|
[1] Hsu, P.L., and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA 33:25-31.
[2] Erdös, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20:286-291.
[3] Mourier, E.(1953). Eléments aleatories dan un espace de Banach. Ann. Inst. Henri Poincaré. 13:159-244.
[4] Hoffmann-Jørgensen, J., and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Prob. 4:587-599.
[5] Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52:159-186. [6] Woyczynski, W.A. (1980). On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces and related rates of convergence, Prob. Math. Statist. 1:117-131.
[7] Acosta, A.D. (1981). Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Prob. 9: 157-161.
[8] Rosenthal, H.P. (1970). On the subspaces of Lp (p > 2) spanned by sequences of independent random variables. Israel J. Math. 8:273-303.
[9] Ledoux, M., and Talagrand, M. (2011). Probability in Banach spaces: Isoperimetry and processes. Reprint of the 1991 edition. Classics in Mathematics. Springer-Verlag, Berlin.
[10] Rosalsky, A., and Van Thanh, L. (2007). On the strong law of large numbers for se-quences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces. Prob. Math. Statist. 27(2):205-222.
[11] Taylor, R.L. (1978). Stochastic convergence of weighted sums of random elements in linear spaces. Lecture Notes in Math. Vol. 672. Springer-Verlag, Berlin.
[12] Hu, T.C., F. Moricz, F. and Taylor, R.L. (1989). Strong laws of large numbers for arrays of row-wise independent random variables. Acta. Math. Hung. 54 (1-2):153-162.
[13] Wang, X., Bhaskara Rao, B. and Yang, X. (1993). Convergence rates on strong laws of large numbers for arrays of row-wise independent elements. Stochastic Anal. And Appl, 11 No.1:115-132.
[14] Hu, T.C., Szynal, D., and Volodin, A. (1998). A note on complete convergence for arrays. Statist. Prob. Lett. 38:27-31.
[15] Hu, T.C., Rosalsky, A., Szynal, D., and Volodin, A. (1999). On complete conver-gence for arrays of row-wise independent random elements in Banach spaces. Stochastic Anal. Appl. 17:963-992. [16] Hu, T.C., and Volodin, A. (2000). A note on complete convergence for arrays. Stat-ist. Prob. Lett. 38:27-31
[17] Hu, T.C., Ordonez-Cabrera, M., Sung, S.H., and Volodin, A. (2003). Complete con-vergence for arrays of row-wise independent random variables. Commun. Korean Math. Soc. 18:375-383.
[18] Chen, P.Y., and Gan, S.X. (2004). Remark on complete convergence for arrays. Un-published manuscript.
[19] Sung, S.H., Volodin, A., and Hu, T.C. (2005). More on complete convergence for arrays. Statist. Prob. Lett. 71(4):303-311.
[20] Sung, S.H., Ordonez-Cabrera, M., and Hu, T. C. (2007). On complete convergence for arrays of row-wise independent random elements. J. Korean Math. Soc. 44:467-476.
[21] Kruglov, V.M., Volodin, A., and Hu, T.C. (2006). On complete convergence for arrays. Statist. Prob. Lett. 76:1631-1640.
[22] Hu, T.C., Rosalsky, A., and Wang, K.L. (2011). Some complete convergence results for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Lobachevskii J. Math. 32(1):71-87.
[23] Hu, T.C., Rosalsky, A., and Volodin, A. (2012). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rademacher type p Banach spaces. Stochastic Anal. Appl. 30(2):343-353.
[24] Hu, T.C., Rosalsky, A., Volodin, A., and Zhang, S. (2020). A complete convergence theorem for row sums from arrays of row-wise independent random elements in Rade-macher type p Banach spaces. II. Stochastic Anal. Appl. 39(1):177-193.
[25] Chen, P.Y., Hernandez, V., Urmeneta, H., and Volodin, A. (2010). A note on com-plete convergence for arrays of row-wise independent Banach space valued random el-ements. Stochastic Anal. Appl. 28:565-575.
[26] Hernandez, V., Urmeneta, H., and Volodin, A. (2007). On complete convergence for arrays of random elements and variables. Stochastic Anal. Appl. 25:281-291.
[27] Kuczmaszewska, A., and Szynal, D. (1994). On complete convergence in a Banach space. Internat. J. Math. Math. Sci. 17(1):1-14.
[28] Kuczmaszewska, A. (2004). On some conditions for complete convergence for ar-rays. Statist. Prob. Lett. 66:399-405.
[29] Sung, S.H., and Volodin, A. (2006). On the rate of complete convergence for weighted sums of arrays of random elements. J. Korean Math. Soc. 43:815-828.
[30] Sung, S.H., Urmeneta, H., and Volodin, A. (2008). On complete convergence for arrays of random elements. Stochastic Anal. Appl. 26:595-602.
|