帳號:guest(18.117.8.159)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉小斳
作者(外文):Liu, Hsiao-Chin
論文名稱(中文):以廢甘油為基礎製備生物可分解高分子--材料,製程及產品開發
論文名稱(外文):Waste Glycerol Based Biodegradable Polymers -- Material, Process and Product Development
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):王潔
汪上曉
趙賢文
口試委員(外文):Wang, Jane
Wong, Shang-Hsiao
Chao, Hsein-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022555
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:92
中文關鍵詞:微波加熱蛇形管生物可分解材料土壤降解生物可分解薄膜介電係數
外文關鍵詞:Microwave HeatingSerpentineBiodegradable MaterialsSoil degradationBiodegradable FilmsPermittivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:345
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為響應對環保聚合物材料不斷增長的需求,我們提出了一種高效的微波系統來製造以甘油為基底的生物可降解高分子聚合物材料,以取代現有的聚合物。與傳統的紅外線加熱法相比,使用行波的連續微波乾燥設備能夠將聚合物合成時間從大約一天減少到10分鐘左右。
此套系統結合捲對捲設備,有利於量產生物可降解薄膜(Biodegradable film)。以甘油和馬來酸為原料的PGM(poly glycerol maleate,聚馬來酸甘油酯)配方可以在水和土壤中快速分解。除了具有更好的生物降解性外,PGM還比其他可分解材料便宜,因此在市場競爭中具有優勢,且使用廢棄甘油可以減少回收處理之費用,亦是達成循環經濟的目標。
我們將繼續優化材料配方,以發展它在各方面的應用,如生物可分解膠水、塑料等。此外我們也將繼續研究生物可降解性的機制,並使微波烘箱的結構輕量化,可以方便拆卸、清洗,將各種微波系統集成到量產規模,提高使用效率及產量。
In response to the increasing demand for environmental friendly polymeric materials, we propose an efficient microwave system to manufacture glycerol-based biodegradable polymeric materials in the hope of substituting existing polymers. The microwave-drying apparatus by using the quasi-travelling wave is capable of reducing the processing time from a day to 10 minutes compared with the traditional IR (infrared)-heating method. The roll-to-roll crosslink inside the system is beneficial to produce the biodegradable films. The new formulation of PGM (poly glycerol maleate) by using the glycerol and maleic acid as raw materials can be decomposed in water and soil rapidly. In addition to having better biodegradability, PGM is cheaper than other decomposable materials and therefore has an advantage in market competition. Finally, we will continue to optimize materials design, investigate the mechanism of biodegradability and integrate various subsystems to pilot scale.
第一章 緒論-------------------------------8
第二章 微波乾燥及PGM合成原理----------------11
2.1 微波乾燥的原理-------------------------11
2.2 PGM合成原理---------------------------13
2.3 各類生物可分解高分子聚合物--------------16
2.4 PGM的固化條件-------------------------19
2.5 各類環境中的降解機制-------------------21
第三章 行波微波作用腔電磁場模擬與設計-------26
3.1行波微波作用腔結構設計------------------27
3.2行波微波作用腔內部電磁場分布-------------30
3.3不同材質在行波微波作用腔內之電磁場分布----31
第四章 固化實驗架構與結果------------------41
4.1 卷對卷(Roll-to-roll)設備之架設-------41
4.2 PGM薄膜固化(Curing)實驗方法----------42
4.3固化實驗結果整理與比較------------------49
4.4微波吸收實驗結果整理與比較---------------79
第五章 結論與未來展望---------------------85
附錄 參考文獻-----------------------------87
[1]J.M. Osepchuk, A History of Microwave Heating Applications. IEEE Transactions on Microwave Theory and Techniques. Volume: 32 , Issue: 9 , Pages 1200 – 1224. (1984)
[2]K.G.Ayappa, et al., Microwave heating: an evaluation of power formulations. Chemical Engineering Science, Volume 46, Issue 4, Pages 1005-1016 (1991)
[3]James M Hill, et al., Modelling microwave heating. Applied Mathematical Modelling, Volume 20, Issue 1, Pages 3-15 (1996)
[4]C. Oliver Kappe, Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie, Volume43, Issue46, Pages 6250-6284 (2004)
[5]黃捷威,”可降解高分子薄膜之混摻粒子研究與水域降解性質探討.” 國立清華大學化學工程研究所碩士論文. (2018)
[6]鄒爾燁, “生物可分解膜製成之研發與製作—材料合成與製程建立.” 國立清華大學化學工程研究所碩士論文. (2015)
[7]汪維萱, “微波製造之可生物分解高分子膜及其土壤降解探討.” 國立清華大學化學工程研究所碩士論文. (2019)
[8]顏榆欣, “開發以廢甘油為原料合成生物可分解高分子與其性質分析.” 國立清華大學化學工程研究所碩士論文. (2016)
[9]陳昕翰, “以甘油為主之高分子生物可降解薄膜的合成與狹縫式塗佈製程研究.” 國立清華大學化學工程研究所碩士論文. (2017)
[10]H. M. Aydin., Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers. Biomaterials Science, Volume: 1 , Issue: 5 , Pages 503 – 509. (2013)
[11]Takashi Nakamura, et al., Large-Scale Polycondensation of Lactic Acid Using Microwave Batch Reactors. Organic Process Research and Development, Volume: 14 , Issue: 4 , Pages 781 – 786. (2010)
[12]Nicholas E. Leadbeater, Microwave-Assisted Synthesis: General Concepts. Microwave-assisted Polymer Synthesis, Pages 1 – 44. (2014)
[13]Erika Bálint, et al., The Spread of the Application of the Microwave Technique in Organic Synthesis. Keglevich G. (eds) Milestones in Microwave Chemistry. (2016)
[14]Kristian Kempe, et al., Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules, Volume: 44 , Issue: 15 , Pages 5825 – 5842. (2011)
[15]Magdalena Komorowska-Durka, et al., A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions. Chemical Engineering Journal, Volume:264, Issue:15, Pages 633 – 644. (2015)
[16]Frank Wiesbrock, et al., Microwave‐Assisted Polymer Synthesis: State‐of‐the‐Art and Future Perspectives. Macromolecular Rapid Communications, Volume25, Issue20, Pages 1739-1764. (2004)
[17]Y. Mansourpanah, et al., The effect of non-contact heating (microwave irradiation) and contact heating (annealing process) on properties and performance of polyethersulfone nanofiltration membranes. Applied Surface Science, Volume 255, Issue 20, Pages 8395-8402. (2009)
[18]Yu V. Bykov, K. I. Rybakov and V. E. Semenov, High-temperature microwave processing of materials. Journal of Physics D: Applied Physics, Volume 34, Number 13. (2001)
[19]C.Y. Barlow, D.C. Morgan, Polymer film packaging for food: An environmental assessment. Resources, Conservation and Recycling, Volume 78, Pages 74-80. (2013)
[20]Pengfei Zhao, et al., Effect of Temperature and Microwave Power Levels on Microwave Drying Kinetics of Zhaotong Lignite. Processes, Volume 7, Issue 2, Pages 74-80. (2019)
[21]ASTM, ASTM D6400-04. Standard Specification for Compostable Plastics. (2004)
[22]ASTM, ASTM D5338-15. Standard Specification for Compostable Plastics. (2015)
[23]Gaurav Kale, et al., Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, Volume 26, Issue 8, Pages 1049-1061. (2007)
[24]Sudhakar Muniyasamy, et al., Biodegradable green composites from bioethanol co-product and poly(butylene adipate-co-terephthalate). Industrial Crops and Products, Volume 43, Pages 812-819. (2013)
[25]Michael Niaounakis, Biopolymers: Processing and Products. (2015)
[26]European Bioplastics. https://www.european-bioplastics.org/market/
[27]Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R, A tough biodegradable elastomer. Nature biotechnology, Volume 20, Issue 6, Pages 602-606. (2002)
[28]中華民國環保生物可分解材料協會. https://www.ebpa.org.tw/know_Polymer.html
[29]碩揚科技有限公司-陶瓷纖維帶/陶瓷纖維帶. http://www.sytsyt.com.tw/index.php?option=product&lang=cht&task=pageinfo&id=106&belongid=105&index=0
[30]Morgan Deroiné, et al., Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polymer Degradation and Stability, Volume 108, Pages 319-329. (2014)
[31]Nihar M., Shah Michael D., Pool Andrew T. Metters, Influence of Network Structure on the Degradation of Photo-Cross-Linked PLA-b-PEG-b-PLA Hydrogels. Biomacromolecules, Volume 7, Issue 11, Pages 3171-3177. (2006)
[32]Bo Lu, Ge-Xia Wang, et al., Comparison of PCL degradation in different aquatic environments: Effects of bacteria and inorganic salts. Polymer Degradation and Stability, Volume 150, Pages 133-139. (2018)
[33]Yi-Kong Hsieh, Chia-Teng Chang, I-Hsin Jen, Fan-Chih Pu, Shu-Huei Shen, Dehui Wan, Jane Wang, Use of Gold Nanoparticles to Investigate the Drug Embedding and Releasing Performance in Biodegradable Poly(glycerol sebacate). ACS Applied Nano Mateials, Volume 1, Issue 9, Pages 4474-4482. (2018)
[34]I. Castilla-Cortázar, et al., Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network. Polymer Degradation and Stability, Volume 97, Issue 8, Pages 1241-1248. (2012)
[35]Kate L. Harrison, Mike J. Jenkins, The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone. Polymer International, Volume 53, Issue 9, Pages 1298 – 1304. (2004)
[36]Luc Avérous, Eric Pollet, Biodegradable Polymers. Environmental Silicate Nano-Biocomposites, Pages 13-39. (2012)
[37]Lager G. A., Jorgensen J. D., Rotella F.J., Crystal structure and thermal expansion of a-quartz SiO2 at low temperature. Journal of Applied Physics, Volume 53, Issue 10, Pages 6751–6756. (1982)
[38]ASTM, ASTM D2442-75. Standard Specification for Alumina Ceramics for Electrical and Electronic Applications. (2016)
[39]Hsien-Wen Chao, Tsun-Hsu Chang, Wide-Range Permittivity Measurement With a Parametric-Dependent Cavity. IEEE Transactions on Microwave Theory and Techniques, Volume 66, Issue 10, Pages 4641 - 4648. (2018)
[40]L.J.R. Foster, A. Saufi, P.J. Holden, Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution. Biotechnology Letters, volume 23, pages893–898. (2001)
[41]Lara L. Madison, Gjalt W. Huisman, Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, Volume 63, Issue 1, Pages 21 - 53. (1999)
[42]Kshama Lakshman, Tumkur Ramachandriah Shamala, Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium meliloti. Biotechnology Letters, Volume 25, Pages 115–119. (2003)
[43]Stevens E.S., What makes green plastics green? Biocycle, Volume 44, Pages 24–27. (2003)
[44]R Chandra, R Rustgi, Biodegradable polymers. Progress in polymer science, Volume 23, Pages 1273–1335. (1998)
[45]Ranjana Rai, et al., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, Volume 37, Issue 8, Pages 1051-1078. (2012)
[46]Feng Yi, David A. LaVan, Poly(glycerol sebacate) Nanofiber Scaffolds by Core/Shell Electrospinning. Macromolecular Bioscience, Volume 8, Issue 9, Pages 803-806. (2008)
[47]ER Parker, Materials Data Book. (2003)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *