.; Schiesser, C. H. Regio- and Stereo-Selectivity of Alkenyl Radical Ring Closure: A Theoretical Study. Tetrahedron 1985, 41, 3925–3941.
20. Boger, D. L.; Mathvink, R. J. Tandem Free-Radical Alkene Addition Reactions of Acyl Radicals. J. Am. Chem. Soc. 1990, 112, 4003–4008.
21. Crich, D.; Eustace, K. A.; Fortt, S. M.; Ritchie, T. J. Acyl Radical Cyclizations in Synthesis. Part 2 Further Substituent Effects on the Mode and Efficiency of Cyclizaion of 6-Heptenoyl Radicals. Tetrahedron 1990, 46, 2135–2148.
22. Boger, D. L.; Mathvink, R. J. Acyl Radicals: Intermolecular and Intramolecular Alkene Addition Reactions. J. Org. Chem. 1992, 57, 1429–1443.
23. (a) Crich, D.; Batty, D. Acyl Radical Cyclizations in Synthesis. Part 4. Tandem Processes: the 7-endo/5-exo Serial Cyclization Approach to Enantiomerically Pure Bicyclo[5.3.0]decan-2-ones. J. Chem. Soc., Perkin Trans. 1 1992, 3193–3204. (b) Chatgilialoglu, C.; Ferreri, C.; Luarini, M.; Venturini, A.; Zavitsas, A. A. 5‐exo‐trig Versus 6-endo-trig Cyclization of Alk-5-enoyl Radicals: The Role of One‐Carbon Ring Expansion. Chem. Eur. J. 1997, 3, 376–387. (c) Giese, B.; Heinrich, N.; Horler, H.; Koch, W.; Schwarz, H. Experimental and Theoretical Studies on the Mechanism of 1,2‐Migration of Vinyl and Formyl Substituents in Free Radicals. Chem. Ber. 1986, 119, 3528–3535.
24. Batsanov, A.; Chen, L.; Gill, G. B.; Pattenden, G. Acyl Radical-Mediated Polyene Cyclisations Directed Towards Steroid Ring Synthesis. J. Chem. Soc., Perkin Trans. 1 1996, 45–55.
25. (a) Pattenden, G.; Roberts, L. Cascade Radical Processes Leading to Polycycle Constructions. The Total Synthesis of Spongian-16-one. Tetrahedron Lett. 1996, 37, 4191–4194. (b) Pattenden, G.; Roberts, L.; Blake, A. J. Cascade Radical Cyclisations Leading to Polycyclic Diterpenes. Total Synthesis of (±)-Spongian-16-one. J. Chem. Soc., Perkin Trans. 1 1998, 863–868.
26. Handa, S.; Pattenden, G.; Li, W.-S. A New Approach to Steroid Ring Construction Based on a Novel Radical Cascade Sequence. Chem. Commun. 1998, 311–312.
27. Zhang, L.-M.; Koreeda, M. Total Synthesis of (+)-Acanthodoral by the Use of a Pd-Catalyzed Metal-ene Reaction and a Nonreductive 5-exo-Acyl Radical Cyclization. Org. Lett. 2004, 6, 537–540.
28. Enquist, J. A.; Stloltz, B.M.; The Total Synthesis of (-)-Cyanthiwigin F by Means of Double Catalytic Enantioselective Alkylation. Nature 2008, 453, 1228–1231.
29. Liao, C.-C.; Peddinti, R. K. Masked o-Benzoquinones in Organic Synthesis. Acc. Chem. Res. 2002, 35, 856-866.
30. Kurti, L.; Herczegh, P.; Visy, J.; Simonyi, J.; Antus, S.; Pelter, A. New Insights into the Mechanism of Phenolic Oxidation with Phenyliodonium (III) Reagents. J. Chem. Soc., Perkin Trans. 1 1999, 379–380.
31. Harry, N. A.; Saranya, S.; Krishnan, K. K.; Anilkumar, G. Recent Advances in the Chemistry of Masked Ortho-Benzoquinones and Their Applications in Organic Synthesis. Asian J. Org. Chem. 2017, 6, 945-966.
32. Liao, C.-C.; Chu, C.-S.; Lee, T.-H.; Rao, P. D.; Ko, S.; Song. L.-D.; Shiao, H.-C. Generation, Stability, Dimerization, and Diels−Alder Reactions of Masked o-Benzoquinones. Synthesis of Substituted Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J. Org. Chem. 1999, 64, 4102-4110.
33. (a) 蕭暉議,壹:天然物(±)-Annuionone B 與 (±)-Tanarifuranonol 之全合成; 貳:新穎抗流行性感冒病毒藥物之發展研究,博士論文,國立清華大學,2009 年。 (b)Shiao, H.-Y.; Hsieh, H.-P.; Liao, C.-C. First Total Syntheses of (±)-Annuionone B and (±)-Tanarifuranonol. Org. Lett. 2008, 10, 449-452.
34. Bovicelli, P.; Antonioletti, R.; Mancini, S.; Causio, S. Expedient Synthesis of Hydroxytyrosol and its Esters. Synth Commun., 2007, 37, 4245-4252.
35. Hsu, D.-S.; Liao, C.-C. First Total Syntheses of (±)-Penicillones A and B. Org. Lett. 2007, 9, 4563-4565.
36. 林振瑋,以呋喃并嘧啶化合物為激光激酶抑制劑之研究,博士論文,國立清華大學,2009年。
37. Tanaka, M.; Okita, M.; Akamatsu, H.; Chiba, K.; Obaishi, H.; Nagakura, N.; Sakurai, H.; Yamatsu, I. Hydroxyindole Derivatives as Inhibitors of IL-1 Generation. II. Synthesis and Pharmacological Activities of (E)-3-(7-hydroxy-6-methoxyindole-4-yl)-2-Methylpropenoic Acid Derivatives. Eur. J. Med. Chem. 1996, 31, 187-198.
38. Boger, C.; Schmidt, A. W.; Knolker, H.-J. First Total Synthesis of Murrastifoline B and an Improved Route to Murrastifoline F. Synlett. 2014, 25, 1381-1384.
39. Nicolaou, K. C.; Namoto, K.; Ritzen, A.; Ulven, T.; Shoji, M.; Li. J.; Damico, G.; Liotta, D.; French, C. T.; Wartmann, M.; Altmann, K.-H.; Giannakakou, P. Chemical Synthesis and Biological Evaluation of cis- and trans-12,13-Cyclopropyl and 12,13-Cyclobutyl Epothilones and Related Pyridine Side Chain Analogues. J. Am. Chem. Soc. 2001, 123, 9313-9323.
40. 陳致銘,天然物 (±)-Isopalhinine A、(±)-Palhinine A 與 (±)-Palhinine D 的仿生合成,博士論文,國立清華大學,2019年。
41. Kaliappan, K.; Subba Rao. G. S. R. Synthesis Based on Cyclohexadienes. Part 24. A New Total Synthesis of Pupukean-2-one and a Facile Entry to Copa and Ylanga Type Sesquiterpene Skeletons. J. Chem. Soc., Perkin Trans. 1 1997, 3393–3399.
42. Lai, C.-H.; Shen, Y.-L.; Wang, M.-N.; Kameswara Rao, N. S.; Liao, C.-C. Intermolecular Diels-Alder Reactions of Brominated Masked o-Benzoquinones with Electron-Deficient Dienophiles. A Detour Method to Synthesize Bicyclo[2.2.2]octenones from 2-Methoxyphenols. J.Org. Chem. 2002, 67, 6493-6502.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *