|
[1] T. H. Chang, H.Y. Yao, B.Y. Su, W.C. Chen and B.Y. Wei, “Nonlinear oscillations of TM-mode gyrotrons,” Physics of Plasmas vol. 24,no. 12, p. 122109 (2017). [2] B. Y. Wei , “Nonlinear and self-consistent simulation of TM-mode gyrotrons,” National Tsing Hua University, Hsinchu, (2018). [3] V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov, “Large-orbit gyrotron operation in the terahertz frequency range,” Phys. Rev. Lett., vol. 102, no. 24, pp. 245 101-1–245 101-4 (2009). [4] S. H. Kao et al., “Competition between harmonic cyclotron maser interactions in the terahertz regime,” Phys. Rev. Lett., vol. 107, no. 13, p. 135101 (2011). [5] Melissa K. Hornstein, Vikram S. Bajaj, Robert G. Griffin, and Richard J. Temkin, “ Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz,” IEEE Trans. Plasma Sci., vol. 35, no. 1, pp. 27–30 (2007). [6] J.W. Gewartowski, and H.A. Watson, 1965, Principles of electron tubes (Van Nostrand, Princeton, NJ). [7] K. R. Chu, “The electron cyclotron maser,” Rev. Mod. Phys., vol. 76, no. 2, pp. 489–540 (2004). [8] C. P. Yuan, T. H. Chang, N. C. Chen, and Y. S. Yeh, “Magnetron injection gun for a broadband gyrotron backward-wave,” Phys. Plasmas, vol. 16, no. 7, p. 073109 (2009). [9] C. H. Du, et al., “Conformal cross-flow axis-encircling electron beam for driving thz harmonic gyrotron,” IEEE Trans. Electron Devices. vol. 36, no.9 (2015). [10] S. G. Kim, et al., “System development and performance testing of a w-band gyrotron,” J. Infrared, Millim., Terahertz Waves. vol 37, no.3 , pp. 209-229 (2016). [11] Toshitaka Idehara, et al., “Development of frequency tunable, medium power gyrotrons (gyrotron FU series) as submillimeter wave radiation sources,” IEEE Trans. Plasma Sci., vol. 27, no. 2 (1999).
[12] Z. H. Geng, et al., “Experiment and simulation of a W-band cw 30 kW low-voltage conventional gyrotron,” IEEE Trans. Electron Devices. vol. 61, no.6 (2014). [13] D. B. McDermott, R. C. Statzman, A.J. Balkcum , and N. C. Luhmann “94-GHz 25-kW cw low-voltage harmonic gyrotron,” IEEE Trans. Plasma Sci., vol. 26, no. 3 (1998). [14] M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov, “Generation of 1.5-kw, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett., vol. 100, no. 1 (2008). [15] M. Yu. Glyavin, et al., “Experimental demonstration of the possibility to expand the band of smooth tuning of frequency generation in short-cavity gyrotrons,” Radiophysics and Quantum Electronics , vol.61, no.11 (2019). [16] X.B.Qi, C. H. Du, et al., “Terahertz broadband-tunable minigyrotron with a pulse magnet,” IEEE Trans. Electron Devices. vol. 64, no.2 (2017). [17] T.H.Chang, et al.,“Frequency tunable gyrotron using backward-wave components,”J. Appl. Phys. , vol. 105, no. 6 (2009). [18] Andrey Fokin, et al.,“High-power sub-terahertz source with a record frequency stability at up to 1Hz,” scientific reports. vol. 8 (2018). [19] M. Yu. Glyavin, et al., “Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media,” Rev. Sci. Instrum., vol 86, no.5(2015). [20] Melissa K. Hornstein, et al., “Second harmonic operation at 460 GHz and broadband continuous frequency tuning of a gyrotron oscillator,” IEEE Trans. Electron Devices. vol. 52, no.5 (2005). [21] Toshitaka Idehara, et al., “Gyrotron FU cw VII for 300 MHz and 600 MHz DNP-NMR spectroscopy,” J. Infrared, Millim., Terahertz Waves. vol 31, no.7 (2010). [22] Tao Song, et al., “Study on the effect of electron beam quality on a continuously frequency-tunable 250-GHz gyrotron,” IEEE Trans. Electron Devices. vol. 65, no.4 (2018). [23] A. L. Goldenberg, M.Yu.Glyavin, N. A. Zavolsky, and V.N.Manuilov , “Technological gyrotron with low accelerating voltage,” Radiophysics and Quantum Electronics , vol.48, no.10-11 (2005). [24] M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin,“Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz,” IEEE Trans. Plasma Sci., vol. 35, no. 1 (2007). [25] Sergey A. Kishko, et al.,“Low-voltage cyclotron resonance maser,” IEEE Trans. Plasma Sci., vol. 49, no. 9, pp. 2475–2479 (2013). [26] V. L. Bratman, et al., “Operation of a sub-terahertz CW gyrotron with an extremely low voltage,” Phys. Plasmas, vol. 24, no. 11 (2017). [27] V. L. Bratman, et al., “Smooth Wideband Frequency Tuning in Low-Voltage Gyrotron With Cathode-End Power Output,” IEEE Trans. Electron Devices. vol. 64, no.12 (2017). [28] W. He, et al., “Axis-encircling electron beam generation using a smooth magnetic cusp for gyrodevices,” Appl. Phys. Lett. 93, pp. 121 501-1–121 501-3 (2008). [29] V. N. Manuilov, S. V. Samsonov, S. V. Mishakin, A. V. Klimov, K. A. Leshcheva , “Cusp guns for helical-waveguide gyro-twts of a high-gain high-power w-band amplifier cascade,” J. Infrared, Millim., Terahertz Waves , vol.39, no.5, pp.447-455 (2018). [30] W.Lawson,“Design of low velocity‐spread cusp guns for axis encircling beams,” Appl. Phys. Lett., vol. 50, no. 21 (1987) [31] C. H. Du, X.B. Qi, B.L. Hao, T.H. Chang, and P.K. Liu, “Development of a magnetic cusp gun for tetrahertz harmonic gyrodevices,” IEEE Trans. Electron Devices, vol. 59, no. 12 (2012). [32] S. B. Harriet, D. B. McDermott, D. A. Gallagher, and N. C. Luhmann, Jr., “Cusp gun TE21 second harmonic Ka band gyro-TWT amplifier,” IEEE Trans. Plasma Sci., vol. 30, no. 3, pp. 909–914 (2002) [33] S. V. Samsonov, et al., “Ka-Band gyrotron traveling-wave tubes with the highest continuous-wave and average power,” IEEE Trans. Electron Devices. vol. 61, no.12 (2014). [34] W. He, C. R. Donaldson, L. Zhang, K. Ronald, A. D. R. Phelps, and A. W. Cross, “Broadband amplification of low-terahertz signals using axis-encircling electrons in a helically corrugated interaction region,” Phys. Rev. Lett., vol. 119, no. 24, p.184801 (2017). [35] C. R. Donaldson, et al., “A cusp electron gun for millimeter wave gyrodevices,” Appl. Phys. Lett., vol. 96, no. 14, p141501-1–141 501-3 (2010). [36] V.N. Manuilov, “Cusp guns for helical-waveguide Gyro-TWTs of a high-gain high-power w-band amplifier cascade,” J. Infrared, Millim., Terahertz Waves vol. 39, no. 5 (2018). [37] C. R. Donaldson, W. He, A. W. Cross, A. D. R. Phelps, F. Li, K. Ronald, C. W. Robertson, C. G. Whyte, and A. R. Young, “Design and numerical optimization of a cusp-gun-based electron beam for millimeter-wave gyro-devices,” IEEE Trans. Plasma Sci., vol. 37, no. 11, pp. 2153–2157, (2009). [38] L. Zhang, C. R. Donaldson, and W. He, “Optimization of a triode-type cusp electron gun for a W-band gyro-TWA,” Phys. Plasmas, vol. 25, no. 4, (2018). [39] T. Idehara, et al.,“A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet,” IEEE Trans. Plasma Sci., vol. 32, no. 3, pp. 903–909 (2004). [40] S. G. Jeon, C. W. Baik, D. H. Kim, G. S. Park, N. Sato, and K. Yokoo, “Study on velocity spread for axis-encircling electron beams generated by single magnetic cusp,” Appl. Phys. Lett., vol. 80, no. 20, pp. 3703–3705 (2002). [41] S. G. Jeon, C. W. Baik, D. H. Kim, G. S. Park, N. Sato, and K. Yokoo, “Experimental verification of low-velocity spread axis-encircling electron beam,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1994–1996 (2004). [42] C. Q. Jiao, J. R. Luo, “Linear theory of electron cyclotron maser based on TM circular waveguide mode,” Phys. Plasmas, vol. 13, no. 7, p.073104 (2006). [43] C. S. Kou and Fouries Tseng, “ Linear theory of gyrotron traveling wave tubes with nonuniform and lossy interaction structures,” Phys. Plasmas, vol. 5, no.6, p.2454 (1998). [44] C.S. Kou, “Starting oscillation conditions for gyrotron backward wave oscillators,” Phys. Plasmas, vol.1, no.9, p.3093 (1994). [45] Baird, J. Mark, and W.Lawson, “Magnetron injection gun (MIG) design for gyrotron applications,” Int. J.Electronics, vol. 61, no. 6, pp. 953-967 (1986). [46] Sh.E. Tsimring, “On the spread of velocities in helical electron beams,” Radiophysics and Quantum Electronics , vol.15,no.8, pp.952-961 (1972). [47] A. L.Gol’denberg, and M. I.Petelin , “The formation of helical electron beams in an adiabatic gun,” Radiophysics and Quantum Electronics , vol.16, no.1, pp.106-111 (1972). [48] Avdoshin, E. G., Nikolaev, L. V., Platonov, I. N., and Sh. E.Tsimring , “Experimental investigation of the velocity spread in helical electron beams,” Radio physics and Quantum Electronics 16, pp. 416-466 (1973). [49] Sh. E. Tsimring, “Gyrotron electron beams: velocity and energy spread and beam instabilities,” J. Infrared, Millim., Terahertz Waves 22, 1433 (2001). [50] Y. Yamaguchi et al., “Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron,” Phys. Plasmas, vol. 19, no. 11, p. 113113 (2012). [51] Sh. E. Tsimring, “Synthesis of systems for the formation of helical electron beams,” Radiophysics and Quantum Electronics, vol. 20, no. 10, pp. 1068-1076 (1977). [52] W. B. Herrmannsfeldt, “EGUN electron optics program”,Standford Linear Accelerator Center (1996).
|