|
[1]J.M. Osepchuk, A History of Microwave Heating Applications. IEEE Transactions on Microwave Theory and Techniques. Volume: 32 , Issue: 9 , Pages 1200 – 1224. (1984) [2]K.G.Ayappa, et al., Microwave heating: an evaluation of power formulations. Chemical Engineering Science, Volume 46, Issue 4, Pages 1005-1016 (1991) [3]James M Hill, et al., Modelling microwave heating. Applied Mathematical Modelling, Volume 20, Issue 1, Pages 3-15 (1996) [4]C. Oliver Kappe, Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie, Volume43, Issue46, Pages 6250-6284 (2004) [5]黃捷威,”可降解高分子薄膜之混摻粒子研究與水域降解性質探討.” 國立清華大學化學工程研究所碩士論文. (2018) [6]鄒爾燁, “生物可分解膜製成之研發與製作—材料合成與製程建立.” 國立清華大學化學工程研究所碩士論文. (2015) [7]汪維萱, “微波製造之可生物分解高分子膜及其土壤降解探討.” 國立清華大學化學工程研究所碩士論文. (2019) [8]顏榆欣, “開發以廢甘油為原料合成生物可分解高分子與其性質分析.” 國立清華大學化學工程研究所碩士論文. (2016) [9]陳昕翰, “以甘油為主之高分子生物可降解薄膜的合成與狹縫式塗佈製程研究.” 國立清華大學化學工程研究所碩士論文. (2017) [10]H. M. Aydin., Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers. Biomaterials Science, Volume: 1 , Issue: 5 , Pages 503 – 509. (2013) [11]Takashi Nakamura, et al., Large-Scale Polycondensation of Lactic Acid Using Microwave Batch Reactors. Organic Process Research and Development, Volume: 14 , Issue: 4 , Pages 781 – 786. (2010) [12]Nicholas E. Leadbeater, Microwave-Assisted Synthesis: General Concepts. Microwave-assisted Polymer Synthesis, Pages 1 – 44. (2014) [13]Erika Bálint, et al., The Spread of the Application of the Microwave Technique in Organic Synthesis. Keglevich G. (eds) Milestones in Microwave Chemistry. (2016) [14]Kristian Kempe, et al., Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules, Volume: 44 , Issue: 15 , Pages 5825 – 5842. (2011) [15]Magdalena Komorowska-Durka, et al., A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions. Chemical Engineering Journal, Volume:264, Issue:15, Pages 633 – 644. (2015) [16]Frank Wiesbrock, et al., Microwave‐Assisted Polymer Synthesis: State‐of‐the‐Art and Future Perspectives. Macromolecular Rapid Communications, Volume25, Issue20, Pages 1739-1764. (2004) [17]Y. Mansourpanah, et al., The effect of non-contact heating (microwave irradiation) and contact heating (annealing process) on properties and performance of polyethersulfone nanofiltration membranes. Applied Surface Science, Volume 255, Issue 20, Pages 8395-8402. (2009) [18]Yu V. Bykov, K. I. Rybakov and V. E. Semenov, High-temperature microwave processing of materials. Journal of Physics D: Applied Physics, Volume 34, Number 13. (2001) [19]C.Y. Barlow, D.C. Morgan, Polymer film packaging for food: An environmental assessment. Resources, Conservation and Recycling, Volume 78, Pages 74-80. (2013) [20]Pengfei Zhao, et al., Effect of Temperature and Microwave Power Levels on Microwave Drying Kinetics of Zhaotong Lignite. Processes, Volume 7, Issue 2, Pages 74-80. (2019) [21]ASTM, ASTM D6400-04. Standard Specification for Compostable Plastics. (2004) [22]ASTM, ASTM D5338-15. Standard Specification for Compostable Plastics. (2015) [23]Gaurav Kale, et al., Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, Volume 26, Issue 8, Pages 1049-1061. (2007) [24]Sudhakar Muniyasamy, et al., Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). Industrial Crops and Products, Volume 43, Pages 812-819. (2013) [25]Michael Niaounakis, Biopolymers: Processing and Products. (2015) [26]European Bioplastics. https://www.european-bioplastics.org/market/ [27]Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R, A tough biodegradable elastomer. Nature biotechnology, Volume 20, Issue 6, Pages 602-606. (2002) [28]中華民國環保生物可分解材料協會. https://www.ebpa.org.tw/know_Polymer.html [29]碩揚科技有限公司-陶瓷纖維帶/陶瓷纖維帶. http://www.sytsyt.com.tw/index.php?option=product&lang=cht&task=pageinfo&id=106&belongid=105&index=0 [30]Morgan Deroiné, et al., Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, Volume 108, Pages 319-329. (2014) [31]Nihar M., Shah Michael D., Pool Andrew T. Metters, Influence of Network Structure on the Degradation of Photo-Cross-Linked PLA-b-PEG-b-PLA Hydrogels. Biomacromolecules, Volume 7, Issue 11, Pages 3171-3177. (2006) [32]Bo Lu, Ge-Xia Wang, et al., Comparison of PCL degradation in different aquatic environments: Effects of bacteria and inorganic salts. Polymer Degradation and Stability, Volume 150, Pages 133-139. (2018) [33]Yi-Kong Hsieh, Chia-Teng Chang, I-Hsin Jen, Fan-Chih Pu, Shu-Huei Shen, Dehui Wan, Jane Wang, Use of Gold Nanoparticles to Investigate the Drug Embedding and Releasing Performance in Biodegradable Poly(glycerol sebacate). ACS Applied Nano Mateials, Volume 1, Issue 9, Pages 4474-4482. (2018) [34]I. Castilla-Cortázar, et al., Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, Volume 97, Issue 8, Pages 1241-1248. (2012) [35]Kate L. Harrison, Mike J. Jenkins, The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polymer International, Volume 53, Issue 9, Pages 1298 – 1304. (2004) [36]Luc Avérous, Eric Pollet, Biodegradable Polymers. Environmental Silicate Nano-Biocomposites, Pages 13-39. (2012) [37]Lager G. A., Jorgensen J. D., Rotella F.J., Crystal structure and thermal expansion of a-quartz SiO2 at low temperature. Journal of Applied Physics, Volume 53, Issue 10, Pages 6751–6756. (1982) [38]ASTM, ASTM D2442-75. Standard Specification for Alumina Ceramics for Electrical and Electronic Applications. (2016) [39]Hsien-Wen Chao, Tsun-Hsu Chang, Wide-Range Permittivity Measurement With a Parametric-Dependent Cavity. IEEE Transactions on Microwave Theory and Techniques, Volume 66, Issue 10, Pages 4641 - 4648. (2018) [40]L.J.R. Foster, A. Saufi, P.J. Holden, Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution. Biotechnology Letters, volume 23, pages893–898. (2001) [41]Lara L. Madison, Gjalt W. Huisman, Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, Volume 63, Issue 1, Pages 21 - 53. (1999) [42]Kshama Lakshman, Tumkur Ramachandriah Shamala, Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium meliloti. Biotechnology Letters, Volume 25, Pages 115–119. (2003) [43]Stevens E.S., What makes green plastics green? Biocycle, Volume 44, Pages 24–27. (2003) [44]R Chandra, R Rustgi, Biodegradable polymers. Progress in polymer science, Volume 23, Pages 1273–1335. (1998) [45]Ranjana Rai, et al., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, Volume 37, Issue 8, Pages 1051-1078. (2012) [46]Feng Yi, David A. LaVan, Poly(glycerol sebacate) Nanofiber Scaffolds by Core/Shell Electrospinning. Macromolecular Bioscience, Volume 8, Issue 9, Pages 803-806. (2008) [47]ER Parker, Materials Data Book. (2003)
|