|
1. Wu, M.-K., et al., Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical review letters, 1987. 58(9): p. 908. 2. Hsu, F.-C., et al., Superconductivity in the PbO-type structure α-FeSe. Proceedings of the National Academy of Sciences, 2008. 105(38): p. 14262-14264. 3. McQueen, T.M., et al., Extreme sensitivity of superconductivity to stoichiometry in Fe 1+ δ Se. Physical Review B, 2009. 79(1): p. 014522. 4. Song, C.-L., et al., Direct observation of nodes and twofold symmetry in FeSe superconductor. Science, 2011. 332(6036): p. 1410-1413. 5. Song, C.-L., et al., Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Physical Review B, 2011. 84(2): p. 020503. 6. Liu, D., et al., Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature communications, 2012. 3: p. 931. 7. Qing-Yan, W., et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chinese Physics Letters, 2012. 29(3): p. 037402. 8. He, S., et al., Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature materials, 2013. 12(7): p. 605. 9. Tan, S., et al., Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO 3 thin films. Nature materials, 2013. 12(7): p. 634. 10. He, J., et al., Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films. Proceedings of the National Academy of Sciences, 2014. 111(52): p. 18501-18506. 11. Lee, J., et al., Interfacial mode coupling as the origin of the enhancement of T c in FeSe films on SrTiO 3. Nature, 2014. 515(7526): p. 245. 12. Peng, R., et al., Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb: SrTiO 3/KTaO 3 heterostructures using photoemission spectroscopy. Physical review letters, 2014. 112(10): p. 107001. 13. Sun, Y., et al., High temperature superconducting FeSe films on SrTiO 3 substrates. Scientific reports, 2014. 4: p. 6040. 14. Wen-Hao, Z., et al., Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chinese Physics Letters, 2014. 31(1): p. 017401. 15. Zhang, W., et al., Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO 3 substrates. Physical Review B, 2014. 89(6): p. 060506. 16. Ge, J.-F., et al., Superconductivity above 100 K in single-layer FeSe films on doped SrTiO 3. Nature materials, 2015. 14(3): p. 285. 17. Li, F., et al., Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e 1− x S e x films on SrTi O 3. Physical Review B, 2015. 91(22): p. 220503. 18. Zhang, Z., et al., Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO 3 substrate. Science bulletin, 2015. 60(14): p. 1301-1304. 19. Zhou, G., et al., Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO3 (110). Applied Physics Letters, 2016. 108(20): p. 202603. 20. Li, W., et al., Stripes developed at the strong limit of nematicity in FeSe film. Nature Physics, 2017. 13(10): p. 957. 21. Jia, T., et al., Epitaxial growth of TiSe2/TiO2 heterostructure. 2D Materials, 2018. 6(1): p. 011008. 22. Huang, D., et al., Revealing the empty-state electronic structure of single-unit-cell FeSe/SrTiO 3. Physical review letters, 2015. 115(1): p. 017002. 23. Margadonna, S., et al., Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (T c= 37 K). Physical Review B, 2009. 80(6): p. 064506. 24. Bang, J., et al., Atomic and electronic structures of single-layer FeSe on SrTiO 3 (001): The role of oxygen deficiency. Physical Review B, 2013. 87(22): p. 220503. 25. Li, Z., et al., Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study. Journal of Physics: Condensed Matter, 2014. 26(26): p. 265002. 26. Siegrist, T., et al., Disorder-induced localization in crystalline phase-change materials. Nature materials, 2011. 10(3): p. 202. 27. F, G., Acta Chem. Scand. (1947–1973), 1968. 22: p. 1219. 28. Brune, H., et al., Self-organized growth of nanostructure arrays on strain-relief patterns. Nature, 1998. 394(6692): p. 451. 29. Tanaka, T., et al., Superconductivity of single unit cell FeSe/SrTiO 3 (001): Substrate-surface superstructure dependence. Physical Review B, 2018. 98(12): p. 121410. 30. Li, F., et al., Atomically resolved FeSe/SrTiO3 (001) interface structure by scanning transmission electron microscopy. 2D Materials, 2016. 3(2): p. 024002. 31. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275. 32. Radisavljevic, B., et al., Single-layer MoS 2 transistors. Nature nanotechnology, 2011. 6(3): p. 147. 33. Diebold, U., The surface science of titanium dioxide. Surface science reports, 2003. 48(5-8): p. 53-229. 34. Matsumoto, T., et al., STM-imaging of a SrTiO3 (100) surface with atomic-scale resolution. Surface Science Letters, 1992. 278(3): p. L153-L158. 35. Szot, K. and W. Speier, Surfaces of reduced and oxidized SrTiO 3 from atomic force microscopy. Physical Review B, 1999. 60(8): p. 5909. 36. Castell, M.R., Nanostructures on the SrTiO3 (001) surface studied by STM. Surface Science, 2002. 516(1-2): p. 33-42. 37. Castell, M.R., Scanning tunneling microscopy of reconstructions on the SrTiO3 (001) surface. Surface Science, 2002. 505: p. 1-13. 38. Bachelet, R., et al., Atomically flat SrO-terminated SrTiO 3 (001) substrate. Applied Physics Letters, 2009. 95(14): p. 141915. 39. Marshall, M.S., et al., Atomic and electronic surface structures of dopants in oxides: STM and XPS of Nb-and La-doped SrTiO 3 (001). Physical Review B, 2011. 83(3): p. 035410. 40. Marshall, M.S., et al., Structure and composition of linear TiO x nanostructures on SrTiO 3 (001). Physical Review B, 2012. 86(12): p. 125416. 41. Sitaputra, W., et al., Oxygen vacancies on SrO-terminated SrTi O 3 (001) surfaces studied by scanning tunneling spectroscopy. Physical Review B, 2015. 91(20): p. 205408. 42. Finklea, H.O., Titanium dioxide (TiO 2) and strontium titanate (SrTiO 3). Chapter 2, in Semiconductor electrodes. 1988. 43. Koster, G., et al., Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Applied Physics Letters, 1998. 73(20): p. 2920-2922. 44. Song, C.-L., et al., Suppression of superconductivity by twin boundaries in FeSe. Physical review letters, 2012. 109(13): p. 137004. 45. Kuznetsov, M., et al., Characterization of 1T-TiSe2 surface by means of STM and XPD experiments and model calculations. Surface Science, 2012. 606(23-24): p. 1760-1770. |