帳號:guest(13.59.67.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):藍也順
作者(外文):Lan, Ye-Shun
論文名稱(中文):層狀結構XB2 (X = Nb、Tc、La)的電子聲子超導性研究
論文名稱(外文):Study on Electron-Phonon Superconductivity of layered structure of XB2 (X = Nb, Tc, La)
指導教授(中文):鄭弘泰
指導教授(外文):Jeng, Horng-Tay
口試委員(中文):徐斌睿
鄭澄懋
口試委員(外文):Hsu, Pin-Jui
Cheng, Cheng-Maw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:106022507
出版年(民國):109
畢業學年度:109
語文別:中文
論文頁數:56
中文關鍵詞:密度泛函理論密度泛函微擾理論電子聲子耦合超導相變溫度
外文關鍵詞:Density function theoryDensity function Perturbation theoryelectron-phonon couplingsuperconducting transition temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:192
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究藉由計算過渡金屬二硫族化物(TMDs)的超導溫度,了解其性質,與現有實驗文獻做比較後,得知TMDs材料結構對超導溫度的影響,由此為基礎尋找具發展性的超導材料,計算在2001年所發現擁有超導溫度39K的理論計算MgB2 (空間群P6/mmm),也從中了解本研究方法與結果如何分析,進而發現NbB2、TcB2和LaB2也同樣具有超導現象,NbB2 (塊材/單層)的超導轉變溫度分別為8.2K /9.8K,TcB2 (塊材/單層)的超導轉變溫度分別為22K /3.8K,LaB2 (塊材)的超導轉變溫度為17K,另外TcB2和LaB2在有自旋軌道耦合的模擬計算下,費米能階附近會出現連續間隙,經過計算Z_2拓撲不變量,判定為弱拓撲材料,往後可以繼續研究這些材料是否有多超導間隙或是拓撲表面態。
In this study, we calculated the superconducting temperature of transition metal dichalcogenides (TMDs) and understood their properties. After comparing with the existing experimental literature, we learned the influence on the superconducting temperature by the TMDs. MgB2 found in 2001 with transition temperature of 39K (Space group is P6/mmm). We use the calculation of MgB2 to understand how the research methods and results are analyzed and then found that NbB2, TcB2 and LaB2 also have superconductivity Phenomenon. The superconducting transition temperature of NbB2 (bulk/1 unit layer) is 8.2K and 9.8K. The superconducting transition temperature of TcB2 (bulk/1 unit layer) is 22K and 3.8K. The superconducting transition temperature of LaB2 bulk is 17K. In addition, under the simulation calculation of TcB2 and LaB2 with spin-orbit coupling, there will be continuous gaps near the Fermi level. After calculating Z2 topological invariant, they are determined as the weak topological material. In the future, we can continue to study whether these materials have multiple superconducting gaps or topological surface state.
摘要------------------------------------------------------------i
Abstract--------------------------------------------------------ii
誌謝------------------------------------------------------------iii
第一章-緒論-----------------------------------------------------1
1-1 多體物理理論Many-body Hamiltonian---------------------------1
1-2 近似法Born-Oppenheimer approximation------------------------1
1-3 密度泛函理論Density function theory(DFT)--------------------1
1-4 密度泛函微擾理論Density function Perturbation theory(DFPT)--5
1-5 電子-聲子交互作用與超導溫度---------------------------------7
1-6 Z2拓撲不變量------------------------------------------------8
第二章-理論計算過渡金屬二硫族化物-------------------------------13
2-1 晶體結構----------------------------------------------------13
2-2 能量狀態密度與電子能帶結構----------------------------------13
2-3 聲子能譜與超導溫度------------------------------------------14
2-4 本章節插圖--------------------------------------------------17
第三章-理論計算XB2----------------------------------------------24
3-1 晶體結構----------------------------------------------------24
3-2 能量狀態密度與電子能帶結構----------------------------------24
3-3 聲子能譜與超導溫度------------------------------------------25
3-4 LaB2和TcB2威爾遜迴圈----------------------------------------27
3-5 本章節插圖--------------------------------------------------29
參考文獻--------------------------------------------------------48
附錄------------------------------------------------------------51
(1) C. Ataca, H. Şahin, and S. Ciraci Stable; Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure; J. Phys. Chem. C 2012, 116, 16, 8983–8999

(2) Manzeli, S., Ovchinnikov, D., Pasquier, D. et al; 2D transition metal Dichalcogenides; Nat Rev Mater 2, 17033 (2017)

(3) Nagzmatsu, J., Nakagawa, N., Muranaka, T. et al; Superconductivity at 39 K in magnesium diboride; Nature 410, 63–64 (2001)

(4) P. B. Allen and R. C. Dynes; Transition temperature of strong-coupled superconductors reanalyzed; Phys. Rev. B 12, 905

(5) Satoru Ichinokura, Yuki Nakata, Shuji Hasegawa et al; Vortex-induced quantum metallicity in the mono-unit-layer superconductor NbSe2; Phys. Rev. B 99, 220501(R)

(6) Wang, H., Huang, X., Lin, J. et al; High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition; Nat Commun 8, 394 (2017)

(7) Jing Peng, Zhi Yu, Jiajing Wu, Yuan Zhou, Yi Xie et al; Disorder Enhanced Superconductivity toward TaS2 Monolayer; ACS Nano 2018, 12, 9, 9461–9466

(8) Feliciano Giustino; Electron-phonon interactions from first principles; Rev. Mod. Phys. 89, 015003

(9) E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov et al; Phonon related properties of transition metals, their carbides, and nitrides:A first-principles study; J. Appl. Phys. 101, 123519 (2007)

(10) Nicki Frank Hinsche and Kristian Sommer Thygesen; Electron–phonon
interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS2; 2D Mater. 5 (2018) 015009

(11) Navarro-Moratalla, E., Island, J., Mañas-Valero, S. et al; Enhanced superconductivity in atomically thin TaS2; Nat Commun 7, 11043 (2016).

(12) J. Bekaert, A. Aperis, B. Partoens, P. M. Oppeneer, and M. V. Milošević; Evolution of multigap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB2; Phys. Rev. B 96, 094510

(13) Souma, S., Machida, Y., Sato, T. et al; The origin of multiple superconducting gaps in MgB2; Nature 423, 65–67 (2003)

(14) Hyoung Joon Choi, David Roundy, Hong Sun, Marvin L. Cohen, and Steven G. Louie; First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism; Phys. Rev. B 66, 020513(R)

(15) Hyoung JoonChoiaMarvin L.CohenabSteven G.Louie; Anisotropic Eliashberg theory of MgB2: Tc, isotope effects, superconducting energy gaps, quasiparticles, and specific heat; Physica C 385 (2003) 66–74

(16) Amy Y. Liu, I. I. Mazin, and Jens Kortus, Beyond Eliashberg; Superconductivity in MgB2: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps; Phys. Rev. Lett. 87, 087005 (2001)

(17) JE Schirber, DL Overmyer, B Morosin, EL Venturini, R Baughman, D Emin, H Klesnar, T Aselage; Pressure dependence of the superconducting transition temperature in single-crystal NbBX (x near 2) with Tc=9.4 K; Phys Rev B Condens Matter (1992)

(18) Prabhakar P.Singh; Electron–phonon interaction in NbB2: a comparison with MgB2; Solid State Communications Volume 125, Issue 6, February 2003, Pages 323-326

(19) Xing Feng, Changming Yue, Zhida Song, QuanSheng Wu, and Bin Wen;
Topological Dirac nodal-net fermions in AlB2-type TiB2 and ZrB2; Phys. Rev. Materials 2, 014202 (2018)

(20) Pešić, J.; Popov I.; Šolajić, A.; Damljanović, V.; Hingerl, K.; Belić, M.; Gajić, R.; Ab Initio Study of the Electronic, Vibrational, and Mechanical, Properties of the Magnesium Diboride Monolayer; Condens. Matter 2019, 4, 37.

(21) Szałowski, K.; Critical temperature of MgB2 ultrathin superconducting films: BCS model calculations in the tight-binding approximation; Physical Review B, 74(9) (2006)

(22) C. L. Kane and E. J. MelePhys; Z2 Topological Order and the Quantum Spin Hall Effect; Rev. Lett. 95, 146802 (2005)

(23) Rui Yu, Xiao Liang Qi, Andrei Bernevig, Zhong Fang, and Xi Dai; Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection; Phys. Rev. B 84, 075119 (2011)

(24) Liang Fu and C. L. Kane; Time reversal polarization and a Z2 adiabatic spin pump Phys; Rev. B 74, 195312 (2006)

(25) Aravind Devarakonda, Hisashi Inoue, Shiang Fang, Cigdem Ozsoy-Keskinbora, Takehito Suzuki, Markus Kriener, Liang Fu, Efthimios Kaxiras, David C. Bell, Joseph G. Checkelsky; Clean 2D superconductivity in a bulk van der Waals superlattice; Science Vol. 370, Issue 6513, pp. 231-236 (2020)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *