帳號:guest(18.226.150.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳玟秀
作者(外文):Wu, Wen-Hsiu
論文名稱(中文):仿生科學自造:探究式實驗學習環境設計之研究
論文名稱(外文):Self-Maker of Biomimetic Science: A Study of Design on Inquiry-Based Experimental Learning Environment
指導教授(中文):戴明鳳
廖冠智
指導教授(外文):Tai, Ming-Fong
Liao, Guan-Ze
口試委員(中文):劉奕帆
陳聖智
口試委員(外文):Liu, Yi-Fan
Chen, Sheng-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022520
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:147
中文關鍵詞:仿生科學學習環境系統使用性量表使用者滿意度問卷自主學習
外文關鍵詞:Biomimetic ScienceLearning EnvironmenSUSQUISSelf-Learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
跨領域學習是未來的必備素養,仿生科學學習透過應用生物背後原理,實際產出實體的過程,過程中涉及機械、程式、生物、實作等面向,有助於學生發展跨領域知識與技能。目前網站與平台不乏仿生科學相關資料,但內容並未整合成完整教學內容,不易初學者學習,因此有需要發展整合性學習環境,包含不同科際面向的學習內容、不同科際間參照與對應的課程架構、以及不同素材形式的媒體工具。
基於上述原因,旨在建立探究式實驗學習環境,透過由淺入深的仿生手實作主題與橫跨不同仿生領域的課程結構,以引導使用者進行仿生科學自造,循序漸進理解仿生知識與技能。本研究以高中生為目標使用者,以Unity進行學習環境開發,邀請16位高中生進行系統使用性量表(SUS)與使用者滿意度問卷(QUIS)兩量表,與其中4位進行訪談,作為後續系統使用性的修改。
本研究作為探究式實驗學習環境雛形初探,完成程式教學、程式任務、測試模擬、仿生課程的四學習介面設計與仿生機械實體教具,與部分吸管手、仿生機械手、真手手套仿生課程主題內容,以進行初步系統檢驗。檢驗結果中,使用者對系統持正向態度,解說功能有助於在不同介面間跳轉,但當課程複雜度增加時,使用者反映需要有更詳細的指引與解說。其中本研究之學習內容尚未經過效度檢測,無法排除學習內容對使用性的干擾,因此下一階段研究會朝向建立完整詳細的指引機制,並邀請專家發展適切的仿生科學課程內容,並評量教學系統之學習成效。
Interdisciplinary learning is demanded literacy in the near future. Biomimetic science, as a topic to help learners construct knowledge structure for integrating biological, programming, mechanical learning in one, and demonstrate abstract concepts with realistic objects. Nowadays the information and tutorials of biomimetic science are distributed over different platforms without integration. Thus, it’s necessary to develop the learning environment which support multimedia, integrate learning content and map the clear relations of different disciplines.
As the reasons mentioned above, in the study the experimental learning environment which guide high school students to learn the biomimetic science lessons by themselves was built. After completion the prototype system, 16 high school students were invited to test the prototype of this learning environment with SUS and QUIS, and 4 students among them were interviewed after using.
This study completed interfaces, digital teaching material kits and partly teaching lessons. The result of usability found the users have positive attitude toward connecting different disciplines in leaning one topic, and the guidance of system are quite clear and accessible. However, when the curriculum is getting complex, guidance is not enough to support learners transfer among these interfaces. As the preliminary study on inquiry-based experimental learning environment, this study can’t avoid the intervention from the learning content without validated by expert. Therefore, the future research will work toward more detailed guidance, invite experts to validate, and assess learning outcome.
中文摘要 i
英文摘要 ii
致謝詞 iii
圖表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究架構 5
1.4 研究限制與範圍 6
第二章 文獻探討 7
2.1 自主學習相關研究 8
2.1.1自主學習概述 8
2.1.2自主學習的設計方法 9
2.2 仿生科學與相關研究 14
2.2.1仿生科學概述 14
2.2.2仿生科學教學案例 16
2.3 跨領域學習 19
2.3.1跨領域學習概述 19
2.3.2跨領域學習內容的設計方法 21
2.3.3數位仿生手的K-12跨領域課程 28
2.4 模擬式教材 36
2.4.1模擬式教材之定義 36
2.4.2模擬式教材之設計 38
2.4.3模擬式教材之案例 40
2.4.4 模擬介面多媒體設計基本原則 43
2.5 使用性評估 45
2.5.1 使用性定義 45
2.5.2 使用性特性與評估方法 45
2.5.3 系統使用性量表 48
2.5.4 使用者滿意度量表 49
第三章 研究方法 50
3.1 研究流程 50
3.1.1階段一:文獻探討 52
3.1.2階段二:規劃仿生科學課程 53
3.1.3階段三:建置仿生科學雛形系統 54
3.1.4階段四:準備評估與施測工具 55
3.1.5階段五:計測與評估實驗資料蒐集 55
3.1.6階段六:資料分析與論文撰寫 55
3.2研究情境 56
3.3研究對象 57
3.4研究工具 58
3.4.1 學生問卷 59
3.4.2學生訪談 60
3.5資料分析方式 61
3.5.1量化分析方式 61
3.5.2文字資料分析方式 62
第四章 探究式實驗學習環境之系統設計 64
4.1課程架構與學習流程 65
4.1.1介面課程 69
4.1.2匯出任務紀錄 70
4.2環境介面與功能 71
4.2.1主介面 72
4.2.2 程式課程介面 74
4.2.3 程式任務介面 76
4.2.4 仿生課程介面 78
4.2.5 測試模擬介面 80
4.3教學內容設計 82
4.3.1程式課程內容 84
4.3.2程式任務內容 84
4.3.3 仿生知識課程內容 96
4.3.4 測試模擬內容 97
第五章 數位教學環境設計實驗結果 98
5.1系統使用性量表(SUS)結果 98
5.1.1 量化資料結果 98
5.2系統使用者滿意度(QUIS)結果 101
5.2.1 量化資料結果 101
5.3系統使用者質性回饋結果 104
5.3.1系統介面設計感受 105
5.3.2操作系統的態度 107
5.3.3 對系統介面架構的態度 108
5.3.4 其他改善建議 112
5.4 小結 114
第六章 結論與建議 115
6.1研究結論 115
6.1.1 探究式實驗學習環境之介面成果 116
6.1.2不同科際間參照與對應的課程架構 117
6.1.3整合仿生科學不同科際面向的學習內容 117
6.1.4系統使用性改善建議 118
6.2 未來研究 121
6.2.1教學內容專家效度檢驗,發展適切仿生科學課程 121
6.2.2根據初步的系統使用性分析,調整系統功能與設計 122
6.2.3建置後台資料庫系統 123
6.2.4評量教學系統之學習成效 123
6.2.5提出開放式系統,協助教學者發展仿生科學教案 124
參考文獻(英文部分) 125
參考文獻(中文部分) 132
參考文獻(英文網路資料) 133
參考文獻(中文網路資料) 135
附錄 136
附錄一:目標使用者可用性測試問卷 136
附錄二:目標使用者可用性測試訪談大綱 139
附錄三:目標使用者問題1回饋原始資料編碼表 140
附錄四:目標使用者問題2回饋原始資料編碼表 141
附錄五:目標使用者問題3回饋原始資料編碼表 142
附錄六:目標使用者訪談原始資料編碼 143
附錄七:目標使用者資料分析編碼表 146
Abelson, H., Sussman, G.J. (1996). Structure and Interpretation of Computer Programs, 2nd edition. Series MIT Electrical Engineering and Computer Science.
Abelsson, A. (2017). Learning through simulation. Disaster and Emergency Medicine Journal, 2(3), 125-128.
Abrahams, P. (2016), How the Body Works: A Comprehensive Illustrated Encyclopedia of Anatomy, Sterling Children's Books, New York.
Arapakis, I., Jose, J. M., & Gray, P. D. (2008). Affective feedback: an investigation into the role of emotions in the information seeking process. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 395-402). ACM.
Bandyopadhyay, P. R., & Hellum, A. M. (2014). Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms. Scientific reports, 4, 6650-6659.
Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: the open source electronics prototyping platform. Maker Media, Inc..
Bedny, G. Z., & Harris, S. R. (2005). The systemic-structural theory of activity: Applications to the study of human work. Mind, culture, and Activity, 12(2), 128-147.
Bedny, G. Z., & Karwowski, W. (2004). Activity theory as a basis for the study of work. Ergonomics, 47(2), 134-153.
Bilgin, M. (2009). Developing a cognitive flexibility scale: Validity and reliability studies. Social Behavior and Personality: an international journal, 37(3), 343-353.
Bock, A., Cartwright, K. B., Gonzalez, C., O’Brien, S., Robinson, M. F., Schmerold, K., & Pasnak, R. (2015). The role of cognitive flexibility in pattern understanding. Journal of Education and Human Development, 4(1), 19-25.
Boekaerts, M. (2002). Bringing about change in the classroom: Strengths and weaknesses of the self-regulated learning approach—EARLI Presidential Address, 2001. Learning and instruction, 12(6), 589-604.
Boekaerts, M., & Corno, L. (2005). Self‐regulation in the classroom: A perspective on assessment and intervention. Applied Psychology, 54(2), 199-231.
Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
Chin, J. P., Diehl, V. A., & Norman, K. L. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. Proceedings of SIGCHI, 88, pp. 213-218, New York: ACM.
De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of educational research, 68(2), 179-201.
Du Boulay, B. (1989). Some difficulties of learning to program. Studying the Novice Programmer, London, Lawrence Erlbaum Associates, 283–299.
Duchastel, P. (1994). Learning environment design. Journal of Educational Technology Systems, 22(3), 225-233.
Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. Acm sigcse bulletin, 35(1), 307-311.
Fox, E. L., Bowers, R. W, and Foss, M. L. (1993). The Physiological Basis for Exercise and Sport (5th ed.). Dubuque, IA: Wm. C. Brown.
Garvey, P., Liddil, J., Eley, S., & Winfield, S. (2016). Trauma tactics: Rethinking trauma education for professional nurses. Journal of Trauma Nursing, 23(4), 210-214.
Gershlak, J. R., Hernandez, S., Fontana, G., Perreault, L. R., Hansen, K. J., Larson, S. A., & Rolle, M. W. (2017). Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials, 125, 13-22.
Govender, I. (2006). Learning to Program, Learning to Teach Programming: Pre- and In-service Teachers’ Experiences of an Object-oriented Language. University of South Africa.
Hales, T. C. (2001). The honeycomb conjecture. Discrete & Computational Geometry, 25(1), 1-22.
International Technology Education Association (ITEA). (2000, 2003). Standards for technological literacy: Content for the study of technology.
Jacobs, H. H. (1989). Interdisciplinary curriculum: Design and implementation. Association for Supervision and Curriculum Development, 1250 N. Pitt Street, Alexandria, VA 22314.
Juarez-Guerrero, J., Munoz-Gutiérrez, S., & Cuevas, W. M. (1998). Design of a walking machine structure using evolutionary strategies. In SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218) (Vol. 2, pp. 1427-1432). IEEE.
Kato, I., & Sadamoto, K. (1987). Mechanical hands illustrated, Springer, United States.
Kato, Y. (2010). Splish: a visual programming environment for Arduino to accelerate physical computing experiences. In 2010 Eighth International Conference on Creating, Connecting and Collaborating through Computing (pp. 3-10). IEEE.
Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational technology research and development, 56(2), 203-228.
Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers (Vol. 2, No. 2, p. 135). New York: Association Press.
Lopatovska, I. (2009). Emotional aspects of the online information retrieval process (Doctoral dissertation, Rutgers University-Graduate School-New Brunswick).
Mannila (2006)What about a simple language? Analyzing the difficulties in learning to program, Computer Science Education, Volume 16, Issue 3: Koli Calling 2005 Conference.
Mayer, R., & Mayer, R. E. (Eds.). (2005). The Cambridge handbook of multimedia learning. Cambridge university press.
Meyer, J. A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., & Berthoz, A. (2005). The Psikharpax project: Towards building an artificial rat. Robotics and autonomous systems, 50(4), 211-223.
Nahl, D. (2004). Measuring the affective information environment of web searchers. Proceedings of the American society for information science and technology, 41(1), 191-197.
Nazemi, M. (2019). Sonic Interaction With Physical Computing. Foundations in Sound Design for Embedded Media: A Multidisciplinary Approach.
Nielsen, J. (1994). Usability inspection methods. In Conference companion on Human factors in computing systems (pp. 413-414). ACM.
Nielsen, J. (2000). Why you only need to test with 5 users. Nielsen Norman Group.
Nonaka, I., & Takeuchi, H. (1995). The Knowledge Creating. New York, 304.
Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Basic Civitas Books.
Nourbakhsh, I., Crowley, K., Bhave, A., Hamner, E., Hsium, T., Perez-Bergquist, A., Richards, S., & Wilkinson, K. (2005). The robotic autonomy mobile robots course: Robot design, curriculum design, and educational assessment. Autonomous Robots, 18(1), 103–127.
O'Sullivan, D., & Igoe, T. (2004). Physical computing: sensing and controlling the physical world with computers. Course Technology Press.
Osborn, L. E., Dragomir, A., Betthauser, J. L., Hunt, C. L., Nguyen, H. H., Kaliki, R. R., & Thakor, N. V. (2018). Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Science Robotics, 3(19), eaat3818.
Paris, S. G., Byrnes, J. P., & Paris, A. H. (2001). Constructing theories, identities, and actions of self-regulated learners. Self-regulated learning and academic achievement: Theoretical perspectives, 2, 253-287.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc..
Peters, D. (2014). Interface design for learning: Design strategies for learning experiences. Pearson Education.
Piaget, J. (1964). Development and learning. In R. E. Ripple & V. N. Rockcastle (Eds.), Piaget Rediscovered. (pp. 7-20). Ithaca, NY: Cornell University Press.
Przybylla, M., & Romeike, R. (2014). Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing. Informatics in Education, 13(2), 241-254.
Raffle, H. S., Parkes, A. J., & Ishii, H. (2004). Topobo: a constructive assembly system with kinetic memory. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 647-654). ACM.
Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological science, 9(1), 45-48.
Richard, G. T. (2008). Employing physical computing in education: How teachers and students utilized physical computing to develop embodied and tangible learning objects. The International Journal of Technology, Knowledge and Society, 4(3), 93-102.
Rimm-Kaufman, S. E., Curby, T. W., Grimm, K. J., Nathanson, L., & Brock, L. L. (2009). The contribution of children’s self-regulation and classroom quality to children’s adaptive behaviors in the kindergarten classroom. Developmental psychology, 45(4), 958-972.
Scalese, R. J., Obeso, V. T., & Issenberg, S. B. (2008). Simulation technology for skills training and competency assessment in medical education. Journal of general internal medicine, 23(1), 46-49.
Schmitt, S. A., McClelland, M. M., Tominey, S. L., & Acock, A. C. (2015). Strengthening school readiness for Head Start children: Evaluation of a self-regulation intervention. Early Childhood Research Quarterly, 30, 20-31.
Sharples, M., McAndrew, P., Weller, M., Ferguson, R., FitzGerald, E., Hirst, T., & Gaved, M. (2013). Maker Culture. Innovating Pedagogy 2013.
Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: modelling, planning and control. Springer Science & Business Media.
Silander, P. (2015). How to Create the School of the Future–Revolutionary thinking and design from Finland. Oulu: Multiprint.
Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (2012). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In Constructivism in education (pp. 103-126). Routledge.
Symeonidis, V., & Schwarz, J. F. (2016). Phenomenon-based teaching and learning through the pedagogical lenses of phenomenology: The recent curriculum reform in Finland. Forum Oświatowe, 28(2), 31-47.
Trollip, S. R., & Alessi, S. M. (2001). Multimedia for learning: methods and development. Massachusetts: Allyn & Bacon.
Tufte, E. R. (2001). The visual display of quantitative information (Vol. 2). Cheshire, CT: Graphics press.
Tullis, T. S., & Stetson, J. N. (2004). A comparison of questionnaires for assessing website usability. In Usability professional association conference (Vol. 1).
Vollmayr, A. N., Sosnowski, S., Urban, S., Hirche, S., & van Hemmen, J. L. (2014). Snookie: An autonomous underwater vehicle with artificial lateral-line system. In Flow Sensing in Air and Water (pp. 521-562). Springer, Berlin, Heidelberg.
Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students' perceptions of blocks-based programming. In Proceedings of the 14th International Conference on Interaction Design and Children (pp. 199-208). ACM.
Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school computer science classrooms. ACM Transactions on Computing Education (TOCE), 18(1), 3-27.
Williford, A. P., Vick Whittaker, J. E., Vitiello, V. E., & Downer, J. T. (2013). Children's engagement within the preschool classroom and their development of self-regulation. Early Education & Development, 24(2), 162-187.
Wright, P., Blythe, M., & McCarthy, J. (2005). User experience and the idea of design in HCI. In International Workshop on Design, Specification, and Verification of Interactive Systems (pp. 1-14). Springer, Berlin, Heidelberg.
Zimmerman, B. J., & Schunk, D. H. (Eds.). (2001). Self-regulated learning and academic achievement: Theoretical perspectives. Routledge.
Zimmerman, B. J., & Schunk, D. H. (2013). Reflections on theories of self-regulated learning and academic achievement. In Self-regulated learning and academic achievement (pp. 282-301). Routledge.
李嚴兵,向宇燕 (2010)。系統解剖學實驗(第一版)。北京:科學出版社。
林彥佑 (2019)。107年度自造教育及科技領域教學教案設計:自己的仿生獸自己做。教育部國民中小學自造教育輔導中心。
張玉山,楊雅茹 (2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊。1(1),2-17。
梁雲霞(2006)。從自主學習理論到學校實務-概念架構與學校發展。當代教育研究季刊,14(4),頁171-206。
許兆芳 (2018)。STEAM大挑戰:32個趣味任務,開發孩子的設計思考力+問題解決力。台北:商周出版。
楊怡婷 (2019)。十二年國教校訂課程實施之挑戰與因應。臺灣教育評論月刊,8(1),頁 201-204。
葉家明 (1997)。向生命系統學習-社會仿生論與生命科學。台北:淑馨出版社。
Ambient Insight & Decebo (2019). eLearning Is Dead! Long Live Interactive Instructional Simulations!, retrieved from https://elearningindustry.com/interactive-instructional-simulations-elearning-dead-live
Ambient Insight (2011).The Worldwide Market for Self-paced eLearning Products and Services: 2011-2016 Forecast and Analysis, retrieved from http://www.ambientinsight.com/Resources/Documents/AmbientInsight-2011-2016- Worldwide-Self-paced-eLearning-Market-Premiun-Overview.pdf.
Ambient Insight (2013).The 2012-2017 Worldwide Game-based Learning and Simulation- based Markets Key Findings, retrieved from http://www.slideshare.net/BrendanAlexander/ambient-insight-serious-play2013- gamebased-learning-market.
Brown,A. (2018). Prepare for fun! Scratch 3.0 is coming, retrieved from http://www.slideshare.net/BrendanAlexander/ambient-insight-serious-play2013- gamebased-learning-market.
Fee,J.(2007). Educator Resources for Flap to the Future. Brainpop Educators, retrieved from https://educators.brainpop.com/bp-game/flap-to-the-future/.
Green Kid Craft. (2019). DIY Robot Hand STEAM Activity, retrieved from https://www.greenkidcrafts.com/diy-robot-hand-steam-activity/.
HM Government. (2018). Robo Arm: Create your own Robo Arm, retrieved from https://www.engineering.gov.uk/challenge/robo-arm-challenge-.
Mert Arduino(Channel).(2017). How to Make Arduino Robot Hand: Low Cost DIY Robot Hand [Film], available at https://reurl.cc/VadpZN.
Microsoft. (2017). Building Machines That Emulate Humans, retrieved from https://www.microsoft.com/en-us/education/education-workshop/robotic-hand.aspx.
Namu Lab. (2019). How to Make Arduino Wireless Controlled Robot Hand, retrieved from https://www.youtube.com/watch?v=jUkD4WNIXuk.
NASA Video. (2013). I Want to Hold Your Hand, retrieved from https://www.youtube.com/watch?v=0d_zDpWvMJY&list=PLUu556xA4_uHXw0hiFnF7Saxynq60r5ur&index=7&t=132s.
Santa Ana Unified School District. Common Core Unit Planner-Literacy. Getting to the Core Grade 7 Unit of Study TEACHER EDITION Bionic Hand, retrieved from https://www.sausd.us/cms/lib/CA01000471/Centricity/Domain/109/7th%20grade%20Bioinic%20Hand%20Teacher%20Edition%208pdf.pdf.
Sechrest , R. (Producer).(2012). Hand Anatomy Animated Tutorial [Film]. (Available at https://reurl.cc/e5Nv4M).
官汝璟 (2009)。手臂機器人。智慧型機器人程式模擬與開發—種子教師課程。網址:https://sites.google.com/a/caece.net/msrds-teacher/syllabus/guan-ru-jing-lao-shi。
林挺裕 (2009)。創意機器人研究社團。智慧型機器人程式模擬與開發—種子教師課程。網址:https://sites.google.com/a/caece.net/msrds-teacher/syllabus/teachingp。
聯合報 (2019)。新課綱上路 科技課師資 3成學校發愁。聯合報 聯合報系民意調查中心/問卷調查報導。網址:https://vision.udn.com/vision/story/120642/3969813。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *