|
[1] A. J. Wood, Witten’s lectures on crumpling, Physica A 313, 83 (2002). [2] Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Crumpling under an Ambient Pressure, Phys. Rev. Lett. 101, 125504 (2008). [3] W. B. Bai, Y. C. Lin, T. K. Hou, and T. M. Hong, Scaling relation for a compact crumpled thin sheet, Phys. Rev. E 82, 066112 (2010). [4] N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today 62, 27 (2009). [5] G. A. Vliegenthart and G. Gompper, Forced crumpling of self-avoiding elastic sheets, Nature Mater. 5, 216 (2006). [6] S. F. Liou, C. C. Lo, M. H. Chou, P. Y. Hsiao, and T. M. Hong, Effect of ridge-ridge interactions in crumpled thin sheets, Phys. Rev. E 89, 022404 (2014). [7] G. A. Vliegenthart and G Gompper, Compression, crumpling and collapse of spherical shells and capsules, New Journal of Physics 13, 045020 (2011). [8] S. T. Tsai et al., Power-law ansatz in complex systems: Excessive loss of information, Phys. Rev. E 92, 062925 (2015). [9] MC Fokker, S Janbaz, and AA Zadpoor, Crumpling of thin sheets as a basis for creating mechanical metamaterials, RSC Advances 9, 5174 (2019). [10] J. Baimova et al., Review on crumpled graphene: unique mechanical properties, Rev. Adv. Mater. Sci. 39, 69 (2014). [11] J. Luo et al., Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes, J. Phys. Chem. Lett. 3, 1824 (2012). [12] J. Choi et al., Hierarchical, Dual-Scale Structures of Atomically Thin MoS2 for Tunable Wetting, Nano Lett. 17, 1756 (2017).
|