帳號:guest(3.149.251.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張 森
作者(外文):Zhang, Sen
論文名稱(中文):p類型Banach空間中逐行獨立的隨機元素陣列的完全收斂性質之研究
論文名稱(外文):Complete Convergence of Sums of Row-wise Independ-ent Random Elements in Type p Banach Space
指導教授(中文):胡殿中
高淑蓉
指導教授(外文):Hu, Tien-Chung
Kao, Shu-Jung
口試委員(中文):徐南蓉
洪慧念
樊采虹
趙一峰
口試委員(外文):Hsu, Nan-Jung
Hung, Hui-Nien
Fan, Tsai-Hung
Chao, I-Feng
學位類別:博士
校院名稱:國立清華大學
系所名稱:數學系
學號:106021871
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:64
中文關鍵詞:逐行獨立隨機元素p類型可分離的Banach空間完全收斂
外文關鍵詞:row-wise independentrandom elementstype p separable Banach spacecomplete convergence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文主要考慮在p類型可分離的Banach空間上的逐行獨立的隨機元素陣列的完全收斂性質。在第一章中,我們給出了隨機元素的基本定義,介紹了p類型可分離的Banach空間及其基本性質,引入了完全收斂性質的基本概念及其拓展,並敘述和證明了幾個必要的不等式。在第二章中,我們從Kolmolgorov三級數定理獲得啟發,給出了在p類型可分離的Banach空間上的隨機元素陣列的完全收斂性定理。
在第三章中,我們給出了一些特殊形態的隨機元素陣列完全收斂性的判別法,並研究了加權的隨機元素陣列的完全收斂性。在第四章中,我們構造了四個重要的例證,以解釋說明上述工作的意義。在第五章中,我們總結了全文,並提供了一些改進的方向。
In this thesis, we investigate the complete convergence for row sums of arrays of row-wise independent random elements taking values in type p separable Banach spaces. In Chapter 1, we introduce basic definitions and properties of random elements taking val-ue in separable Banach spaces and type p separable Banach spaces. And we introduce the basic concept of complete convergence of random elements and their improvement and describe and prove several necessary inequalities. In Chapter 2, being inspired by the Kolmogorov three-series theorem, we obtain two complete convergence theorems for arrays of random elements taking values in type p separable Banach spaces. In Chap-ter 3, We provide several criteria of complete convergences for some particular cases of random element arrays. We also investigate complete convergences of row-wise weighted sums for arrays of random elements. In Chapter 4, we construct four illustra-tive examples to explain those works in previous Chapters. In chapter 5, we summarize and provide some possible directions for study in the future.
第一章 預備知識 1
1.1可分離的Banach空間上的隨機元素簡介 1
1.2 p類型可分離的Banach空間簡介 5
1.3 完全收斂性質簡介 7
1.4 一些必要的不等式 9
第二章 逐行獨立的隨機元素陣列的完全收斂性之研究 15
2.1 逐行獨立的隨機元素陣列和的完全收斂性質 15
2.2 逐行獨立的隨機元素陣列的最大和的完全收斂性質 19
第三章 隨機元素陣列的完全收斂性質之判別 29
3.1 特殊隨機元素陣列的完全收斂性質判別法 29
3.2 加權的隨機元素陣列的完全收斂性質 39
第四章 一些重要的例證 44
4.1收斂性不必然之例證 44
4.2 p類型可分離的Banach空間必要性之例證 46
4.3定理加強性之例證 49
4.4 定理差異性之例證 52
第五章 總結及一些開放性的問題 57
5.1 全文總結 57
5.2 一些開放性的問題 57
參考文獻 63



[1] Hsu, P.L., and Robbins, H. (1947). Complete convergence and the law of large
numbers. Proc. Nat. Acad. Sci. USA 33:25-31.

[2] Erdös, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20:286-291.

[3] Mourier, E.(1953). Eléments aleatories dan un espace de Banach. Ann. Inst. Henri Poincaré. 13:159-244.

[4] Hoffmann-Jørgensen, J., and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4:587-599.

[5] Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52:159-186.
[6] Woyczynski, W.A. (1980). On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Prob. Math. Statist. 1:117-131.

[7] Acosta, A.D. (1981). Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Prob. 9: 157-161.

[8] Rosenthal, H.P. (1970). On the subspaces of Lp (p > 2) spanned by sequences of
independent random variables. Israel J. Math. 8:273-303.

[9] Ledoux, M., and Talagrand, M. (2011). Probability in Banach spaces: Isoperimetry and processes. Reprint of the 1991 edition. Classics in Mathematics. Springer-Verlag, Berlin.

[10] Rosalsky, A., and Van Thanh, L. (2007). On the strong law of large numbers for se-quences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces. Prob. Math. Statist. 27(2):205-222.

[11] Taylor, R.L. (1978). Stochastic convergence of weighted sums of random elements in linear spaces. Lecture Notes in Math. Vol. 672. Springer-Verlag, Berlin.

[12] Hu, T.C., F. Moricz, F. and Taylor, R.L. (1989). Strong laws of large numbers for arrays of row-wise independent random variables. Acta. Math. Hung. 54 (1-2):153-162.

[13] Wang, X., Bhaskara Rao, B. and Yang, X. (1993). Convergence rates on strong laws of large numbers for arrays of row-wise independent elements. Stochastic Anal. And Appl, 11 No.1:115-132.

[14] Hu, T.C., Szynal, D., and Volodin, A. (1998). A note on complete convergence for
arrays. Statist. Prob. Lett. 38:27-31.

[15] Hu, T.C., Rosalsky, A., Szynal, D., and Volodin, A. (1999). On complete conver-gence for arrays of row-wise independent random elements in Banach spaces. Stochastic Anal. Appl. 17:963-992.
[16] Hu, T.C., and Volodin, A. (2000). A note on complete convergence for arrays. Stat-ist. Prob. Lett. 38:27-31

[17] Hu, T.C., Ordonez-Cabrera, M., Sung, S.H., and Volodin, A. (2003). Complete con-vergence for arrays of row-wise independent random variables. Commun. Korean Math. Soc. 18:375-383.

[18] Chen, P.Y., and Gan, S.X. (2004). Remark on complete convergence for arrays. Un-published manuscript.

[19] Sung, S.H., Volodin, A., and Hu, T.C. (2005). More on complete convergence for arrays. Statist. Prob. Lett. 71(4):303-311.

[20] Sung, S.H., Ordonez-Cabrera, M., and Hu, T. C. (2007). On complete convergence for arrays of row-wise independent random elements. J. Korean Math. Soc. 44:467-476.

[21] Kruglov, V.M., Volodin, A., and Hu, T.C. (2006). On complete convergence for
arrays. Statist. Prob. Lett. 76:1631-1640.

[22] Hu, T.C., Rosalsky, A., and Wang, K.L. (2011). Some complete convergence results for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Lobachevskii J. Math. 32(1):71-87.

[23] Hu, T.C., Rosalsky, A., and Volodin, A. (2012). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Stochastic Anal. Appl. 30(2):343-353.

[24] Hu, T.C., Rosalsky, A., Volodin, A., and Zhang, S. (2020). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rade-macher type p Banach spaces. II. Stochastic Anal. Appl. 39(1):177-193.

[25] Chen, P.Y., Hernandez, V., Urmeneta, H., and Volodin, A. (2010). A note on com-plete convergence for arrays of row-wise independent Banach space valued random el-ements. Stochastic Anal. Appl. 28:565-575.

[26] Hernandez, V., Urmeneta, H., and Volodin, A. (2007). On complete convergence for arrays of random elements and variables. Stochastic Anal. Appl. 25:281-291.

[27] Kuczmaszewska, A., and Szynal, D. (1994). On complete convergence in a Banach space. Internat. J. Math. Math. Sci. 17(1):1-14.

[28] Kuczmaszewska, A. (2004). On some conditions for complete convergence for ar-rays. Statist. Prob. Lett. 66:399-405.

[29] Sung, S.H., and Volodin, A. (2006). On the rate of complete convergence for weighted sums of arrays of random elements. J. Korean Math. Soc. 43:815-828.

[30] Sung, S.H., Urmeneta, H., and Volodin, A. (2008). On complete convergence for
arrays of random elements. Stochastic Anal. Appl. 26:595-602.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *