帳號:guest(3.144.250.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭 婷
作者(外文):Cheng, Ting
論文名稱(中文):波導晶片中糾纏光子的製備及操控之可行性研析
論文名稱(外文):Investigation of Biphoton Generation and Engineering in Waveguide Chips
指導教授(中文):褚志崧
指導教授(外文):Chuu, Chih-Sung
口試委員(中文):王力邦
陳彥宏
口試委員(外文):Wang, Li-Bang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022514
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:49
中文關鍵詞:糾纏光子波導
外文關鍵詞:Biphoton Generationwaveguide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
短波包的糾纏光子在量子資訊(Quantum Information Process )、量子傳輸(Quantum Teleportation )及量子通訊(Quantum communication)中具有許多優勢,而調控糾纏光子的 波包也被廣為研究。我們在這篇論文中探討了用自發性降頻參量轉換(Spontaneous Parametric Down Conversion, SPDC )的方式來產生糾纏光子的同時,在其中加入耗損,有效地將波包 縮短的機制及實際執行的方法。

而此實際執行的方法是藉由在波導中自發性降頻參量轉換,並以直接在波導上方鍍上金屬 的方式,來產生耗損。而會選用這個方法是考慮到了用耗損量來調製波包,光子的生產效率會下 降,因此需要用高生產率的波導來產生。並且波導可以放在積體電路板上,可以應用於規模化的 量子科技。
找到了執行的方法後,我們與中央大學陳彥宏老師實驗室合作,設計出了配合這個實驗的 波導,此波導可以藉由改變鍍膜厚度及鍍膜長度來調製波包的形狀。除了糾纏光源的設計,我們 也完成了相對應於這樣的短波包,所需的量測波包方式的設計。目前以將光路架設完畢,並且做 了初步的測量。
Biphotons with extremely short wave packet has many advantages in quantum communi- cation, quantum computation, and quantum interface. In particular, biphotons around 1550nm have the advantage of high transportation efficiency in fiber. In this thesis, the generation of such biphotons is investigated. Moreover, there will also be some discus- sion of the completed experimental setup, including the production and measurement of the wave packet.

Our biphotons are generated by Parametric Down Conversion (PDC) in waveguide, and tailored by inherent loss. The generation of biphotons in waveguide has the advan- tage of creating 1550nm biphotons and fitting into an integrated optical chip. As for the shaping of the biphoton wave packet, inherent loss during PDC enables the wave packet to reach an extremely short extent. Our design is to coat metal onto a waveguide chip surface to create inherent loss, and control the loss by the thickness and length of the coating metal and buffer.
第一章 動機

第二章 糾纏光子的產生機制—自發降頻轉換(SPDC)
2.1 非線性效應................................... 4
2.2 量子化..................................... 6
2.3 自發性降頻轉換 ................................ 9
2.4 二階關聯函數.................................. 11

第三章 波導中產生自發降頻轉換的介紹
3.1 波導的優勢................................... 15
3.2 鈦擴散PPLN波導的結構與製程 ....................... 17
3.2.1 鈮酸鋰介紹與週期性偏極反轉 ..................... 17
3.2.2 鈦擴散波導............................... 20
3.3 脊形PPLN波導................................ 21

第四章 以吸收程度操控波包
4.1 量子郎之萬理論 ................................ 22
4.2 利用損益調製波包 ............................... 23
4.3 模擬預測.................................... 25

第五章 實驗設計與初步測量
5.1 波導設計.................................... 26
5.1.1 Poling週期的設計與數值模擬..................... 26
5.1.2 以Buffer厚度調製吸收量....................... 28
5.1.3 以改變吸收距離調製吸收量的設計與模擬 ............... 33
5.2 波導基座的設計 ................................ 35
5.2.1 鈦擴散PPLN波導的基座....................... 35
5.2.2 脊形PPLN波導的基座 ........................ 36
5.3 波導對光設計與方法 .............................. 37
5.3.1 光路架設................................ 37
5.3.2 脊形PPLN波導對光方法....................... 40
5.4 波包測量設計及初步實驗............................ 41
5.5 未來實驗設計.................................. 42

第六章 附錄
6.1 Muller’s method ............................... 46
[1] Zheyu Jeff Ou ”Quantum Optics for Experimentalists”. World Sientific,July 2017
[2] Stephen Harris, Research studies on photons and biphotons. AFRL-OSR-VA-TR-
2013-0535, October 2013
[3] Mark Fox, ”Quantum Optics An Introduction”. Oxford Master Series in Physics,April 2006
[4] Rodney Loudon, ”The Quantum Theory of Light ”Third Edition. Oxford University Press,September 2000
[5] Marco Fiorentino, Sean M. Spillane, Raymond G. Beausoleil, Tony D. Roberts, Philip Battle, and Mark W. Munro. Spontaneous parametric down-conversion in pe- riodically poled KTP waveguides and bulk crystals. Optical Society of America,2007.
[6] Jeremy l. O’brien, akira Furusawa2 and Jelena Vučković3 photonic quantum tech- nologies. Nature Photonics,december 2009.
[7] Mark C. Booth, Mete Atatu ̈re,Giovanni Di Giuseppe, Alexander V. Sergienko,Bahaa E. A. Saleh,and Malvin C. Teich Counter-propagating entangled photons from a waveguide with periodic nonlinearity. Phys. Rev. A 66, August 2002
[8] Andreas Jechow, Axel Heuer, and Ralf Menzel High brightness, tunable biphoton source at 976 nm for quantum spectroscopy. OPTICS EXPRESS,Vol. 16, No. 17,Au- gust 2008.
[9] 楊詩遠碩士論文 電光非週期性晶疇極化反轉鈮酸鋰定向耦合器. 中華民國一零六年六月
[10] Scully, M. O., and Zubairy, M. S. Quantum optics. Cambridge University Press,1997
48
[11] Wei-Ming Su, Ravikumar Chinnarasu, Chang-Hau Kuo, and Chih-Sung Chuu Shap- ing single photons and biphotons by inherent losses. PHYSICAL REVIEW A 94, 033805 (2016)
[12] S. Shwartz and S. E. Harris Polarization Entangled Photons at X-Ray Energies. PRL 106, 080501 (2011)
[13] Masamitsu Masuda and Jiro Koyama Effects of a buffer layer on TM modes in a metal-clad optical waveguide using Ti-diffused LiNbO3 C-plate. APPLIED OPTICS / Vol. 16, No. 11 / November 1977
[14] Emmanuel Anemogiannis, Student Member, IEEE, and Elias N. Glytsis Multilayer Waveguides: Efficient Numerical Analysis of General Structures. Journal of light- wave technology, Vol.10,NO.10, October 1992.
[15] Rodney Loudon, ” Guided Wave Optoelectronics”. T. Tamir, Ed., Springer- Verlag,1988.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *