帳號:guest(18.188.224.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張致豪
作者(外文):Chang, Chih-Hao
論文名稱(中文):釩、鈷、鋅、鈰摻雜在1T金屬相少層二硫化鉬的 製備、結構分析以及析氫反應之量測
論文名稱(外文):Preparation and Structural Analysis of V-, Co-, Zn-, and Ce-doped few-layer 1T-MoS2 for Hydrogen Evolution Reaction
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
口試委員(中文):張石麟
翁世璋
口試委員(外文):Chang, Shih-Lin
Weng, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022532
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:釩、鈷、鋅、鈰摻雜1T金屬相少層二硫化鉬析氫反應製備、結構分析
外文關鍵詞:Preparation and Structural AnalysisV-, Co-, Zn-, and Ce-dopedfew-layer 1T-MoS2Hydrogen Evolution Reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現階段對於單層或少層2H-MoS2催化已有了大量研究,用於催化電解水中的析氫反應(HER),從而實現可再生能源的產出作為燃料或是化學製品。然而,由於該相為半導體相,仍然存在1.9eV的直接能隙,雖然先前研究指出透過摻雜及少層可以增加邊緣活性位點及催化效率,但是若能有1T的金屬相,相信會有更好的催化效率。因此本論文主要以1T-MoS2的摻雜做研究,特別是對過渡金屬(TM)以及鑭系金屬的摻雜效應。製備主要為控制環境溫度在低溫中使用離子插層法,之後直接加入合適的金屬鹽類,產出摻雜之1T-MoS2。在經過UV-vis量測確認產物確實為金屬相之1T-MoS2。由Raman、AFM、HRTEM量測證明此種方式製備產物為1~2層二硫化鉬混和態,且摻雜後之二硫化鉬仍保有少層之二硫化鉬性質。再經過XANES、EXAFS的分析得知氧化價態及周圍環境,瞭解摻雜之金屬並無其金屬氧化物,且皆與硫鍵結在鉬正上方之高對稱點上。最後由HER之LSV圖分析顯示Co-MoS2為最好的催化產氫樣品,在-0.549V附近有起始電位(Onset overpotential),而且摻雜之1T-MoS2皆比單純剝離出的少層MoS2催化產氫效率好,應證摻雜可以提高催化產氫的效率。
Considerable research interest has been focused on the development of monolayer and few-layer 2H-MoS2 catalysts for hydrogen evolution reaction (HER) in catalytic hydrolysis of water that has important renewable energy applications. Previous researches have shown that both transition-metal doping and layer reduction can increase the number of edge-active sites and therefore enhance the catalytic activity of MoS2. Unlike the 2H-MoS2 which is a semiconductor with a direct energy gap of 1.9 eV, the metallic 1T-MoS2 has better catalytic activity for HER. In this research, we report a simple preparation method for transition-metal (TM) and lanthanide doping on 1T-MoS2. Using the ion intercalation method, a suspension of 1T-MoS2 was prepared and stored in low temperatures. Proper amount of metal salt was added in to form and precipitate the impurity-atom-doped 1T-MoS2. Finally, the powder sample was collected by centrifugation. The 1T- MoS2 phase of the sample is confirmed by UV-vis spectroscopy. Raman, AFM, and HRTEM measurements were employed to reveal that MoS2 in the samples are mostly around 1-2 layer thick. The XANES and EXAFS analyses were used to probe the valence state and the local environment of the dopant atoms. The catalytic activity for HER is estimated by LSV measurements using an electrochemical analyzer. In conclusion, the Co-doped MoS2 has the best activity for HER with an onset overpotential of -0.549V. The impurity-atom doping can effectively increase the catalytic activity for hydrogen evolution.
摘要 I
Abstract II
誌謝 III
章節目錄 IV
圖表目錄 VI
第一章 序論 1
1-1 研究動機 1
1-2 論文簡介 2
第二章 文獻回顧 3
2-1 二硫化鉬(MoS2)材料之介紹 3
2-2 單層之二硫化鉬(monolayer MoS2) 4
2-3 二硫化鉬之催化反應 5
2-4 單層或少層二硫化鉬製備方法 6
2-4-1機械剝離法 6
2-4-2液相剝離法 7
2-4-3化學氣相沉積法(CVD) 7
2-4-4離子插層法 7
第三章 實驗方法與原理 9
3-1紫外-可見光光譜(Ultraviolet-visible spectroscopy; UV-Vis spectroscopy) 9
3-2拉曼光譜(Raman spectroscopy) 10
3-3 掃描式原子探測顯微鏡(Atomic Force Microscope;AFM) 12
3-4 高解析度穿透式電子顯微鏡(High Resolution Transmission Electron Microscope;HRTEM) 13
3-5 X光吸收精密結構(X-ray absorption fine structure;XAFS) 15
3-6 電化學析氫反應(The electrochemical Hydrogen Evolution Reaction;HER) 22
第四章 樣品製備與實驗流程 24
4-1樣品製備 24
4-2實驗藥劑 25
4-3製備流程 26
4-4製備步驟 27
4-5樣品名稱代號 30
第五章 數據分析與討論 31
5-1紫外-可見光光譜分析(Ultraviolet-visible spectroscopy) 31
5-2拉曼光譜分析(Raman spectroscopy) 33
5-3掃描式原子探測顯微鏡分析(Atomic Force Microscope;AFM) 37
5-4高解析度穿透式電子顯微鏡分析(High Resolution Transmission Electron Microscope;HRTEM) 40
5-5X光吸收精密結構(X-ray absorption fine structure; XAFS) 42
5-3-1 X光吸收近邊緣結構(X-ray Absorption Near-Edge Structure; XANES) 42
5-3-2 延伸X光吸收精密結構(Extended X-ray Absorption Fine Structure; EXAFS) 44
5-6電化學析氫反應分析(The electrochemical Hydrogen Evolution Reaction;HER) 49
第六章 結果與討論 51
6-1 結論 51
6-2 未來發展 52
參考文獻 53
第一章
[1-1] Thomas H. M. Lau, Xiao Wei Lu, Jiří Kulhavý, Simson Wu, Lilin Lu, Tai-Sing Wu, Ryuichi Kato, John S. Foord, Yun-Liang Soo, Kazu Suenagad and Shik Chi Edman Tsang. Chemical Sciences. 9, 4769 (2018).
[1-2] Mark A. Lukowski, Andrew S. Daniel, Fei Meng, Audrey Forticaux, Linsen Li, Song Jin. Journal of the American Chemical Society. 135, 10274 (2013).

第二章
[2-1] Roger F. Sebenik, A. Richard Burkin, Robert R. Dorfler, John M. Laferty, Gerhard Leichtfried, Hartmut Meyer‐Grünow, Philip C. H. Mitchell, Mark S. Vukasovich, Douglas A. Church, Gary G. Van Riper, James C. Gilliland, Stanley A. Thielke. Molybdenum and Molybdenum Compounds. 23, 522 (2000).
[2-2] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, and Michael S. Strano, Nature Nanotechnology. 7, 699 (2012).
[2-3] Fernando Wypych, Robert Schöllhorn. Journal of the Chemical Society, Chemical Communications. 2, 1386 (1992).
[2-4] B. Schonfeld, J. J. Huangt, S. C. Moss. Acta Crystallographica Section B. 39, 404 (1983).
[2-5] Danyun Xu, Yuanzhi Zhu, Jiapeng Liu, Yang Li, Wenchao Peng, Guoliang Zhang, Fengbao Zhang, Xiaobin Fan. Nanotechnology. 27, 385604 (2016).
[2-6] Valeria Nicolosi, Manish Chhowalla, Mercouri G. Kanatzidis, Michael S. Strano, Jonathan N. Coleman. Science. 340, 1226419 (2013).
[2-7] Jakob Kibsgaard, Thomas F. Jaramillo, Flemming Besenbacher. Nature Chemistry. 6, 248 (2014).
[2-8] Berit Hinnemann, Poul Georg Moses, Jacob Bonde, Kristina P. Jørgensen, Jane H. Nielsen, Sebastian Horch, Ib Chorkendorff, Jens K. Nørskov. Journal of the American Chemical Society. 127, 15, 5308 (2005).
[2-9] Thomas F. Jaramillo, Kristina P. Jørgensen, Jacob Bonde, Jane H. Nielsen, Sebastian Horch, Ib Chorkendorff. Science. 317, 100 (2007).
[2-10] Damien Voiry, Maryam Salehi, Rafael Silva, Takeshi Fujita, Mingwei Chen, Tewodros Asefa, Vivek B. Shenoy, Goki Eda, Manish Chhowalla. Nano Letter. 13, 6222 (2013).
[2-11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Science. 306, 666 (2004).
[2-12] Kai‐Ge Zhou, Nan‐Nan Mao, Hang‐Xing Wang, Prof. Yong Peng, Prof. Hao‐Li Zhang. Angewandte Chemie International Edition. 50, 10839 (2011).
[2-13] Wu Zhou, Xiaolong Zou, Sina Najmaei, Zheng Liu, Yumeng Shi, Jing Kong, Jun Lou, Pulickel M. Ajayan, Boris I. Yakobson, Juan-Carlos Idrobo. Nano Letter. 13, 2615 (2013).
[2-14] X. Fan, P. Xu, D. Zhou, Y. Sun, Y.-C. Li, M.-A.-T. Nguyen, M. Terrones, and TE. Mallouk. Nano Letter. 15, 5956 (2015).

第三章
[3-1] Houghton, J.T. The Physics of Atmospheres 2nd ed. Chapter 2. Cambridge.
[3-2] Paul Kubelka, Franz Munk: Ein Beitrag zur Optik der Farbanstriche. In: Zeitschrift für technische Physik. 12, 593 (1931).
[3-3] Tauc J, Grigorovici R, Vancu A, Optical properties and electronic structure of amorphous germanium. physica status solidi. 15, 627 (1966).
[3-4] Lynch DW Palik ED (ed) Handbook of optical constants of solids, vol 1. Academic Press, London (1998).
[3-5] Rosendo López, Ricardo Gómez. Journal of Sol-Gel Science and Technology. 61, 1 (2012).
[3-6] E. Smith, and G. Dent, Modern Raman Spectroscopy–A Practical Approach, England: John Wiley & Sons Ltd (2005).
[3-7] K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and John M. Martinis. Review of Scientific Instruments. 75, 2726 (2004).
[3-8] Geisse, Nicholas A. Materials Today. 12, 40 (2009).
[3-9] Spence, C. H. John. Experimental high-resolution electron microscopy. New York: Oxford U. Press. (1980).
[3-10] John Wiley and Sons, Joseph E. Lester, in Analytical Chemistry. 60, 14684 (1988).
[3-11] Feng Duan, Jin Guojun. Introduction to Condensed Matter Physics: Volume 1 (2005).
[3-12] Daniel C. Harris. 分析 [第五版] 化學 Chemical Exploring Analysis [5E],歐亞書局 (2013).

第五章
[5-1] Goki Eda, Hisato Yamaguchi, Damien Voiry, Takeshi Fujita, Mingwei Chen, Manish Chhowalla. Nano Letter. 11, 5111 (2011).
[5-2] Changgu Lee, Hugen Yan, Louis, E. Brus, Tony F. Heinz, James Hone, Sunmin Ryu. ACS Nano. 4, 2695 (2010).
[5-3] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier Dominique Baillargeat. Advanced Functional Materials. 22, 1385 (2012).
[5-4] Chi-Yang Tsai , Shuian-Yin Lin, Hsieh-Chih Tsai. Polymers. 10, 238 (2018).
[5-5] Chandrasekar Perumal, Veeramalai, Fushan Li, Yang Liu, Zhongwei Xu, Tailiang Guo, Tae Whan Kim. Applied Surface Science. 389, 1017 (2016).
[5-6] P. Thanga Gomathi, Parikshit Sahatiya, Sushmee Badhulika. Advanced Functional Materials. 27, 1701611 (2017).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *