|
1. IG2 sputter ion gun operation manual. 2008. 2. Cambridge, U.o. DoITPoMS_Using Pure Copper. 2004-2018; Available from: https://www.doitpoms.ac.uk/tlplib/electromigration/alternatives.php. 3. Castell, M.R., Scanning tunneling microscopy of reconstructions on the SrTiO3 (001) surface. Surface Science, 2002. 505: p. 1-13. 4. Jiang, Q. and J. Zegenhagen, SrTiO3 (001)-c (6× 2): A long-range, atomically ordered surface stable in oxygen and ambient air. Surface science, 1996. 367(2): p. L42-L46. 5. Rizwan, M., et al., Structural, electronic and optical properties of copper-doped SrTiO3 perovskite: A DFT study. Physica B: Condensed Matter, 2019. 552: p. 52-57. 6. Song, C.-L., et al., Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Physical Review B, 2011. 84(2). 7. Group, C.S.S.C.R. Perovskite Structure and Derivatives. Available from: https://www.princeton.edu/~cavalab/tutorials/public/structures/perovskites.html. 8. González, M.S.M., et al., In situ reduction of (100) SrTiO3. Solid State Sciences, 2000. 2(5): p. 519-524. 9. Schooley, J.F., W.R. Hosler, and M.L. Cohen, Superconductivity in Semiconducting SrTiO3. Physical Review Letters, 1964. 12(17): p. 474-475. 10. Koonce, C.S., et al., Superconducting Transition Temperatures of Semiconducting SrTiO3. Physical Review, 1967. 163(2): p. 380-390. 11. Hsu, F.C., et al., Superconductivity in the PbO-type structure alpha-FeSe. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14262-4. 12. Ge, J.F., et al., Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat Mater, 2015. 14(3): p. 285-9. 13. Coh, S., M.L. Cohen, and S.G. Louie, Large electron–phonon interactions from FeSe phonons in a monolayer. New Journal of Physics, 2015. 17(7). 14. Kawasaki, M., et al., Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides. Applied surface science, 1996. 107: p. 102-106. 15. Kawasaki, M., et al., Atomic control of the SrTiO3 crystal surface. Science, 1994. 266(5190): p. 1540-1542. 16. Ikeda, A., et al., Surface relaxation and rumpling of TiO2-terminated SrTiO3 (001) determined by medium energy ion scattering. Surface science, 1999. 433: p. 520-524. 17. Naito, M. and H. Sato, Reflection high-energy electron diffraction study on the SrTiO3 surface structure. Physica C: Superconductivity, 1994. 229(1-2): p. 1-11. 18. Matsumoto, T., et al., STM-imaging of a SrTiO3 (100) surface with atomic-scale resolution. Surface Science Letters, 1992. 278(3): p. L153-L158. 19. Erdman, N. and L. Marks, SrTiO3 (001) surface structures under oxidizing conditions. Surface Science, 2003. 526(1-2): p. 107-114. 20. Castell, M.R., Nanostructures on the SrTiO3 (001) surface studied by STM. Surface Science, 2002. 516(1-2): p. 33-42. 21. Tanaka, H., et al., Interaction of oxygen vacancies with O2 on a reduced SrTiO3 (100)√ 5×√ 5-R26. 6° surface observed by STM. Surface science, 1994. 318(1-2): p. 29-38. 22. Kubo, T. and H. Nozoye, Surface structure of SrTiO3(100)-(square root of 5 x square root of 5) - R26.6 degrees. Phys Rev Lett, 2001. 86(9): p. 1801-4. 23. Bachelet, R., et al., Atomically flat SrO-terminated SrTiO3(001) substrate. Applied Physics Letters, 2009. 95(14). 24. Liang, Y. and D.A. Bonnell, Structures and chemistry of the annealed SrTiO3 (001) surface. Surface science, 1994. 310(1-3): p. 128-134. 25. Deak, D.S., et al., Ordering of TiO2-based nanostructures on SrTiO3 (001) surfaces. The Journal of Physical Chemistry B, 2006. 110(18): p. 9246-9251. 26. Paglione, J. and R.L. Greene, High-temperature superconductivity in iron-based materials. Nature Physics, 2010. 6(9): p. 645-658. 27. 吳茂昆, 高溫超導的鐵器時代 從 [銅基超導] 到 [鐵基超導]. 2015. 28. Wang, Q.-Y., et al., Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3. Chinese Physics Letters, 2012. 29(3). 29. Chen, M.X., et al., Effects of interface oxygen vacancies on electronic bands of FeSe/SrTiO3(001). Physical Review B, 2016. 94(24). 30. Ding, H., et al., High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO_{2}(001). Phys Rev Lett, 2016. 117(6): p. 067001. 31. Jandke, J., et al., Unconventional pairing in single FeSe layers. Physical Review B, 2019. 100(2). 32. Li, F., et al., Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Materials, 2016. 3(2). 33. Li, Z., et al., Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: a scanning tunneling microscopy study. J Phys Condens Matter, 2014. 26(26): p. 265002. 34. Tanaka, T., et al., Superconductivity of single unit cell FeSe/SrTiO3(001): Substrate-surface superstructure dependence. Physical Review B, 2018. 98(12). 35. Zhang, H., et al., Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat Commun, 2017. 8(1): p. 214. 36. Zhang, S., et al., Enhanced Superconducting State in FeSe/SrTiO_{3} by a Dynamic Interfacial Polaron Mechanism. Phys Rev Lett, 2019. 122(6): p. 066802. 37. Zhang, W.H., et al., Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films. Nano Lett, 2016. 16(3): p. 1969-73. 38. Huang, D., et al., Revealing the Empty-State Electronic Structure of Single-Unit-Cell FeSe/SrTiO3. Phys Rev Lett, 2015. 115(1): p. 017002. 39. 呂登復, 實用真空技術. 1996: 國興出版. 40. 伍秀菁, 真空技術與應用. 2001: 財團法人國家實驗研究院儀器科技研究中心. 41. Woodruff, D., D.P. Woodruff, and T.A. Delchar, Modern Techniques of Surface Science. 1994: Cambridge University Press. 42. 林卓穎, 單層之銦化銻與銦化鉍在鍺(111)與矽(111)晶面上的結構與成長模式之探討. 2018. 43. 陳筠婷, 二鍗化鈦與二硒化鈦於雙層石墨烯上的橫向應變異質接面. 2018. 44. Horcas, I., et al., WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum, 2007. 78(1): p. 013705. 45. Omicorn, EFM3Omicron_UserManual. 2008. 46. Chell, Miniature K-Cell Effusion Source operators handbook. 2008.
|