|
[1] H. Alexander, Polynomial approximation and hulls in sets of finite linear measure in C^n, Amer. J. Math. 93 (1971), 65-74.
[2] H. Alexander, Holomorphic chains and the support hypothesis conjecture, JAMS, 10, No. 1(1997), 123-138.
[3] J. P. Demailly, Complex analytic and differential geometry, lecture notes on the webpage of the author.
[4] T. C. Dinh, M. G. Lawrence, Polynomial hulls and positive currents, Ann. Fac. Sci. Toulouse Math., XII(2003), 317-334.
[5] T. C. Dinh, N. Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math., Vol. 203, No. 1(2009), 1-82.
[6] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, Amer. Math. Soc., Providence, RI, 1998.
[7] H. Federer, Some theorems on integral currents, Trans. of AMS, Vol. 117(1965), 4367.
[8] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
[9] H. Federer, Real flat chains, cochains and variational problem, Vol. 24, No. 4(1974), 351-407.
[10] H. Federer, W. H. Fleming, Normal and integral currents, Ann. Math., 72, No. 3(1960), 458-520.
[11] E. Friedlander, H. B. Lawson, A theory of algebraic cocycles, Annals of Math., 136(1992), 361-428.
[12] T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969.
[13] R. Harvey, Holomorphic chains and their boundaries, Proc. Sym. Pure Math., 30 part 1 (1977), 309-392.
[14] R. Harvey, H. B. Lawson, On the boundaries of complex analytic varieties, Ann. of Math., 102(1975), 233-290.
[15] R. Harvey, H. B. Lawson, A introduction to potential theory in calibrated geometry, Amer. J. Math. 131, no. 4 (2009), 893-944.
[16] R. Harvey, H. B. Lawson, Duality of positive currents and plurisubharmonic functions in calibrated geometry, Amer. J. Math. 131, no. 5 (2009), 1211-1240.
[17] F. R. Harvey, J. R. King, On the Structure of Positive Current, Inventiones math. 15 (1972), 47-52.
[18] F. R. Harvey, A. W. Knapp, Positive (p,p) forms, Wirtinger’s inequality, and currents, Value distribution theory, Part A (Proc. Tulane Univ. Program on Value-Distribution Theorey in Complex Analysis and Related Topics in Differential Geometry, 1972-1973), pp. 43-62. Dekker, New York, 1974.
[19] R. Harvey, B. Shiffman, A characterization of holomorphic chains, Ann. of Math., 99, No. 3, (1974), 553-587.
[20] J. R. King, The currents defined by analytic varieties, Acta Math. 127(1971), 185-220.
[21] S. G. Krantz, H. R. Parks, Geometric integration theory, Birkhauser, 2008.
[22] H. B. Lawson, The stable homology of a flat torus, Math. Scand., 36(1975), 49-73.
[23] H. B. Lawson, Algebraic cycles and homotopy theory, Annals of Math., 129(1989), 253-291.
[24] P. Lelong, Inte´gration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957) 239262.
[25] L. Simon, Lectures on Geometric Measure Theory, Australian National University Cen- tre for Mathematical Analysis, Canberra, 1983.
[26] B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15(1968), 111-120.
[27] Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27(1974), 1-2, 53-156.
[28] G. Stolzenberg, Volumes, limits, and extensions of analytic varieties, Lecture Notes in Math., Vol. 19, 1966.
[29] J. H. Teh, C. J. Yang, Real rectifiable currents and algebraic cycles, arXiv:1810.00355.
[30] J. H. Teh, C. J. Yang, A characterization of real holomorphic chains and applications in the study of algebraic cycles, arXiv:1901.04152
[31] J. H. Teh, C. J. Yang, Bott-Chern homology, Bott-Chern differential cohomology and the Hodge conjecture, arXiv: 1910.01780
[32] J. Wermer, Banach Algebras and Several Complex Variables, Second Edtion, Springer- Verlag, New York, 1976.
|