帳號:guest(3.137.213.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭閔駿
作者(外文):Jheng, Min-Chun
論文名稱(中文):PdTe2晶體的電子能帶與自旋結構直接測量與分析
論文名稱(外文):Direct Measurement and Analysis of Electronic Band Structure and Spin Texture of PdTe2 Crystal
指導教授(中文):林登松
指導教授(外文):Lin, Deng-Sung
口試委員(中文):徐斌睿
陸大安
口試委員(外文):Hsu, Pin-Jui
Luh, Dah-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022519
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:69
中文關鍵詞:自旋解析角解析光電子能譜二碲化鈀
外文關鍵詞:Spin-resolvedARPESPdTe2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文描述自旋與角解析光電子能譜(Spin- and Angle-Resolved Photoemission Spectroscopy, SARPES)實驗站之建立與設計性能測試,並以此系統量測近年來很受重視的過渡金屬二硫化合物(TMD)材料其中之一,二碲化鈀PdTe_2,完整量測在Γ ̅點附近PdTe_2內部的電子能帶以及拓樸表面態能帶之自旋結構,並以這些數據說明自旋量測的過程及多維度的數據處理與呈現方式。
實驗站架設於同步輻射中心TPS39A光束線,實驗系統以半球型分析儀加裝極低能量電子繞射(Very low energy electron diffraction, VLEED)電子自旋偵測器,量測電子能帶以及自旋結構為主,搭配薄膜長晶、表面晶體量測設備,建立一個多功能的實驗設備;未來實驗站將連接同步輻射中心的光束線,儀器可以擁有電子自旋解析、能量解析、角解析和元素解析的多重功能。
本實驗所量測的樣品為單晶PdTe_2,屬於二維過渡金屬二硫化合物。在近年來對此材料已有一些研究,這些研究證實此材料為第二類狄拉克半金屬,在1.7 K下具有超導特性,由於此材料內部塊材態的能帶反轉,使能帶上有三個分別在0.7 eV、1.1 eV、 1.7 eV自旋偏極化的表面態能帶,本次實驗藉由SARPES儀器完整量測此三個表面能帶之自旋結構,符合理論計算的結果。
在本次測量PdTe_2晶體的實驗中,我們最大化的利用目前系統的設備及環境,考慮儀器解析度、測量範圍、樣品生存時間下,量測結果足以解析表面的能帶自旋情況,並且在實驗數據的分析處理以及呈現上,有更進一步的認識。本次實驗對儀器參數的了解,對往後在使用SARPES系統上會有極大的幫助;目前實驗站的實驗系統,已經能夠完整量測自旋解析的電子能帶,本實驗站擁有台灣第一台的能帶電子自旋解析儀器,可以為材料物理之研究提供一個獨特的平台。
This thesis describes the design and the construction of the Spin- and Angle-Resolved Photoemission Spectroscopy(SARPES) Endstation for Taiwan Photon Source beamline 39A (TPS 39A) located National Synchrotron Radiation Center(NSRRC). The PdTe2 crystal we measured is one of the important class of new material called transition metal dichalcogenides(TMD). The PdTe2 is interesting due to the electronic band structure and the spin polarization of topological surface state at Γ ̅ point. Our experiment data of measuring the PdTe2 sample help to illustrate the analysis and the presentation of spin textures.
The main experimental instrument in TPS 39A Endstation is 200-mm-radius hemispherical analyzer. The analyzer called DA30 can measure 3D band structure without rotate the sample. The DA30 combines a Very low energy electron diffraction (VLEED) spin detector via transfer lens at the aperture near the 2D CCD detector. This is the first spin detector on the ARPES system in Taiwan to realize imaging of spin polarization band structure. The endstation also includes molecular beam epitaxy system low energy electron diffraction, etc. This equipment can prepare the sample and check the sample quality in ultrahigh vacuum.
The PdTe2 sample is one of 2D TMD material. For the past several years, several reports show the material is one of type-II Dirac semimetals and undergo superconductivity transition at 1.7 K. Because its band inversion property in the bulk material, there are three spin polarized surface band around the binding energy 0.7 eV、1.1 eV、 1.7 eV, respectively. In this study, we used the SARPES system directly measure the complete spin texture of the electronic band and the measurements are consistent with the theorical calculation.
In this experiment of measuring the PdTe2, we maximize the use of our current experiment environment and system device. Strike a balance between time for measurement and instrument resolution by choosing a suitable slit and aperture. We confirm the counts rate between ARPES, I0 and spin measure mode. The experiment data can distinguish the different spin polarized surface band. We get further understanding of SARPES system and the spin data analysis through this measurement. These valuable experiences can help that the future users quickly get familiar with SARPES system. TPS39A Endstation can already directly probe spin polarization electronic band and it provide a state-of-the-art technology for the research of material physics.
目錄 1
圖片目錄 3
第一章 簡介 6
1.1 動機 6
1.2 表面物理背景知識 7
1.2.1 晶格與倒晶格 7
1.2.2 材料表面與表面態 9
1.2.3 自旋軌道耦合 12
1.2.4 拓樸絕緣體 14
1.2.5 拓樸半金屬 16
1.3 PdTe2文獻回顧 17
第二章 實驗儀器和原理 21
2.1 系統概觀 21
2.2 超高真空系統 22
2.2.1 真空簡介 22
2.2.2 真空幫浦及氣壓計介紹 22
2.2.3 抽真空過程 27
2.2.4 殘餘氣體分析儀(Residual gas analysis) 28
2.3 薄膜長晶設備以及表面分析儀器 29
2.3.1 離子濺射槍(Sputter gun) 29
2.3.2 電子束蒸鍍槍(Electron beam evaporator) 30
2.3.3 膜厚儀(Thin-film thickness monitor) 30
2.3.4 低能量電子繞射(LEED) 31
2.3.5 歐傑電子能譜(Auger Electron Spectroscopy) 33
2.3.6 反射式高能量電子繞射(RHEED) 34
2.4 自旋暨角解析光電子能譜術(SARPES) 35
2.4.1 光電子能譜簡介 36
2.4.2 「三步驟模型」 38
2.4.3 ARPES儀器 41
2.4.4 電子自旋偵測器(Spin detector) 44
2.4.5 光源 49
第三章 SARPES實驗結果與討論 50
3.1 PdTe2樣品準備 50
3.2 SARPES量測結果與分析 52
3.2.1 ARPES量測PdTe2 52
3.2.2 SARPES測量及分析方法 54
3.2.3 PdTe2的自旋量測與分析 60
第四章 結論 66
參考資料 68
1 Kittel, C. Introduction to Solid State Physics. (Wiley, 2004).
2 Caizhi, X. Angle-resolved photoemission studies of thin-film topological materials. (2017).
3 Shockley, W. On the Surface States Associated with a Periodic Potential. Physical Review 56, 317-323 (1939).
4 Tamm, I. E. Sow. Phys. 1, 733 (1932).
5 Griffiths, D. J. Introduction to quantum mechanics. (Pearson international edition, 2010).
6 Klitzing, K. v., Dorda, G. & Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters 45, 494-497 (1980).
7 Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Physical Review Letters 49, 405-408 (1982).
8 Kane, C. L. & Mele, E. J. Z2 Topological Order and the Quantum Spin Hall Effect. Physical Review Letters 95, 146802 (2005).
9 Qi, X.-L. & Zhang, S.-C. J. a. p. a. The quantum spin Hall effect and topological insulators. Physics Today 63, 33 (2010).
10 Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Reviews of Modern Physics 90, 015001 (2018).
11 Omloo, W. P. F. A. M. & Jellinek, F. Intercalation compounds of alkali metals with niobium and tantalum dichalcogenides. Journal of the Less Common Metals 20, 121-129 (1970).
12 Orders, P. J., Liesegang, J., Leckey, R. C. G., Jenkin, J. G. & Riley, J. D. Angle-resolved photoemission from the valence bands of NiTe2, PdTe2and PtTe2. Journal of Physics F: Metal Physics 12, 2737-2753 (1982).
13 Yan, L. et al. Identification of topological surface state in PdTe2 superconductor by angle-resolved photoemission spectroscopy. Chinese Physics Letters 32, 067303 (2015).
14 Noh, H.-J. et al. Experimental realization of type-II Dirac fermions in a PdTe 2 superconductor. Phys. Rev. Lett. 119, 016401 (2017).
15 Bahramy, M. et al. Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nature Materials 17, 21-28 (2018).
16 Bihlmayer, G., Rader, O. & Winkler, R. Focus on the Rashba effect. New Journal of Physics 17, 050202 (2015).
17 蔡定平. 真空計術與應用. (2001).
18 林卓穎. 鎵在鍺(100)表面上的不尋常成長過程與其原子模型. (2013).
19 University, N. A. Ion Pump Operation.
20 SRS RGA200 Operating Manual and Programming Reference. (2009).
21 Damascelli, A. Probing the electronic structure of complex systems by ARPES. Physica Scripta 2004, 61 (2004).
22 Seah, M. P. & Dench, W. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surface and interface analysis 1, 2-11 (1979).
23 Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics 75, 473-541 (2003).
24 Scienta Omicron DA30 Instrument Manual v2.4. (2016).
25 Takayama, A. High-Resolution Spin-Resolved Photoemission Spectrometer and the Rashba Effect in Bismuth Thin Films. (Springer, 2014).
26 Okuda, T. et al. A double VLEED spin detector for high-resolution three dimensional spin vectorial analysis of anisotropic Rashba spin splitting. J. Electron Spectrosc. Relat. Phenom. 201, 23-29 (2015).
27 Escher, M., Weber, N. B., Merkel, M., Plucinski, L. & Schneider, C. M. FERRUM: A New Highly Efficient Spin Detector for Electron Spectroscopy. e-Journal of Surface Science and Nanotechnology 9, 340-343, doi:10.1380/ejssnt.2011.340 (2011).
28 Tillmann, D., Thiel, R. & Kisker, E. J. Z. f. P. B. C. M. Very-low-energy spin-polarized electron diffraction from Fe (001). Condensed Matter 77, 1-2 (1989).
29 Riccardo Bertacco, F. C. Oxygen-induced enhancement of the spin-dependent effects in electron spectroscopies of Fe(001). PHYSICAL REVIEW B 59 (1999).
30 Clark, O. J. et al. A general route to form topologically-protected surface and bulk Dirac fermions along high-symmetry lines. Electronic Structure 1, 014002 (2019).
31 梁欣愷. 建立自旋角解析光電子譜實驗站與對Au(111) 與Bi2Se3表面態能帶的量測. (2019).
32 Hoesch, M. et al. Spin-polarized Fermi surface mapping. J. Electron Spectrosc. Relat. Phenom. 124, 263-279 (2002).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *