|
[1] Imam Abdul Rahman and Acep Purqon. \First Principles Study of Molybdenum Disulfide Electronic Structure". In: Journal of Physics: Conference Series 877 (July 2017), p. 012026. doi: 10.1088/1742-6596/877/1/012026. [2] Rafik Addou, Luigi Colombo, and Robert Wallace. \Surface Defects on Natural MoS2". In: ACS applied materials & interfaces 7 (May 2015). doi: 10.1021/acsami.5b01778. [3] Rafik Addou, Luigi Colombo, and Robert Wallace. \Surface Defects on Natural MoS2". In: ACS applied materials & interfaces 7 (May 2015). doi: 10.1021/acsami.5b01778. [4] Agilent Sputter Ion Pumps - A 60-year history. https://www.agilent.com/ cs/library/periodicals/public/Agilent-Ion-Pump-History.pdf. [5] G.B. Arfken, H.J. Weber, and F.E. Harris. Mathematical Methods for Physicists. Elsevier, 2005. isbn: 9780120598762. url: https://books.google. com.tw/books?id=f3aCnXWV1CcC. [6] O. El Beqqali et al. \Electrical properties of molybdenum disulfide MoS2. Experimental study and density functional calculation results". In: Synthetic Metals 90.3 (1997). Molecular Materials Applications to Sensors and Optoelectric Devices, pp. 165{172. issn: 0379-6779. doi: https://doi.org/10. 1016/S0379-6779(98)80002-7. url: http://www.sciencedirect.com/ science/article/pii/S0379677998800027. [7] G. Binnig et al. \Surface Studies by Scanning Tunneling Microscopy". In: Phys. Rev. Lett. 49 (1 July 1982), pp. 57{61. doi: 10.1103/PhysRevLett. 49.57. url: https://link.aps.org/doi/10.1103/PhysRevLett.49.57. [8] G. Binnig et al. \Tunneling through a controllable vacuum gap". In: Applied Physics Letters 40.2 (1982), pp. 178{180. doi: 10.1063/1.92999. eprint: https://doi.org/10.1063/1.92999. url: https://doi.org/10.1063/1. 92999. [9] Matthias B¨ohringer et al. \Corrugation reversal in scanning tunneling microscope images of organic molecules". In: Physical Review B 57 (Feb. 1998). doi: 10.1103/PhysRevB.57.4081. [10] caldarolamartin/read sm4 files. https://github.com/caldarolamartin/read_sm4_files. [11] C. Julian Chen. \Corrugation reversal in scanning tunneling microscopy". In: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 12.3 (1994), pp. 2193{2199. doi: 10.1116/1.587739. eprint: https://avs.scitation.org/doi/ pdf/10.1116/1.587739. url: https://avs.scitation.org/doi/abs/10. 1116/1.587739. [12] C.J. Chen. Introduction to Scanning Tunneling Microscopy. Introduction to Scanning Tunneling Microscopy. OUP Oxford, 2008. isbn: 9780199211500. url: https://books.google.com.tw/books?id=mDVCAQAAIAAJ. [13] Julian Chen et al. \Three-electrode self-actuating self-sensing quartz cantilever: Design, analysis, and experimental verification". In: Review of Scientific Instruments 81 (June 2010), pp. 053702{053702. doi: 10.1063/1. 3407507. [14] Yan Chen et al. \Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering". In: ACS Nano 12 (Feb. 2018). doi: 10. 1021/acsnano.7b08418. [15] Ada Della Pia and Giovanni Costantini. \Scanning Tunneling Microscopy". In: Surface Science Techniques. Ed. by Gianangelo Bracco and Bodil Holst. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 565{597. isbn: 978- 3-642-34243-1. doi: 10 . 1007 / 978 - 3 - 642 - 34243 - 1 _ 19. url: https : //doi.org/10.1007/978-3-642-34243-1_19. [16] Dise~no y aplicaci´on de microscop´ıas avanzadas para el estudio de problemas de mecanotransducci´on celular y nanoplasm´onica. https://digital.bl. fcen.uba.ar/collection/tesis/document/tesis_n5716_Caldarola. [17] R Dombrowski et al. \Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110)". In: prb 59 (Mar. 1999), pp. 8043{. doi: 10.1103/PhysRevB.59.8043. [18] C. Donnet et al. \Super-low friction of MoS2 coatings in various environments". In: Tribology International 29.2 (1996), pp. 123{128. issn: 0301- 679X. doi: https://doi.org/10.1016/0301- 679X(95)00094- K. url: http://www.sciencedirect.com/science/article/pii/0301679X9500094K. [19] B. Drevniok et al. \Methods and instrumentation for piezoelectric motors". In: Review of Scientific Instruments 83.3 (2012), p. 033706. doi: 10.1063/ 1.3694972. eprint: https://doi.org/10.1063/1.3694972. url: https: //doi.org/10.1063/1.3694972. [20] Ali Eftekhari. \Electrocatalysts for hydrogen evolution reaction". In: International Journal of Hydrogen Energy 42 (Mar. 2017). doi: 10.1016/j. ijhydene.2017.02.125. [21] Deyi Fu et al. \Molecular Beam Epitaxy of Highly-Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride". In: Journal of the American Chemical Society 139 (June 2017). doi: 10.1021/jacs.7b05131. [22] Marco Furchi et al. \Mechanisms of Photoconductivity in Atomically Thin MoS2". In: Nano Letters (Oct. 2014). doi: 10.1021/nl502339q. [23] Xiumei Geng et al. \Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction." In: Nature communications 7 (2016), p. 10672. [24] L. Gmelin. Gmelin Handbook of inorganic and organometallic chemistry. Gmelin Handbuch der anorganischen Chemie. Springer Verlag, 1995. [25] Julia Gusakova et al. \Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ-2e Method)". In: physica status solidi (a) 214 (Sept. 2017), p. 1700218. doi: 10 . 1002 / pssa . 201700218. [26] Paul K. Hansma and Jerry Tersoff. \Scanning tunneling microscopy". In: Journal of Applied Physics 61.2 (1987), R1{R24. doi: 10.1063/1.338189. eprint: https://doi.org/10.1063/1.338189. url: https://doi.org/10. 1063/1.338189. [27] Jinhua Hong et al. \Exploring atomic defects in molybdenum disulphide monolayers". In: Nature communications 6 (Feb. 2015), p. 6293. doi: 10. 1038/ncomms7293. [28] I. Horcas et al. \WSXM: A software for scanning probe microscopy and a tool for nanotechnology". In: Review of Scientific Instruments 78.1 (2007), p. 013705. doi: 10.1063/1.2432410. eprint: https://doi.org/10.1063/ 1.2432410. url: https://doi.org/10.1063/1.2432410. [29] Yuli Huang et al. \Bandgap tunability at single-layer molybdenum disulphide grain boundaries". In: Nature communications 6 (Feb. 2015), p. 6298. doi: 10.1038/ncomms7298. [30] David J. Hucknall. \3 - Vacuum pumps (high{ultra-high range)". In: Vacuum Technology and Applications. Ed. by David J. Hucknall. ButterworthHeinemann, 1991, pp. 79{125. isbn: 978-0-7506-1145-9. doi: https://doi. org / 10 . 1016 / B978 - 0 - 7506 - 1145 - 9 . 50007 - 8. url: http : / / www . sciencedirect.com/science/article/pii/B9780750611459500078. [31] Ion Gauge. http://philiphofmann.net/ultrahighvacuum/ind_iongauge. html. [32] B. Jaffe, W.R. Cook, and H.L. Jaffe. Piezoelectric Ceramics, by Bernard Jaffe and William R. Cook Jr. and Hans Jaffe. Non-metallic solids. Academic Press, 1971. url: https : / / books . google . com . tw / books ? id = a1v7cQAACAAJ. [33] Jordisite. https://www.mindat.org/min-2114.html. [34] Min Kan et al. \Structures and Phase Transition of a MoS2 Monolayer". In: The Journal of Physical Chemistry C 118 (Jan. 2014), pp. 1515{1522. doi: 10.1021/jp4076355. [35] Min Kan et al. \Structures and Phase Transition of a MoS2 Monolayer". In: The Journal of Physical Chemistry C 118 (Jan. 2014), pp. 1515{1522. doi: 10.1021/jp4076355. [36] Santosh Kc et al. \Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers". In: Nanotechnology 25 (Aug. 2014), p. 375703. doi: 10.1088/0957-4484/25/37/375703. [37] Jungdae Kim et al. \Quantum size effects on the work function of metallic thin film nanostructures". In: Proceedings of the National Academy of Sciences 107.29 (2010), pp. 12761{12765. issn: 0027-8424. doi: 10.1073/ pnas.0915171107. eprint: https://www.pnas.org/content/107/29/ 12761.full.pdf. url: https://www.pnas.org/content/107/29/12761. [38] Katsuyoshi Kobayashi and Jun Yamauchi. \Electronic structure and scanningtunneling-microscopy image of molybdenum dichalcogenide surfaces". In: Phys. Rev. B 51 (23 June 1995), pp. 17085{17095. doi: 10.1103/PhysRevB. 51.17085. url: https://link.aps.org/doi/10.1103/PhysRevB.51. 17085. [39] Antal Ko´os et al. \STM study of the MoS2 flakes grown on graphite: A model system for atomically clean 2D heterostructure interfaces". In: Carbon 105 (Apr. 2016). doi: 10.1016/j.carbon.2016.04.069. [40] A. Lasia. \Hydrogen evolution reaction". In: Handbook of Fuel Cells. American Cancer Society, 2010. isbn: 9780470974001. doi: 10.1002/9780470974001. f204033. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ 9780470974001.f204033. url: https://onlinelibrary.wiley.com/doi/ abs/10.1002/9780470974001.f204033. [41] Andrzej Lasia. \Hydrogen evolution reaction". In: vol. 2. June 2003, pp. 414{ 440. doi: 10.1002/9780470974001.f204033. [42] Guoqing Li et al. \All The Catalytic Active Sites of MoS2 for Hydrogen Evolution". In: Journal of the American Chemical Society 138 (Nov. 2016). doi: 10.1021/jacs.6b05940. [43] Xiao Li and Hongwei Zhu. \Two-dimensional MoS2: Properties, preparation, and applications". In: Journal of Materiomics 1.1 (2015), pp. 33{44. issn: 2352-8478. doi: https://doi.org/10.1016/j.jmat.2015.03. 003. url: http : / / www . sciencedirect . com / science / article / pii / S2352847815000040. [44] Zhong Lin et al. \Defect engineering of two-dimensional transition metal dichalcogenides". In: 2D Materials 3 (Apr. 2016), p. 022002. doi: 10.1088/ 2053-1583/3/2/022002. [45] Mengxi Liu et al. \Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS 2 /Graphene Heterostructures". In: Small 13 (Aug. 2017), p. 1602967. doi: 10.1002/smll.201602967. [46] Xiaolong Liu et al. \Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene". In: The Journal of Physical Chemistry C 120 (Mar. 2016), pp. 20798{20805. doi: 10.1021/acs.jpcc. 6b02073. [47] Xiaolong Liu et al. \Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene". In: ACS Nano 10 (Nov. 2015), pp. 1067{1075. doi: 10. 1021/acsnano.5b06398. [48] Chih-Pin Lu et al. \MoS2: Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene". In: Physical Review Letters 113 (Sept. 2014). doi: 10.1103/PhysRevLett.113.156804. [49] Arend M van der Zande et al. \Grains and grain boundaries in highly crystalline monolayer molybdenum disulfide". In: Nature materials 12 (May 2013). doi: 10.1038/nmat3633. [50] John William Draper M.D. \LIV. On the production of light by heat". In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 30.202 (1847), pp. 345{360. doi: 10 . 1080 / 14786444708647190. eprint: https://doi.org/10.1080/14786444708647190. url: https: //doi.org/10.1080/14786444708647190. [51] Kin Fai Mak et al. \Atomically Thin MoS2: A New Direct-Gap Semiconductor". In: Phys. Rev. Lett. 105 (13 Sept. 2010), p. 136805. doi: 10.1103/ PhysRevLett.105.136805. url: https://link.aps.org/doi/10.1103/ PhysRevLett.105.136805. [52] Michael Man et al. \Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer". In: Scientific Reports 6 (Feb. 2016), p. 20890. doi: 10.1038/srep20890. [53] P. K. Mohapatra et al. \Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties". In: Applied Physics Letters 108.4 (2016), p. 042101. doi: 10.1063/1.4940751. eprint: https: //doi.org/10.1063/1.4940751. url: https://doi.org/10.1063/1. 4940751. [54] Molybdenum disulfide. https://en.wikipedia.org/wiki/Molybdenum_ disulfide. [55] Azhagurajan Mukkannan et al. \In Situ Visualization of Lithium Ion Intercalation into MoS2 Single Crystals using Differential Optical Microscopy with Atomic Layer Resolution". In: Journal of the American Chemical Society 138 (Feb. 2016). doi: 10.1021/jacs.5b11849. [56] Oerlikon Leybold Vacuum. https://www3.nd.edu/~nsl/Lectures/urls/ LEYBOLD_FUNDAMENTALS.pdf. [57] Oil Sealed Rotary Vane Pumps. https : / / vacaero . com / information - resources/vacuum-pump-technology-education-and-training/195875- oil-sealed-rotary-vane-pumps.html. [58] J. R. Oppenheimer. \Three Notes on the Quantum Theory of Aperiodic Effects". In: Phys. Rev. 31 (1 Jan. 1928), pp. 66{81. doi: 10.1103/PhysRev. 31.66. url: https://link.aps.org/doi/10.1103/PhysRev.31.66. [59] Yixin Ouyang et al. \Activating Inert Basal Planes of MoS2 for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects". In: Chemistry of Materials 28.12 (2016), pp. 4390{4396. doi: 10.1021/acs. chemmater.6b01395. eprint: https://doi.org/10.1021/acs.chemmater. 6b01395. url: https://doi.org/10.1021/acs.chemmater.6b01395. [60] S. H. Pan, E. W. Hudson, and J. C. Davis. \3He refrigerator based very low temperature scanning tunneling microscope". In: Review of Scientific Instruments 70.2 (1999), pp. 1459{1463. doi: 10.1063/1.1149605. eprint: https://doi.org/10.1063/1.1149605. url: https://doi.org/10.1063/ 1.1149605. [61] Pfeiffer Compact Turbo HiPaceTM. https://www.lesker.com/newweb/ vacuum_pumps/turbopump_pfeiffer_hipace.cfm. [62] M. Planck and M. Masius. The Theory of Heat Radiation. Blakiston, 1914. url: http://books.google.co.uk/books?id=2PR%5C_AAAAMAAJ. [63] Jorge Quereda et al. \Strain engineering of Schottky barriers in single- and few-layer MoS2 vertical devices". In: 2D Materials 4 (Jan. 2017). doi: 10. 1088/2053-1583/aa5920. [64] B Radisavljevic et al. \Single-layer MoS2 transistors". In: Nature nanotechnology 6 (Jan. 2011), pp. 147{50. doi: 10.1038/nnano.2010.279. [65] Philipp Rahe, R Bechstein, and A K¨uhnle. \Vertical and lateral drift corrections of scanning probe microscopy images". In: Journal of Vacuum Science & Technology B - J VAC SCI TECHNOL B 28 (May 2010). doi: 10.1116/1.3360909. [66] Residual Gas Analyzer. http://https://www.iitk.ac.in/ibc/RGA.pdf. [67] Benjamin Robinson et al. \Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate". In: 2D Materials 2 (Mar. 2015), p. 015005. doi: 10.1088/2053-1583/2/1/015005. [68] Junga Ryou et al. \Monolayer MoS2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors". In: Scientific reports 6 (July 2016), p. 29184. issn: 2045-2322. doi: 10.1038/srep29184. url: http: //europepmc.org/articles/PMC4932597. [69] Parikshit Sahatiya, S Solomon Jones, and Sushmee Badhulika. \Direct, large area growth of few-layered MoS2 nanostructures on various flexible substrates: growth kinetics and its effect on photodetection studies". In: Flexible and Printed Electronics 3.1 (Jan. 2018), p. 015002. doi: 10.1088/2058- 8585/aaa4a5. url: https://doi.org/10.1088%2F2058-8585%2Faaa4a5. [70] Scanning Tunneling Microscopy. https://www.nanoscience.com/techniques/ scanning-tunneling-microscopy/. [71] L. Schulz. \Sputter ion pumps". In: (1999). [72] Roger F. Sebenik et al. \Molybdenum and Molybdenum Compounds". In: Ullmann’s Encyclopedia of Industrial Chemistry. American Cancer Society, 2000. isbn: 9783527306732. doi: 10 . 1002 / 14356007 . a16 _ 655. eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / 14356007 . a16_655. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/ 14356007.a16_655. [73] Tatsuya Shinagawa, Angel Garcia-Esparza, and Kazuhiro Takanabe. \Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion". In: Scientific reports 5 (Sept. 2015), p. 13801. doi: 10.1038/srep13801. [74] Sebastian Stepanow, Nian Lin, and Johannes V Barth. \Modular assembly of low-dimensional coordination architectures on metal surfaces". In: Journal of Physics Condensed Matter 20 (May 2008), p. 184002. doi: 10.1088/0953- 8984/20/18/184002. [75] Sherman Tan et al. \Chemical Stabilization of 1T’ phase Transition Metal Dichalcogenides". In: Journal of the American Chemical Society 139 (Jan. 2017). doi: 10.1021/jacs.6b13238. [76] Sherman Tan et al. \Temperature and Phase-Dependent Phonon Renormalization in 1T’-MoS2". In: ACS Nano 12 (Apr. 2018). doi: 10.1021/ acsnano.8b02649. [77] J. Tersoff and D. R. Hamann. \Theory of the scanning tunneling microscope". In: Phys. Rev. B 31 (2 Jan. 1985), pp. 805{813. doi: 10.1103/ PhysRevB.31.805. url: https://link.aps.org/doi/10.1103/PhysRevB. 31.805. [78] Charlie Tsai et al. \Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution". In: Nature communications 8 (Apr. 2017), p. 15113. issn: 2041-1723. doi: 10.1038/ncomms15113. url: http://europepmc.org/articles/PMC5530599. [79] Meng-Lin Tsai et al. \Monolayer MoS2 Heterojunction Solar Cells". In: ACS Nano 8.8 (2014). PMID: 25046764, pp. 8317{8322. doi: 10 . 1021 / nn502776h. eprint: https://doi.org/10.1021/nn502776h. url: https: //doi.org/10.1021/nn502776h. [80] A Vazquez Carazo. \Novel piezoelectric transducers for high voltage measurements". In: (July 2002). [81] Damien Voiry, Aditya Mohite, and Manish Chhowalla. \Phase engineering of transition metal dichalcogenides". In: Chem. Soc. Rev. 44 (9 2015), pp. 2702{ 2712. doi: 10.1039/C5CS00151J. url: http://dx.doi.org/10.1039/ C5CS00151J. [82] Jiayu Wan et al. \Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications". In: Chemical Society Reviews 45 (Oct. 2016). doi: 10.1039/c5cs00758e. [83] Shanshan Wang et al. \Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition". In: Chemistry of Materials 26 (Oct. 2014). doi: 10.1021/cm5025662. [84] Matthew Webb et al. \A simple method to produce almost perfect graphene on highly oriented pyrolytic graphite". In: Carbon 49 (Mar. 2011), pp. 3242{ 3249. doi: 10.1016/j.carbon.2011.03.050. [85] What is the difference between Rotary Vane and Diaphragm vacuum pumps? https : / / camblab . info / wp / index . php / what - is - the - difference - between-rotary-vane-and-diaphragm-vacuum-pumps/. [86] Ke Wu et al. \Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement". In: Nano Research 11.8 (Aug. 2018), pp. 4123{4132. issn: 1998-0000. doi: 10.1007/s12274- 018-1999-7. url: https://doi.org/10.1007/s12274-018-1999-7. [87] Fernando Wypych. \1T-MoS2, A New Metallic Modification of Molybdenum Disulfide". In: Journal of The Chemical Society, Chemical Communications 19 (Oct. 1992). doi: 10.1039/c39920001386. [88] Yong Xie et al. \Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications". In: Nanotechnology 28 (Dec. 2016). doi: 10.1088/1361-6528/aa5439. [89] Hai Xu et al. \Observation of Gap Opening in 1T’ Phase MoS2 Nanocrystals". In: Nano Letters 18 (July 2018). doi: 10 . 1021 / acs . nanolett . 8b01953. [90] Eilam Yalon et al. \Energy Dissipation in Monolayer MoS2 Electronics". In: Nano letters 17 (Apr. 2017). doi: 10.1021/acs.nanolett.7b00252. [91] Pengfei Yan et al. \Chemical vapor deposition of monolayer MoS2 on sapphire, Si and GaN substrates". In: Superlattices and Microstructures 120 (May 2018). doi: 10.1016/j.spmi.2018.05.049. [92] Gonglan Ye et al. \Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction". In: Nano letters 16 (Jan. 2016). doi: 10.1021/ acs.nanolett.5b04331. [93] Youngki Yoon, Kartik Ganapathi, and Sayeef Salahuddin. \How Good Can Monolayer MoS2 Transistors Be?" In: Nano Letters 11.9 (2011). PMID: 21790188, pp. 3768{3773. doi: 10.1021/nl2018178. eprint: https://doi. org/10.1021/nl2018178. url: https://doi.org/10.1021/nl2018178. [94] Chendong Zhang et al. \Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending". In: Nano letters 14 (May 2014). doi: 10.1021/nl501133c. [95] Wensi Zhang et al. \Synthesis and sensor applications of MoS2-based nanocomposites". In: Nanoscale 7 (44 2015), pp. 18364{18378. doi: 10.1039/C5NR06121K. url: http://dx.doi.org/10.1039/C5NR06121K. [96] G´abor Zsolt Magda et al. \Exfoliation of large-area transition metal chalcogenide single layers". In: Scientific Reports 5 (Oct. 2015), p. 14714. doi: 10.1038/srep14714. |