帳號:guest(18.188.226.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭 安
作者(外文):Cheng, An
論文名稱(中文):質子與人體元素的作用截面之分析與應用
論文名稱(外文):Analysis and application of the Cross Section of proton induced reaction in human body element
指導教授(中文):蔡惠予
指導教授(外文):Tsai, Hui-Yu
口試委員(中文):張似瑮
林明緯
詹美齡
口試委員(外文):Chang, Szu-Li
Lin, Ming-Wei
Jan, Meei-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:106013517
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:質子治療正子斷層掃描瞬發加馬輻射微觀截面巨觀截面
外文關鍵詞:proton therapypositron emission tomographyPETprompt gammacross sectionmacroscopic cross section
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在質子治療的過程中,質子射程的準確度十分重要,目前常見的質子射程的間接驗證方式有以瞬發加馬成像,以偵測質子誘發瞬發加馬輻射回推質子射程;或是正子斷層掃描,即以正子釋出核種的活度進行質子射程的回推。除了實驗之外,也會以蒙地卡羅程式進行模擬來確認質子誘發瞬發加馬輻射與質子誘發正子釋出核種的產量來確定實驗,但各個蒙地卡羅程式所使用的內建作用截面資料庫都不相同,就會造成模擬的結果也不同。本研究目的為建立一個由實驗的作用截面所構成的作用截面資料庫,並可以將這些作用截面資料應用於計算質子誘發瞬發加馬輻射與質子誘發正子釋出核種的產量。
實驗的作用截面資料是以EXFOR資料庫中所記載的為主,質子誘發瞬發加馬輻射會根據其產生機制與參考文獻所使用的參數進行搜索,搜尋完後會針對其產生不同能量的瞬發加馬輻射進行整理;質子誘發正子釋出核種會依照其產物進行搜索,搜尋完後會針對其產生不同正子釋出核種的反應進行整理,也會根據不同的組織進行巨觀截面的換算,最後會將這些資料建立作用截面資料庫,資料庫內包含質子誘發瞬發加馬輻射與質子誘發正子釋出核種的作用截面資料,以及轉換為巨觀截面的檔案。
本研究所建立之作用截面資料庫建立完成後,會將這些作用截面資料進行產量的換算,換算的結果會先根據參考文獻進行驗證,最後再帶入實驗的應用。驗證結果顯示以運算的方式可以良好的重現以蒙地卡羅程式模擬的產量,以及本研究所使用之實驗作用截面可以一定程度的與其他參考文獻之所作的產量結果相符合。最後再將其帶入人體組織材料推定射程,其所得到之結果也可以與參考文獻相符。證明本研究所建立之作用截面資料庫與產量運算的方法可以應用於產量的運算中。
The accuracy of the proton range is essential in the process of proton therapy. The technology of indirect proton range verification now includes prompt gamma imaging, which detects the proton-induced prompt gamma-ray, and the positron emission tomography, which estimated the range from the activity of the positron emission. Except for the experiments, Monte Carlo simulations are also used to simulation the yields of proton-induced prompt gamma-ray and proton-induced positron emitter in order to ensure the result of the experiment. But the built-in cross section data library used by each Monte Carlo Simulation code is different, and it will make the simulation results different. The purpose of this research is to establish the cross section data library composed of experimental action cross-sections, and this cross section data library can be used to calculate the yield of proton-induced prompt gamma-ray and proton-induced positron emission.
The experimental cross section data in the cross section data library is mainly based on the records in the EXFOR online data library. proton-induced prompt gamma-ray will be searched according to its mechanism and the searching quantity used in other references. After searching, the data will be arranged by different energies. Proton-induced positron emitter will be searched according to the products of the mother nuclide. After searching, they will be sorted out for their reactions to produce different positron emitter. macroscopic cross section conversion will also be performed according to various organizations. Finally, these data will be built into a cross section data library, which contains the cross-section data of the proton-induced prompt gamma-ray and the proton-induced positron emitter, as well as the files of the macro cross-section converting.
After building the cross section data library, we will take the data from the library to calculate the yield. The calculated yield will be verified by the reference and brought into the application of the human organ simulation. The verification results show that the yield, which is simulated by the Monte Carlo simulation code can be reproduced well by calculated yield. Finally, the data from the Cross Section data library is brought into the human organ material to estimate the range, and the results obtained can also be consistent with the reference. It is proved that the method of yield calculation and the data of the cross section data library which by this research can be applied to the calculation of yield of proton induced-prompt gamma-ray and proton induced-positron emitter.
摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究目的及動機 1
1.2 研究方法與步驟 4
1.3 名詞解釋 6
第二章 質子治療與射程驗證方法 7
2.1 瞬發加馬輻射簡介 7
2.1.1 質子與物質作用 7
2.1.2 質子治療設施之發展 9
2.1.3 質子治療之範圍驗證的發展 9
2.1.4 質子治療射程驗證之實驗結果 12
2.2 人體組成元素 13
第三章 作用截面資料應用於質子射程驗證 14
3.1 作用截面資料庫 14
3.1.1 Evaluated Nuclear Data File, ENDF 14
3.1.2 Experimental Nuclear Reaction Data, EXFOR 17
3.1.3 作用截面資料選取 20
3.2 作用截面實驗概要與模擬之應用 21
3.2.1 作用截面實驗概要 21
3.2.2 作用截面之模擬應用 23
3.3 建立作用截面之資料庫 26
第四章 產量運算的方法與驗證 37
4.1 產量運算方法 37
4.1.1 蒙地卡羅程式PHITS模擬質子通量與深度劑量曲線 37
4.1.2 作用截面換算至產量與深度之方法 40
4.2 運算方法可行性之驗證 42
4.2.1 應用於正子釋出核種之活度量測實驗之驗證 47
4.2.2 應用於質子誘發瞬發加馬量測實驗上之驗證 48
第五章 方法應用、結論及未來工作 53
5.1 應用於人體材料:肝臟與肋骨 53
5.2 研究結論 64
5.3 未來工作 65
參考文獻 67


[1] T.Jones andD.Townsend, “History and future technical innovation in positron emission tomography,” J. Med. Imaging, vol. 4, no. 1, p. 011013, 2017.
[2] J.Beebe-Wang, P.Vaska, F. A.Dilmanian, S. G.Peggs, andD. J.Schlyer, “Simulation of proton therapy treatment verification via PET imaging of induced positron-emitters,” Conf. Rec. 2003 IEEE Nucl. Sci. Symp. (IEEE Cat. No.03CH37515), vol. 4, no. October, pp. 2496–2500, 2003.
[3] E.Seravalli et al., “Monte Carlo calculations of positron emitter yields in proton radiotherapy,” Phys. Med. Biol., vol. 57, no. 6, pp. 1659–1673, 2012.
[4] J. M.Verburg, H. A.Shih, andJ.Seco, “Simulation of prompt gamma-ray emission during proton radiotherapy,” Phys. Med. Biol., vol. 57, no. 17, pp. 5459–5472, 2012.
[5] H.Paganetti, Proton Therapy Physics. CRC PRESS, 2016.
[6] M. G.Bisogni et al., “INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy,” J. Med. Imaging, vol. 4, no. 1, p. 011005, 2016.
[7] J.Krimmer, D.Dauvergne, J. M.Létang, andTesta, “Prompt-gamma monitoring in hadrontherapy: A review,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 878, no. July 2017, pp. 58–73, 2018.
[8] C. H.Min, C. H.Kim, M. Y.Youn, andJ. W.Kim, “Prompt gamma measurements for locating the dose falloff region in the proton therapy,” Appl. Phys. Lett., vol. 89, no. 18, pp. 2–5, 2006.
[9] J. M.Verburg, K.Riley, T.Bortfeld, andJ.Seco, “Energy- and time-resolved detection of prompt gamma-rays for proton range verification,” Phys. Med. Biol., vol. 58, no. 20, 2013.
[10] K.Parodi andJ. C.Polf, “In vivo range verification in particle therapy,” Med. Phys., vol. 45, no. 11, pp. e1036–e1050, 2018.
[11] X.Zhu et al., “Monitoring proton radiation therapy with in-room PET imaging,” Phys. Med. Biol., vol. 56, no. 13, pp. 4041–4057, 2011.
[12] E.Hilaire, D.Sarrut, F.Peyrin, andV.Maxim, “Proton therapy monitoring by Compton imaging: Influence of the large energy spectrum of the prompt-γ radiation,” Phys. Med. Biol., vol. 61, no. 8, pp. 3127–3147, 2016.
[13] E.Sterpin et al., “Analytical computation of prompt gamma ray emission and detection for proton range verification,” Phys. Med. Biol., vol. 60, no. 12, pp. 4915–4946, 2015.
[14] F.Hueso-González, M.Rabe, T. A.Ruggieri, T.Bortfeld, andJ. M.Verburg, “A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy,” Phys. Med. Biol., vol. 63, no. 18, 2018.
[15] C. H.Min et al., “Clinical Application of in-room PET for in vivo treatment monitoring in proton radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 86, no. 1, pp. 183–189, 2013.
[16] A. C.Knopf et al., “Accuracy of proton beam range verification using post-treatment positron emission tomography/computed tomography as function of treatment site,” Int. J. Radiat. Oncol. Biol. Phys., vol. 79, no. 1, pp. 297–304, 2011.
[17] V.V.Zerkin andB.Pritychenko, “The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 888, no. November 2017, pp. 31–43, 2018.
[18] A.Belhout et al., “γ-ray production by proton and α-particle induced reactions on C12, O16, Mg24, and Fe,” Phys. Rev. C - Nucl. Phys., vol. 76, no. 3, pp. 1–19, 2007.
[19] B.Marchand, K.Mizohata, andJ.Räisänen, “Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 378, pp. 25–30, 2016.
[20] J.Kiener et al., “γ -ray production by inelastic proton scattering on 16O and 12C ,” Phys. Rev. C, vol. 58, no. 4, pp. 2174–2179, 1998.
[21] T.Akagi et al., “Experimental study for the production cross sections of positron emitters induced from12C and16O nuclei by low-energy proton beams,” Radiat. Meas., vol. 59, pp. 262–269, 2013.
[22] Z.Kovács, B.Scholten, F.Tárkányi, H. H.Coenen, andS. M.Qaim, “Cross section measurements using gas and solid targets for production of the positron-emitting radionuclide O-14,” Radiochim. Acta, vol. 91, no. 4, pp. 185–189, 2003.
[23] T.Masuda et al., “Measurement of nuclear reaction cross sections by using Cherenkov radiation toward high-precision proton therapy,” Sci. Rep., vol. 8, no. 1, pp. 1–8, 2018.
[24] H.Rohling, L.Sihver, M.Priegnitz, W.Enghardt, andF.Fiedler, “Comparison of PHITS, GEANT4, and HIBRAC simulations of depth-dependent yields of β+-emitting nuclei during therapeutic particle irradiation to measured data,” Phys. Med. Biol., vol. 58, no. 18, pp. 6355–6368, 2013.
[25] S.España, X.Zhu, J.Daartz, G.ElFakhri, T.Bortfeld, andH.Paganetti, “The reliability of proton-nuclear interaction cross-section data to predict proton-induced PET images in proton therapy,” Phys. Med. Biol., vol. 56, no. 9, pp. 2687–2698, 2011.
[26] M.Moteabbed, S.España, andH.Paganetti, “Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy,” Phys. Med. Biol., vol. 56, no. 4, pp. 1063–1082, 2011.
[27] O.Schwerer, LEXFOR (EXFOR Compiler’s Manual), no. August. NUCLEAR DATA SERVICES, 2015.
[28] G. W.Phillips, P.Richard, D. O.Elliott, F. F.Hopkins, andA. C.Porter, “Structure of mass 15: The N14(p, γ)O15 and N14(p, p′γ) reactions,” Phys. Rev. C - Nucl. Phys., vol. 5, no. 2, pp. 297–306, 1972.
[29] P.Dyer, D.Bodansky, A.Seamster, E.Norman, andD.Maxson, “Cross sections relevant to gamma-ray astronomy: Proton induced reactions,” Phys. Rev. C, vol. 23, no. 5, pp. 1865–1882, 1981.
[30] H.Lutz, “Scattering of protons by N-14 in the energy range 17 to 26.5 MeV,” Nucl. Physics, Sect. A, vol. 198, pp. 257–267, 1972.
[31] T. N.Taddeucci, R. R.Doering, A.Galonsky, andS. M.Austin, “(p,n) reactions on C14 and N14 and the effective nucleon-nucleon interaction,” Phys. Rev. C, vol. 29, no. 3, pp. 764–776, 1984.
[32] T. H.Curtis, H. F.Lutz, D. W.Heikkinen, andW.Bartolini, “Proton induced reactions on mass-14 nuclei,” Nucl. Physics, Sect. A, vol. 165, no. 1, pp. 19–32, 1971.
[33] R. C.T, “Proton nuclear reaction cross section in oxygen and neon at 13 MeV,” Nucl. Physics, Sect. A, vol. 94, pp. 313–323, 1967.
[34] A. P.Jesus, B.Braizinha, andJ. P.Ribeiro, “Excitation function and cross-sections of the reaction19F(p,p′γ)19F,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 161–163, pp. 186–190, 2000.
[35] R.Mateus, A. P.Jesus, J.Cruz, andJ. P.Ribeiro, “Measurement of the inelastic scattering of protons by 23Na in the energy range 1.25-2.40 MeV,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 219–220, no. 1–4, pp. 307–311, 2004.
[36] PHITS Ver. 3.02 User’s Manual. JAEA, 2017.
[37] K.Parodi, “In-beam PET measurements of β + radioactivity,” Phys. Med. Biol., vol. 21, pp. 21–36, 2002.
[38] K. C.Jones et al., “Acoustic-based proton range verification in heterogeneous tissue: Simulation studies,” Phys. Med. Biol., vol. 63, no. 2, 2018.
[39] M.Mohr, “Geometery of human ribs pertinent to orthopedic chest-wall reconstruction,” J. Biomech., vol. 40, pp. 1310–1317, 2007.
[40] M.Zarifi, S.Guatelli, D.Bolst, B.Hutton, A.Rosenfeld, andY.Qi, “Characterization of prompt gamma-ray emission with respect to the Bragg peak for proton beam range verification: A Monte Carlo study,” Phys. Medica, vol. 33, pp. 197–206, 2017.


(此全文20250908後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *