帳號:guest(3.133.134.92)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪子超
作者(外文):Hung, Zih-Chao
論文名稱(中文):以第一原理研究氮化鉬之超導及拓樸性質
論文名稱(外文):First principle research on Molybdenum Nitride superconducting and topological properties
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):鄭澄懋
林俊良
口試委員(外文):Cheng, Cheng-Maw
Lin, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022526
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:57
中文關鍵詞:第一原理密度泛函理論超導體超導相變溫度拓樸材料拓樸不變量
外文關鍵詞:first-principledensity-functional-thoerysuperconductorssuperconducting-transition-temperaturetopological-materialstopological-invariants
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在1911年,物理學家Heike Kamerlingh Onnes發現在4K的極低溫環境下,汞的電阻會降到零,也因為這個發現及低溫技術的應用,他獲得了1913年的諾貝爾物理獎。自此,物理學家展開了對超導材料的研究。
1957年John Bardeen、Leon Cooper、和John Robert Schrieffer三人提出了超導的微觀理論,解釋的常規超導體的超導現象,獲得了1972年的諾貝爾物理獎。
而到了2016年,諾貝爾物理獎頒給David James Thouless、Frederick Duncan Michael Haldane、和John Kosterlitz,因為他們三人在拓樸領域和拓樸相變理論的貢獻,打開了一扇通往新研究方向的大門。
此研究以密度泛函理論為基礎,運用VASP和Quantum Espresso,計算六角形晶格結構氮化鉬的電子與聲子能帶結構,以McMillan公式和Allen與Dynes修正的McMillan公式預測其超導溫度,並計算MoN的拓樸不變量Z2及拓樸表面態。
計算的結果顯示,MoN是超導相變溫度達到27K的BCS超導體,非平庸的Z2拓樸不變量說明它是個拓樸超導體。目前的實驗中所發現的拓樸超導體相變溫度均在10K以下,MoN相較之下展現了遠高於它們的相變溫度。
In 1911, physicist Heike Kamerlingh Onnes found the electric resistance of mercury would sharply drop to zero under the environment of 4K low temperature, and he was awarded by Nobel prize of physics. From then on, physicists started the research on the superconducting materials.
1957, John Bardeen, Leon Cooper, and John Robert Schrieffer proposed the superconductivity theory, explain the superconducting mechanism and get the Nobel prize of physics in 1972.
2016 Nobel prize of physics award David James Thouless, Frederich Duncan Michael Haldane, and John Kosterlitz for opening a new direction for research.
This study based on density functional theory, VASP and Quantum Espresso are used to estimate material properties of MoN and calculate its band structure of electron and phonon, predict its superconducting transition temperature by McMillan formula and Allen-Dynes modified McMillan formula, and calculate the topological invariant and surface state.
The result of this research shows MoN is a BCS superconductor with transition temperature 27K and non-trivial topological Z2 invariant indicate that it is a good candidate for topological superconductor.
For most of the topological superconductors have transition temperature lower than 10K, MoN shows a high transition temperature in comparison with topological superconductors found in experiments now.
1 Introduction 8
1.1 Topological materials, superconductors, and topological superconductors . . 8
1.1.1 Topological materials . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Topological superconductors . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Density functional theory (DFT) . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Hohenberg­Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Kohn­Sham ansatz and Kohn­Sham equation . . . . . . . . . . . . . 14
1.2.3 Exchange and correlation energy, Pseudo­potential approximation . . 17
1.3 Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Wannier functions and Z2 invariants . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Density functional perturbation theory (DFPT) . . . . . . . . . . . . . . . . 23
1.5.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Eliashberg theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Investigation of Molybdenum Nitride 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Computational detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Investigation of topological properties 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Computational detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Wannier function and Wilson loop . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Surface state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Investigation of superconductivity 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Computational detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Phonon structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Electron­phonon coupling and superconductivity . . . . . . . . . . . . . . . 47
4.4.1 Electron­phonon coupling . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2 Convergence test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 MoN rock­salt structure under pressure . . . . . . . . . . . . . . . . 53
5 Conclusion 54
6 Bibliography and References 54
[1] P. Hohenberg and W. Kohn, Phys. Rev. 136 B864 (1964)
[2] W. Kohn and L. J. Sham, Phys. Rev. 140 A1133 (1965)
[3] R. 0. Jones and O. Gunnarsson, RevModPhys.61.689 (1989)
[4] M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, J. D. Joannopouios, RevModPhys.
64.1045 (1992)
[5] Feliciano Giustino, RevModPhys.89.015003 (2017)
[6] W. L. McMillan, PhysRev.167.331 (1967)
[7] P. B. Allen, R. C. Dynes, PhysRevB.12.905 (1975)
[8] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi, RevMod-
Phys.73.515 (2001)
[9] J. Bardeen, L. N. Cooper, and J. R. Schriepper, PhysRev.106.162 (1957)
[10] J. Bardeen, L. N. Cooper, and J. R. Schriepper, PhysRev.108.1175 (1957)
[11] Leon N. Cooper, PhysRev.104.1189 (1956)
[12] G. Kresse and J. Hafner, Phys. Rev. B 47 , 558 (1993); ibid. 49 , 14 251 (1994)
[13] G. Kresse and J. Furthmuller, Comput. Mat. Sci. 6 , 15 (1996)
[14] G. Kresse and J. Furthmuller, Phys. Rev. B 54 , 11 169 (1996)
[15] G. Kresse and D. Joubert, Phys. Rev. 59 , 1758 (1999)
[16] Paolo Giannozzi etal., J. Phys.: Condens. Matter 21 (2009)
[17] Paolo Giannozzi etal., J. Phys.: Condens. Matter 29 (2017)
[18] G. B.Bachelet, D. R. Hamann, and M. Schliiter, PhysRevB.26.4199 (1982)
[19] David Vanderbilt, PhysRevB.41.7892 (1990)
[20] Xinjie Wang, Jonathan R. Yates, Ivo Souza, and David Vanderbilt, PhysRevB.74.195118
(2006)
[21] L. E. Toth, C. P. Wang, and C. M. Yen, ACTA METALLURGICA, VOL. 14, NOVEM-
BER (1966)
[22] G. Vaitheeswaran, V. Kanchana, and M. Rajagopalan, Solid State Communications 124
(2002)
[23] Bahadir Altintas, Physica C 487 (2013)
[24] B. T. Matthias and J. K. Hulm, PhysRev.87.799 (1952)
[25] E. I. Isaev, R. Ahuja, S. I. Simak, A. I. Lichtenstein, Yu. Kh. Vekilov, B. Johansson, and
I. A. Abrikosov, PHYSICAL REVIEW B 72, 064515 (2005)
[26] Shoji Yamanaka, Ken-ichi Hotehama, and Hitoshi Kawaji, Nature | VOL 392 | 9 APRIL
(1998)
[27] D.A. Papaconstantopoulos, W.E. Pickett, B.M. Klein and L.L. Boyer, Nature VOL.308
5 APRIL (1984)
[28] W. E. Pickett, B. M. Klein, and D. A. Papaconstantopoulos, Physica 107B (1981)
[29] Wahyu Setyawan and Stefano Curtarolo, Computational Materials Science 49 (2010)
[30] A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, N. Marzari,
Comput. Phys. Commun. 185, 2309 (2014)
[31] Wang, S. et al. The Hardest Superconducting Metal Nitride. Sci. Rep. 5, 13733 (2015)
[32] N. P. Armitage, E. J. Mele, Ashvin Vishwanath, RevModPhys.90.015001 (2018)
[33] M. Z. Hasan and C. L. Kane, RevModPhys.82.3045 (2010)
[34] Xiao-Liang Qi, Shou-Cheng Zhang, RevModPhys.83.1057 (2011)
[35] Liang Fu, C. L. Kane, and E. J. Mele, PhysRevLett.98.106803 (2007)
[36] Liang Fu and C. L. Kane, PhysRevB.76.045302 (2007)
[37] M. G. Lopez, David Vanderbilt, T. Thonhauser, and Ivo Souza, PhysRevB.85.014435
(2012)
[38] Jonathan R. Yates, Xinjie Wang, David Vanderbilt, and Ivo Souza, PhysRevB.75.195121
(2007)
[39] Xinjie Wang, Jonathan R. Yates, Ivo Souza, and David Vanderbilt, PhysRevB.74.195118
(2006)
[40] Rui Yu, Xiao Liang Qi, Andrei Bernevig, Zhong Fang, and Xi Dai, PhysRevB.84.075119
(2011)
[41] Masatoshi Sato and Yoichi Ando, Rep. Prog. Phys. 80 076501 (2017)
[42] 余睿, 方忠, 戴希, Z2拓扑不变量与拓扑绝缘体 (2017)
[43] E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov, M. I. Katsnelson, A.
I. Lichtenstein, and B. Johansson, J. Appl. Phys. 101, 123519 (2007)
[44] M. P. Lopez Sancho, J. M. Lopez Sancho and J. Rubio, I. Phys. F: Met. Phys. 15 (1985)
[45] Richard M. Martin, Electronic Structure, (2004), Cambridge
[46] Neil W. Ashcroft and N. David Mermin, (1976), Solid State Physics, Cengage Learning
[47] Charles Kittel (2004) Introduction to Solid State Physics, Wiley
[48] Michael P. Marder, (2015), Condensed Matter Physics, Wiley
[49] Eva Pavarini, Erik Koch, and Ulrich Schollwöck, (2013), Emergent Phenomena in Cor-
related Matter, Forschungszentrum Jülich GmbH Institute for Advanced Simulation
[50] P. N. Butcher, Yu Lu, (1995), Superconductivity: from Basic Physics to the Latest De-
velopments, World Scientific Publishing Co Pte Ltd
[51] Nikolai Kopnin, (2001), Theory of Nonequilibrium Superconductivity, Oxford Science
Publications
[52] Charles P. Poole Jr., Horacio A. Farach, Richard J. Creswick, (1995), Superconductivity,
Academic Press
[53] Louis Toth, (2014), Transition Metal Carbides and Nitrides, Elsevier
[54] B. A. Bernevig and T. L. Hughes, (2013), Topological Insulators and Topological super-
conductors, Princeton University Press
[55] Philippe Mangin and Rémi Kahn, (2017), Superconductivity, Springer
[56] 張泰榕。「新穎材料的電子結構」。博士論文,國立清華大學物理系,2013。
https://hdl.handle.net/11296/dkxgrn。
[57] 洪 聖 雄。 「層 狀 金 屬 氧 化 物 能 帶 與 其 磁 性 結 構 和 鑭 系 六 硼 化 物 的 拓 樸 相
變」。 碩 士 論 文, 國 立 清 華 大 學 物 理 系, 2015。 https:// hdl.handle.net/
11296/49vreq。
[58] 陳錦軒。「高壓氫化物的電聲子超導之研究」。碩士論文,國立清華大學物理學
系,2018。https://hdl.handle.net/11296/53qreq。
[59] 郭晉伸。「新穎的狄拉克半金屬」。碩士論文,國立清華大學物理學系,2017。
https://hdl.handle.net/11296/27nhtb。
[60] 王子政。「第一原理研究非共線的反鐵磁體Mn3X (X=Rh, Ir, Pt, Ga, Ge, Sn)
中的異常霍爾效應及軌道磁化強度」。碩士論文,國立臺灣大學物理學研究所,
2017。https://hdl.handle.net/11296/bnq8tq。
[61] 黃鴻隆。「第一原理理論計算研究霍伊斯勒合金與多鐵氧化物之物理特性」。
博士論文,國立臺灣大學物理研究所,2015。https://hdl.handle.net/11296/
g98vc5。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *