帳號:guest(3.129.249.45)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮赫端
作者(外文):Dung, Ha Tuan
論文名稱(中文):譜的幾何性質和p-拉普拉斯的梯度估計
論文名稱(外文):Geometric properties and gradient estimates for p-Laplacian
指導教授(中文):宋瓊珠
指導教授(外文):Sung, Chiung-Jue
口試委員(中文):邱鴻麟
蕭育如
口試委員(外文):Chiu, Hung-Lin
Syau, Yu-Ru
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數學系
學號:106021422
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:148
中文關鍵詞:Ricci-Bourguignon流第一個特徵值分裂定理古解熱方程
外文關鍵詞:Ricci-Bourguignon flowFirst eigenvalueSplitting theoremAncient solutionHeat equation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:402
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在論文中,當Ricci曲率有下界,我們研究了完備黎曼流形上p-Laplacian的譜幾何和梯度估計的性質。首先,我們證明了拉普拉斯算子的分裂型定理。然後,我們給出與p-Laplacian的第一特徵值對應的正p-特徵函數的局部梯度估計。此外,我們證明了p-特徵函數的最優全局梯度估計。另一方面,我們首先推導出正的p-Laplacian熱方程解的Li-Yau型梯度估計。最後,我們證明了在一些不同的曲率假設下,p-Laplacian的第一個特徵值沿著Ricci-Bourguignon流幾乎是隨處嚴格單調遞增和可微分的。
In this thesis, we study the properties of the spectrum geometric and gradient estimates for p-Laplacian on complete Riemannian manifolds with the Ricci curvature is bounded from below. First, we prove a splitting type theorem for the Laplacian. Then, we give a local gradient estimate for the positive p-eigenfunction associated to the first eigenvalue of the p-Laplacian. Moreover, we show global sharp gradient estimates for p-eigenfunctions. On the other hand, we first derive a Li-Yau type gradient estimate for the positive solutions to the p-Laplacian heat equation. Finally, we prove that the first eigenvalue of the p-Laplacian is strictly monotone increasing and differentiable almost everywhere along with the RicciBourguignon flow under some different curvature assumptions.
Contents
Acknowledgement i
Abstract iii
1 Preliminaries 1
1.1 Bochner-Weitzenb¨ock formula and Comparison Theorems . . . . . . .1
1.2 Ends of a manifold and parabolicity . . . . . . . . . . . . . . . . . . . . . . . 6
2 Decay estimate and splitting type theorem for Laplacian 9
2.1 Decay estimate for Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Splitting type theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Local gradient estimates for p-Laplacian 40
3.1 Estimate the norm Lb1 for the gradient of p-eigenfunctions . . . . . .41
3.2 The Moser iteration technique and local gradient estimates for p-Laplacian . 59
4 Sharp gradient estimate and spectral rigidity for p-Laplacian 64
4.1 Sharp gradient estimate for p-Laplacian . . . . . . . . . . . . . . . . . . . . . 64
4.2 Structure at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Gradient estimates for the p-Laplacian heat equations 102
5.1 Gradient estimate for the p-Laplacian heat equation . . . . . . . . . . . 103
5.2 Sharp gradient estimate for the heat equation . . . . . . . . . . . . . . . . . 114
6 Monotonicity of eigenvalues of the p-Laplace operator under the RicciBourguignon flow 124
6.1 Monotonicity of eigenvalues of the p-Laplace operator . . . . . . . . .124
6.2 Monotonic quantities along Ricci-Bourguignon flow . . . . . . . . . . . 136
References 142
[1] T. Aubin, Métriques riemanniennes et courbure, J. Differential Geom. 4 (1970), 383-424.
[2] D. Bakry and Z. M. Qian, Volume comparison theorems without Jacobi fields, Current Trends in Potential Theory, Theta Ser. Adv. Math. 4, Theta, Bucharest, 2005, 115-122.
[3] G. I. Barenblatt, On self-similar motions of a compressible fluid in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 679-698.
[4] J.-P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis (D. Ferus, W. K¨uhnel, U. Simon and B. Wegner, eds.), Lecture Notes in Math. 838, Springer, Berlin, 1981, 42-63.
[5] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), no. 2, 217-278.
[6] K. Brighton, A Liouville-type Theorem for Smooth Metric Measure spaces, J. Geom. Anal. 23 (2013), no. 2, 562-570.
[7] S. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequality, Math. Z. 252 (2006), no. 2, 275-285.
[8] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), no. 2, 213-230.
[9] E. Calabi, An extension of E.Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56.
[10] X. Cao, Eigenvalues of −∆ + R2 on manifolds with nonnegative curvature operator, Math. Ann. 337 (2007), no. 2, 435-441.
[11] X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4075-4078.
[12] X. Cao, S. Hou, J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow, Math. Ann. 354 (2012), no. 2, 451-463.
[13] H. Cao, Y. Shen, S. Zhu, The structure of stable minimal hypersurfaces in Rn+1, Math. Res. Lett. 4 (1997), no. 5, 637-644.
[14] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The RicciBourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337-370.
[15] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z.
143 (1975), no. 3, 289-297.
[16] S. Y. Cheng, Liouville theorem for harmonic maps. Geometry of the Laplace operator, Proc. Sympos. Pure Math. Univ. Hawaii, Honolulu, Hawaii, 1979, 147-151.
[17] S. Y. Cheng, S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354.
[18] H. I. Choi, On the Liouville theorem for harmonic maps, Proc. Amer. Math. Soc. 85 (1982), no. 1, 91-94.
[19] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci flow: techniques and applications, II: Analytic aspects, Mathematical Surveys and Monographs 144, American Mathematical Society, Providence, RI, 2008.
[20] H. T. Dung, N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, to appear Proc. Amer. Math. Soc.
[21] H. T. Dung, Monotonicity of eigenvalues of the p-Laplace operator under the RicciBourguignon flow, to appear in Kodai Math. J.
[22] N. T. Dung, Rigidity properties of smooth metric measure spaces via the weighted p-Laplacian, Proc. Amer. Math. Soc. 145 (2017), no. 3, 1287-1299.
[23] N. T. Dung, N. D. Dat, Weighted p-harmonic functions and rigidity of smooth metric measure spaces, J. Math. Anal. Appl. 443 (2016), no. 2, 959-980.
[24] N. T. Dung, N. N. Khanh, Q. A. Ngo, Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces, Manuscripta Math. 155 (2018), no. 3-4, 471-501.
[25] N. T. Dung, N. N. Khanh, T. C. Son, The number of cusps of complete Riemannian manifolds with finite volume, Taiwanese J. Math. 22 (2018), no. 6, 1403-1425.
[26] A. E. Fischer, An introduction to conformal Ricci flow, Class.Quantum Grav. 21 (2004), no. 3, 171-218.
[27] J. F. Grosjean, p-Laplace operator and diameter of manifolds, Ann. Glob. Anal. Geom. 28 (2005), no. 3, 257-270.
[28] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.
[29] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126.
[30] G. Huang, B. Ma, Gradient estimates and Liouville type theorems for a nonlinear elliptic equation, Arch. Math. 105 (2015), no. 5, 491-499.
[31] X. R. Jiang, Gradient estimate for a nonlinear heat equation on Riemannian manifolds, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3635-3642.
[32] S. Kawai, N. Nakauchi, The first eigenvalue of the p-Laplacian on a compact Riemannian manifold, Nonlinear Anal. 55 (2003), no. 1-2, 33-46.
[33] B. Kotschwar and L. Ni, Gradient estimate for p-harmonic function, 1/H flow and an entropy formula, Ann. Sci. École. Norm. Sup. 42 (2009), no.1, 1-36.
[34] K. H. Lam, Spectrum of the Laplacian on manifolds with Spin (9) holonomy, Math.
Res. Lett. 15 (2008), no. 6, 1167- 1186.
[35] K. H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062.
[36] X. D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), no. 10, 1295-1361.
[37] P. Li, Harmonic functions and applications to complete manifolds, Preprint (available on the author’s homepage).
[38] P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics 134, Cambridge University Press, 2012.
[39] P. Li, J. F. Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35 (1992), no. 2, 359-383.
[40] P. Li, J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534
[41] P. Li, J. Wang, Complete manifolds with positive spectrum II, J. Differential Geom. 62 (2002), no. 1, 143-162.
[42] P. Li, J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole Norm. Sup. ´ 39 (2006), no. 6, 921-982.
[43] P. Li, J. Wang, Connectedness at infinity of complete K¨ahler manifolds, Amer. J. Math. 131 (2009), no. 3, 771-817.
[44] P. Li, S. T. Yau, On the parabolic kernel of the Schr¨odinger operator, Acta Math. 156 (1986), no. 3-4, 153-201.
[45] Y. Li, Li-Yau-Hamilton estimates and Bakry-Émery Ricci curvature, Nonlinear Anal. 113 (2015), 1-32.
[46] F. H. Lin, Q. S. Zhang, On ancient solutions of the heat equations, to appear in Comm. Pure Appl. Math, arXiv:1712.0409.
[47] P. Lu, J. Qing, and Y. Zheng, A note on conformal Ricci flow, Pacific J. Math. 268 (2014), no. 2, 413-434.
48] L. Ma, Eigenvalue monotonicity for the Ricci-Hamilton flow, Ann. Glob. Anal. Geom. 29 (2006), no. 3, 287-292.
[49] J. Mao, Monotonicity of the first eigenvalue of the Laplace and p-Laplace operators under forced mean curvature flow, J. Korean Math. Soc. 55 (2018), no. 6, 1435-1458.
[50] A. M. Matei, First eigenvalue for the p-Laplace operator, Nonlinear Anal. 39 (2000), no. 8, 1051-1068.
[51] R. Moser, The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc. 9 (2007), no. 1, 77-83.
[52] A. Mukherjea and K. Pothoven, Real and functional analysis, Part A: Real analysis, 2nd ed., Mathematical Concepts and Methods in Science and Engineering 27, Plenum Press, New York, 1984.
[53] O. Munteanu, and J. Wang, Smooth metric measure spaces with nonnegative curvature, Comm. Anal. Geom. 19 (2011), no. 3, 451-486.
[54] O. Munteanu, and J. Wang, Analysis of the weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55-94.
[55] L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series 289, Cambridge University Press, Cambridge, 2002.
[56] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices (1992), no. 2, 27-38.
[57] R. Schoen, S. T. Yau, Lectures on Differential Geometry, International Press, Boston, 1994.
[58] P. Souplet, Q. S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045-1053.
[59] C.-J. A. Sung, J. Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math. Res. Lett. 21 (2014), no. 4, 885-904.
[60] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150.
[61] J. L. Vazquez, Smoothing and decay estimates for nonlinear diffusion equations: Equations of porous medium type, Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, 2006.
[62] L. F. Wang, A splitting theorem for the weighted measure, Ann. Glob. Anal. Geom. 42 (2012), no. 1, 79-89.
[63] L. F. Wang, On Lp f-spectrum and τ-quasi-Einstein metric, J. Math. Anal. Appl. 389 (2012), no. 1, 195-204.
[64] X. Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), no. 5-6, 671-688.
[65] X. Wang, On the L2-cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), no. 2, 311-327.
[66] X. Wang, L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian manifolds, Comm. Anal. Geom. 19 (2011), no. 4, 759-771.
[67] Y. Wang, J. Yang and, W. Chen, Gradient estimates and entropy formulae for weighted p-heat equations on smooth metric measure spaces, Acta Math. Sci 33B (2013), no. 4, 963-974.
[68] G. F. Wei, W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405.
[69] J. Y. Wu, Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds, J. Math. Anal. Appl. 369 (2010), no. 1, 400-407.
[70] J. Y. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 8, 1591-1598.
[71] J. Y. Wu, E.-M. Wang and Y. Zheng, First eigenvalue of the p-Laplace operator along the Ricci flow, Ann. Global Anal. Geom. 38 (2010), no. 1, 27-55.
[72] J. Y. Wu, Splitting theorems on complete manifolds with Bakry-Emery curvature, arXiv: math.DG/1112.6302.
[73] J. Y. Wu, A note on the splitting theorem for the weighted measure, Ann. Glob. Anal. Geom. 43 (2013), no. 3, 287-298.
[74] J. Y. Wu, Lp-Liouville theorems on complete smooth metric measure spaces, Bull. Sci. Math. 138 (2014), no. 4, 510-539.
[75] J. Y. Wu, Elliptic gradient estimates for a weighted heat equation and applications, Math. Z, 280 (2015), no. 1-2, 451-468.
[76] J. Y. Wu Elliptic gradient estimates for a nonlinear heat equation and applications, Nonlinear Anal. 151 (2017), 1-17.
[77] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
[78] R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994), no. 1, 35-50.
[79] L. Zhao, The first eigenvalue of the p-Laplace operator under powers of the mth mean curvature flow, Results Math. 63 (2013), no. 3-4, 937-948.
[80] F. Zeng, Q. He and B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Pacific J. Math. 296 (2018), no. 1, 1-20.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *