|
[1] S. F. Edwards and P. W. Anderson, “Theory of spin glasses,” Journal of Physics F: Metal Physics, vol. 5, pp. 965–974, may 1975. [2] A. P. Ramirez, G. P. Espinosa, and A. S. Cooper, “Strong frustration and dilution-enhanced order in a quasi-2d spin glass,” Phys. Rev. Lett., vol. 64, pp. 2070–2073, Apr 1990. [3] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, “Random quantum spin chains: A real-space renormalization group study,” Phys. Rev. Lett., vol. 75, pp. 4302–4305, Dec 1995. [4] A. Furusaki, M. Sigrist, P. A. Lee, K. Tanaka, and N. Nagaosa, “Random exchange heisenberg chain for classical and quantum spins,” Phys. Rev. Lett., vol. 73, pp. 2622–2625, Nov 1994. [5] A. Furusaki, M. Sigrist, E. Westerberg, P. A. Lee, K. B. Tanaka, and N. Nagaosa, “Randomexchange quantum heisenberg chains,” Phys. Rev. B, vol. 52, pp. 15930–15942, Dec 1995. [6] P. Lajkó, E. Carlon, H. Rieger, and F. Iglói, “Disorder-induced phases in the s = 1 antiferromagnetic heisenberg chain,” Phys. Rev. B, vol. 72, p. 094205, Sep 2005. [7] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992. [8] S. Rapsch, U. Schollwöck, and W. Zwerger, “Density matrix renormalization group for disordered bosons in one dimension,” Europhysics Letters (EPL), vol. 46, pp. 559–564, jun 1999. [9] A. M. Goldsborough and R. A. Römer, “Using entanglement to discern phases in the disordered one-dimensional bose-hubbard model,” EPL (Europhysics Letters), vol. 111, p. 26004, jul 2015. [10] S.-k. Ma, C. Dasgupta, and C.-k. Hu, “Random antiferromagnetic chain,” Phys. Rev. Lett., vol. 43, pp. 1434–1437, Nov 1979. [11] C. Dasgupta and S.-k. Ma, “Low-temperature properties of the random heisenberg antiferromagnetic chain,” Phys. Rev. B, vol. 22, pp. 1305–1319, Aug 1980. [12] T. Hikihara, A. Furusaki, and M. Sigrist, “Numerical renormalization-group study of spin correlations in one-dimensional random spin chains,” Phys. Rev. B, vol. 60, pp. 12116– 12124, Nov 1999. [13] A. M. Goldsborough and R. A. Römer, “Self-assembling tensor networks and holography in disordered spin chains,” Phys. Rev. B, vol. 89, p. 214203, Jun 2014. [14] F. Haldane, “Continuum dynamics of the 1-d heisenberg antiferromagnet: Identification with the o(3) nonlinear sigma model,” Physics Letters A, vol. 93, no. 9, pp. 464 – 468, 1983. [15] F. D. M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis néel state,” Phys. Rev. Lett., vol. 50, pp. 1153–1156, Apr 1983. [16] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous results on valence-bond ground states in antiferromagnets,” Phys. Rev. Lett., vol. 59, pp. 799–802, Aug 1987. [17] M. den Nijs and K. Rommelse, “Preroughening transitions in crystal surfaces and valencebond phases in quantum spin chains,” Phys. Rev. B, vol. 40, pp. 4709–4734, Sep 1989. [18] S. Bergkvist, P. Henelius, and A. Rosengren, “Ground state of the random-bond spin-1 heisenberg chain,” Phys. Rev. B, vol. 66, p. 134407, Oct 2002. [19] R. A. Hyman and K. Yang, “Impurity driven phase transition in the antiferromagnetic spin-1 chain,” Phys. Rev. Lett., vol. 78, pp. 1783–1786, Mar 1997. [20] C. Monthus, O. Golinelli, and T. Jolicoeur, “Percolation transition in the random antiferromagnetic spin-1 chain,” Phys. Rev. Lett., vol. 79, pp. 3254–3257, Oct 1997. [21] C. Monthus, O. Golinelli, and T. Jolicoeur, “Phases of random antiferromagnetic spin-1 chains,” Phys. Rev. B, vol. 58, pp. 805–815, Jul 1998. [22] R. A. Hyman, K. Yang, R. N. Bhatt, and S. M. Girvin, “Random bonds and topological stability in gapped quantum spin chains,” Phys. Rev. Lett., vol. 76, pp. 839–842, Jan 1996. [23] K. Damle, “Griffiths effects in random heisenberg antiferromagnetic s = 1 chains,” Phys. Rev. B, vol. 66, p. 104425, Sep 2002. [24] K. Hida, “Density matrix renormalization group study of the haldane phase in random one-dimensional antiferromagnets,” Phys. Rev. Lett., vol. 83, pp. 3297–3300, Oct 1999. [25] G. Torlai, K. D. McAlpine, and G. De Chiara, “Schmidt gap in random spin chains,” Phys. Rev. B, vol. 98, p. 085153, Aug 2018. [26] Y.-J. Kao, Y.-D. Hsieh, and P. Chen, “Uni10: an open-source library for tensor network algorithms,” Journal of Physics: Conference Series, vol. 640, no. 1, p. 012040, 2015. [27] H. Ueda, H. Nakano, and K. Kusakabe, “Finite-size scaling of string order parameters characterizing the haldane phase,” Phys. Rev. B, vol. 78, p. 224402, Dec 2008. [28] T. Kennedy and H. Tasaki, “Hidden z2×z2 symmetry breaking in haldane-gap antiferromagnets,” Phys. Rev. B, vol. 45, pp. 304–307, Jan 1992. [29] H. Aschauer and U. Schollwöck, “Absence of string order in the anisotropic s = 2 heisenberg antiferromagnet,” Phys. Rev. B, vol. 58, pp. 359–365, Jul 1998. [30] D. S. Fisher, “Random antiferromagnetic quantum spin chains,” Phys. Rev. B, vol. 50, pp. 3799–3821, Aug 1994. [31] D. S. Fisher and A. P. Young, “Distributions of gaps and end-to-end correlations in random transverse-field ising spin chains,” Phys. Rev. B, vol. 58, pp. 9131–9141, Oct 1998. [32] T. Vojta, “Rare region effects at classical, quantum and nonequilibrium phase transitions,” Journal of Physics A: Mathematical and General, vol. 39, pp. R143–R205, may 2006. [33] H. Rieger and A. P. Young, “Griffiths singularities in the disordered phase of a quantum ising spin glass,” Phys. Rev. B, vol. 54, pp. 3328–3335, Aug 1996. [34] R. Juhász, Y.-C. Lin, and F. Iglói, “Strong griffiths singularities in random systems and their relation to extreme value statistics,” Phys. Rev. B, vol. 73, p. 224206, Jun 2006. [35] F. Iglói, R. Juhász, and H. Rieger, “Griffiths-mccoy singularities in the random transversefield ising spin chain,” Phys. Rev. B, vol. 59, pp. 11308–11314, May 1999. [36] J. Galambos, “The asymptotic theory of extreme order statistics,” 1987. [37] A. M. Goldsborough and G. Evenbly, “Entanglement renormalization for disordered systems,” Phys. Rev. B, vol. 96, p. 155136, Oct 2017. [38] C. Chatelain, “Improved matrix product operator renormalization group: application to the n-color random ashkin-teller chain,” [39] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, “Infinite-randomness quantum ising critical fixed points,” Phys. Rev. B, vol. 61, pp. 1160–1172, Jan 2000. [40] Y.-C. Lin, F. Iglói, and H. Rieger, “Entanglement entropy at infinite-randomness fixed points in higher dimensions,” Phys. Rev. Lett., vol. 99, p. 147202, Oct 2007. [41] I. A. Kovács and F. Iglói, “Renormalization group study of the two-dimensional random transverse-field ising model,” Phys. Rev. B, vol. 82, p. 054437, Aug 2010. [42] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, “Critical behaviour of spin-s heisenberg antiferromagnetic chains: analytic and numerical results,” Journal of Physics A: Mathematical and General, vol. 22, pp. 511–529, mar 1989. |