帳號:guest(3.144.252.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳智傑
作者(外文):Chen, Chih-Chieh
論文名稱(中文):TM模態磁旋管起振電流研究
論文名稱(外文):Starting Current of TM-mode Gyrotrons
指導教授(中文):張存續
指導教授(外文):Chang, Tsun-Hsu
口試委員(中文):劉偉強
洪健倫
姚欣佑
口試委員(外文):Lau, Wai-Keung
Hung, Chien-Lun
Yao, Hsin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022554
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:47
中文關鍵詞:磁旋管TM模態起振電流
外文關鍵詞:gyrotronTM modeStarting Current
相關次數:
  • 推薦推薦:0
  • 點閱點閱:438
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
磁旋管是一種建立在電子迴旋脈射(electron cyclotron maser)機制下從入射電子中提取能量的高功率同調電磁波源,利用外加磁場使電子做迴旋運動並藉由腔體設計使電子與電磁波同步進而提取能量。

由於TM模態的軸向電場會導致群聚機制變得複雜,因此早期的研究普遍認為TM模態的效率會低於TE模態,但近期的研究發現TM模態操作在後退波的條件下,軸向電場會使電子的軸向角群聚(Axial bunching)與方位角群聚(Azimuthal bunching)由競爭關係轉為合作關係,因此TM模態出乎意料的在後退波的條件下反而擁有良好的群聚效應,為了對TM模態反波振盪器做進一步的研究,模式競爭就是一個不得不面對的問題,為了解決模式競爭的問題,後面會用幾種不同的方式來分析TM模態的起振電流。

第二章會介紹目前實驗室所使用的非線性理論模擬,藉由降低電流觀察效率的變化,以紀錄振盪發生所需的最低電流,接著會介紹兩種線性理論的推導,第三章是利用Laplace transform計算均勻結構中能存在的四種不同的波,並得到電磁波在波導管內的場形,藉此尋找作用長度與起振電流之間的關係,第四章則會推導電磁波沿波導管方向變化的微分方程,用以計算非均勻結構的起振電流。
The transverse magnetic (TM) modes have been considered as the unsuitable waveguide modes for gyrotron. Recent scientific evidence seems to indicate that TM modes might be suitable for gyrotron backward-wave oscillator because Axial bunching and Azimuthal bunching will cooperate for gyrotron backward-wave oscillator. For solve the mode competition problem, this study use two method to calculate starting current. Finally, we use the equation that we derive in this paper to simulate the starting current and compare the different between two method.
目錄
摘要 1
Abstract 2
第一章 緒論 4
1-1微波的歷史發展 4
1-2磁旋管種類 5
1-3電子迴旋脈射(ECM)原理 7
第二章 TM模態Bunching機制 8
第三章 非線性自洽理論 11
3-1 TM模態場方程式 11
3-2電子動力學 14
3-3模式競爭 17
第四章 線性理論 18
4-1 Laplace transform 18
4-2 Numerical Method 32
第五章 模擬與分析 36
第六章 結論 44
參考文獻 45

[1]K. R. Chu, “The electron cyclotron maser,” Rev. Mod. Phys., vol. 76, no. 2, pp. 489–540, Apr. 2004.
[2]T. H. Chang, “Asymmetric linear efficiency and bunching mechanisms of TM modes for electron cyclotron maser,” Phys. Plasmas. 24, 023302 (2017).
[3]T.H. Chang, H.Y. Yao, B.Y. Su, W.C. Huang, and B.Y. Wei, “Nonlinear oscillations of TM-mode gyrotrons,” Phys. Plasmas. 24, 122109 (2017).
[4]T.H. Chang and K.J. Xu, “Gain and bandwidth of the TM-mode gyrotron amplifiers,” Physics of Plasmas 25, 112109 (2018).
[5]C. Q. Jiao and J. R. Luo, “Linear theory of the electron cyclotron maser based on TM circular waveguide mode”, Phys. Plasmas. 13, (2006).
[6]C.-H. Du, P.-K. Liu, Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers. Berlin, Germany: Springer-Verlag, 2014.
[7]C. S. Kou and F. Tseng, “Linear theory of gyrotron traveling wave tubes with nonuniform and lossy interaction structures,” Phys. Plasmas, vol. 5, no. 6, pp. 2454–2462, Jun. 1998.
[8]C. S. Kou, “Starting oscillation conditions for gyrotron backward wave oscillators,” Phys. Plasmas, vol. 1, no. 9, pp. 3093–3099, Sep. 1994.
[9]K. R. Chu, and Anthony T. Lin. "Gain and bandwidth of the gyro-TWT and CARM amplifiers." IEEE transactions on Plasma Science 16.2 (1988): 90-104.
[10]W. C. Huang, Feasibility Study of the TM Modes for the Electron Cyclotron Maser, Degree Thesis, Physics, National Tsing Hua University, Hsinchu, 2015
[11]C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann Jr., “High-power harmonic Gyro-TWT’s-Part I: Linear theory and oscillation study,” IEEE Trans. Plasma Sci., vol. 20, pp. 155-162, 1992.
[12]K. R. Chu and J. L. Hirshfield, "Comparative Study of the Azimuthal and Axial Bunching Mechanisms in Electromagnetic Cyclotron Instabilities," Phys. Fluids 21, 461 (1978).
[13]D. M. Pozar, Microwave Engineering
[14]K. R. Chu, Time Domain Analysis of Open Cavities
[15]B. G. Danly, R. J. Temkin, “Generalize Nonlinear Harmonic Gyrotron Theory” (1985).
[16]T. H. Chang, N. C. Chen, C. H. Du, C. P. Yuan, “Development of a Vacemn Electronics Device—Gyrotron”, (2012)
[17]K. R. Chu, Nonlinear formulation for gyro-TWT and CARM amplifier circular waveguide mode (2006)
[18]K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier " IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002.
[19]K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B.Levush, and R. J. Temkin, “Characteristics and applications offast-wave gyrodevices," Proc. IEEE,vol.87, pp. 752–781, May 1999.
[20]J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read,“The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves," IEEE J. Quantum Electron., vol.QE-15, pp. 848–853, 1979.
[21]R. S. Symons, H. R. Jory, and S. J. Hegji, “An experimental gyro-TWT," in IEDM Tech. Dig., 1979, pp. 676–679.
[22]Y. Y. Lau and K. R. Chu, “Gyrotron traveling wave amplifier—A proposed wideband fast wave amplifier," Int. J. Infrared Millim.Waves, vol.2, pp. 415–425, 1981.
[23]K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wideband distributed gyrotron traveling wave amplifier," IEEE Trans. Electron Devices, vol. ED-28, pp. 866–871, 1981.
[24]L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier," IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981.
[25]K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier," Phys. Rev. Lett., vol. 74, pp. 1103–1106, 1995.
[26]K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier," Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998.- 42


[27] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H.Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier," IEEE Trans. Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999.
[28] Tsun-Hsu Chang, Cheng-Hsien Li, Chin-Nan Wu and Ching-Fang Yu, ‘‘Generating Pure Circular TEmn Modes Using Y-Type Power Dividers,’’ IEEE. Trans. Microw. Theory Tech., vol.58. no.6, pp. 1543- 1549, 2010.
[29] C. L. Hung, “Linear and saturated characteristics of a coaxial-waveguide gyrotron backward-wave oscillator,” Phys. Plasmas, vol. 16, 083101, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *