帳號:guest(3.145.86.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂鈞恩
作者(外文):Lu, Chun-En
論文名稱(中文):物種與跨物種間交互作用對資源-獵物-掠食者系統圖案形成的影響
論文名稱(外文):Pattern Formation of Interacting Species in Resource-Prey-Predator System
指導教授(中文):吳國安
指導教授(外文):Wu, Kuo-An
口試委員(中文):羅健榮
羅中泉
口試委員(外文):Lo, Chien-Jung
Lo, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022524
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:63
中文關鍵詞:圖案形成跨物種獵物掠食者交互作用
外文關鍵詞:preypredatorinteractingspeciesself/crossdiffusion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:234
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
運用反應擴散方程式來研究自然界中的圖案形成已經有數十年了,而獵物--掠食者的雙物種系統在生態系中是很常見且基礎的架構。然而,在許多文獻中所使用的擴散項往往不是過於簡單,不然就是缺乏生物/物理上的詮釋。因此,我們透由考慮物種之間的交互作用,提出一個合理且全面的擴散項以建立一個符合實際生態系統的獵物--掠食者模型。此外,我們也會探討物種之間的交互作用對於圖案形成的影響。
在自然界中,獵物所需要的資源並不是永遠都充足的。資源在空間上的分布會隨著被獵物消耗的多寡而有所起伏。因此,資源在空間上的分布應該被考慮,所以我們將資源當作第三個物種加到模型中。我們將會研究資源在空間有密度變化對於圖案形成的影響,也會跟雙物種模型做比較,研究差異的來源。
Reaction-diffusion equations have been used to study the pattern formation in nature for decades. The two-species prey-predator system is the most common and basic example in ecosystems. However, the diffusion terms many studies adopt either are too simple or lack biological/physical interpretations. Hence, we propose a more comprehensive and reasonable self/cross diffusion term derived by considering inter/intra-species interactions in order to build a more realistic prey-predator model. Moreover, the influence of the inter/intra-species interactions on pattern formation is studied as well.

In nature, the resources are not always sufficient for prey. Resources will vary in space due to the consumption of prey. Therefore, the influence of the variation of resources should be taken in to consideration, and resources are added into our model as the third species. The influence of the variation of resources on pattern formation is studied, and we compare this three-species model to the two-species prey-predator model to see the effect due to resources variation.
Contents ii
List of Figures vi
1 Introduction 1
2 Two-Species Model: Prey-Predator System 3
2.1 Reaction-Di usion Equation of Prey-Predator System . . . . . . . . 3
2.1.1 Modi ed Di usion Terms . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Formation of Turing Pattern . . . . . . . . . . . . . . . . . . 6
2.2 Model I: Holling Type II Functional Response . . . . . . . . . . . . 9
2.2.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 E ect of Intraspecies Interactions . . . . . . . . . . . . . . . 15
2.2.4 E ect of Interspecies Interactions . . . . . . . . . . . . . . . 19
2.2.5 Turing Space . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Model II: Modi ed Holling Type II Functional Response . . . . . . 32
2.3.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . 33
2.3.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.4 Di erence between Model I and Model II . . . . . . . . . . . 41
3 Three-Species Model: Resource-Prey-Predator System 45
3.1 Model: Modi ed Holling Type II Functional Response with Three
Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 E ect of the Di usion Length of Resources . . . . . . . . . . 51
3.2 Comparison to the Two-Species Model . . . . . . . . . . . . . . . . 55
3.2.1 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . 57
4 Conclusion 60
Reference 62
[1] P. Wheeler, and D. Barkley, SIMA J. Appl. Dyn. Sys. 5, 157-177(2006).
[2] M. C. Boerlijst, M. E. Lamers, and P Hogeweg, Proc. R. Soc. Lond. B 253, 15-18(1993).
[3] L. S. Luckinbill, Ecology 54, 1320-1327(1973).
[4] G.Q. Sun, G. Zhang, Z. Jin, L. Li, Nonlinear Dyn. 58, 75-84(2009).
[5] S. Ghorai, S. Poria, Chaos. Solit. Fract. 91, 421-429(2016).
[6] D. Jana, N. Bairagi, Ecol. Complex. 17, 131-139(2014).
[7] S. C. Holling, Can. Entomol. 91, 385-398(1959).
[8] E. O. Budrene, and H. C. Berg, Nature 349, 630-633(1999).
[9] S. Sick, S. Reinker, J. Timmer, and T. Schlake, Science 314, 1447-1450(2006).
[10] J. L. Maron, and S. Harrison, Science 278, 1619-1621(1997).
[11] M. Matsushita, J. Wakita, H. Itoh, K. Watanabe, T. Arai, T. Matsuyama,
H. Sakaguchi, and M. Mimura, Physica A 274, 190-199(1999).
[12] J. van de Koppel, and C. M. Crain, Am. Nat. 168, E136-E147(2006).
[13] J. B. A. Green, and J. Sharpe, Dev. 142, 1203-1211(2015).
[14] H. Meinhardt, and A. Gierer, Bioessay 22, 753-760(2000).
[15] S. Kondo, and T. Miura, Science 329, 1616-1620(2010).
[16] C. A. Klausmeier, Science 284, 1826-1828(1999).
[17] M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. HilleRisLambers, J. van de Koppel, L. Kumar, H. H. T. Prins, and A. M. de Roos, Am. Nat. 160,
524-530(2002).
[18] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron, Phys. Rev. Lett. 93, 098105(2004).
[19] X. C. Zhang, G. Q. Sun, and Z. Jin, Phys. Rev. E 85, 021924(2012).
[20] G. Q. Sun, Z. Jin, L. Li, and B. L. Li, Nonlinear Dyn. 60, 265-275(2010).
[21] S. Nagano, and Y. Maeda, Phys. Rev. E 85, 011915(2012).
[22] D. Alonso, F. Bartumeus, and J. Catalan, Ecology 83, 28-34(2002).
[23] W. Wang, Q. X. Liu, and Z. Jin, Phys. Rev. E 75, 051903(2007).
[24] B. Dubey, B. Das, and J. Hussain, Ecol. Model. 141, 67-76(2001).
[25] G. Q. Sun, Z. Jin, Q. X. Liu, and L. Li, Chin. Phys. B 17, 3936-3941(2008).
[26] G. Q. Sun, Z. Jin, L. Li, M. Haque, and B. L. Li, Nonlinear Dyn. 69, 1631-
1638(2012).
[27] E. P. Zemskov, V. K. Vanag, and I. R. Epstein, Phys. Rev. E 84,
036216(2011).
[28] N. Kumar, and W. Horsthemke, Phys. Rev E 83, 036105(2011).
[29] L. Zhang, Abstr. Appl. Anal. 2014, 130851(2014).
[30] D. O. Maionchi, S. F. dos Reis, and M. A. M. de Aguiar, Ecol. Model. 191, 291-303(2006).
[31] H. Malchow, Proc. R. Soc. Lond. B 251, 103-109(1993).
[32] S. Savel'ev, F. Marchesoni, and F. Nori, Phys. Rev. Lett. 91, 010601(2003).
[33] M. Rietkerk, and J. van de Koppel, Trends Ecol. Evol. 23, 169-175(2008).
[34] M. Cross, and H. Greenside, Pattern formation and dynamics in nonequilibrium systems, (Cambridge University Press, Cambridge, England, 2009).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *