帳號:guest(18.191.71.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林彥谷
作者(外文):Lin, Yen-Ku
論文名稱(中文):共晶熔融物質Bi2O3-WO3淬冷之實驗研究
論文名稱(外文):Experimental investigation on the quenching of eutectic molten materials (Bi2O3-WO3)
指導教授(中文):陳紹文
指導教授(外文):Chen, Shao-Wen
口試委員(中文):潘欽
李進得
口試委員(外文):Pan, Chin
Lee, Jin-Der
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:106013508
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:53
中文關鍵詞:共晶物質熔融物質淬冷多相流
外文關鍵詞:eutectic materialmolten materialquenchingmultiphase flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:318
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究延續本實驗室前研究者張宇祐之淬冷研究,藉由小規模的實驗架設模擬高溫熔融物質的淬冷,並參考既有文獻以三氧化二鉍及三氧化鎢的混和粉末作為模擬物質。此混和粉末在攝氏870度下會產生共晶現象,因此本研究將40克混和粉末置入一帶有塞桿的304不鏽鋼管中,並加熱至攝氏900度,再藉由能調整淬冷槽平台高低的實驗設計來改變不銹鋼管噴嘴至下方冷卻水槽的熔體掉落距離(300mm~600mm),而後利用高速攝影機記錄熔體掉落至冷卻水槽時的淬冷與多相流現象。待熔體淬冷完畢後,蒐集其碎片並用篩網濾出不同尺寸的碎片以分析整體碎片尺寸分布。結果顯示隨著掉落距離的增加,熔體的落水初速度也更快,小尺寸碎片數量也因凱文—赫爾霍茲不穩定性的作用而佔較多比率,這將使碎片溫度冷卻更快。若落水初速度較慢,瑞利—泰勒不穩定性的影響將提高,使熔體流柱破碎於尖端並較少細小碎片的產生。本實驗在水面下設置一不鏽鋼傾斜板進行淬冷,其結果與自然淬冷比較後發現片狀構造的固化碎片,其質地脆弱且易碎化,進而導致小尺寸碎片遽增,判斷表面積的增加會加速其降溫。
This study extends the previous studies in our laboratory to simulate the quenching of molten materials using a small-scale experiment setup. The mixture of bismuth trioxide and tungsten trioxide powder, which exhibits eutectic behavior at 870℃, is adopted as the simulate material, as suggested in the literature. During the experiment, 40g of the powder is heated to 900℃ inside an annulus of a 304 stainless steel with a plug axle. The design of the experiment is able to adjust the coolant platform’s height to change the dropping distance of the molten material, ranging from 300mm to 600mm. Then by using high-speed camera to observe quenching and multiphase flow phenomena. Additionally, we gather the debris after quenching and filter the pieces by a series of strainers to determine the size distribution. The size distribution shows more small size debris when the dropping length is higher. This is due to the molten jet entering the coolant with a higher entry velocity and causing a more intensive Kelvin-Helmholtz instability to occur. If the entry velocity is slower, Kelvin-Helmholtz instability weakens and the influence of Rayleigh-Taylor instability will increase, causing the molten jet to breakup from the front end. This experiment sets a steel plate below the coolant surface at certain angle to investigation the quenching effect while the molten material contacts the incline board. The results show that the molten material may slide along the incline plate while quenching, and the debris may form a flake structure. The fragile and brittle flake structure may shatter to more small size debris, which may have higher heat removal due to the increase of surface area.
摘要 i
Abstract ii
誌謝 iii
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1-1 淬冷介紹 1
1-2 研究動機與背景 2
1-3 研究目的 5
1-4 論文架構 6
第二章 文獻回顧 7
2-1 模擬熔融物質的淬冷 7
2-2 熔體流柱破碎行為的探討 8
第三章 實驗方法 11
3-1 實驗系統架設組件 12
3-1.1 高溫熔爐系統、汽缸及升降夾 12
3-1.2 不鏽鋼加熱管組件 14
3-1.3 淬冷槽平台 15
3-1.4 高速攝影機 17
3-1.5 資料收集系統 17
3-1.6 定量篩網平台 18
3-1.7 粉末攪拌機 18
3-2 模擬熔融物質 20
3-3 實驗方法 22
3-3.1 淬冷實驗的事前準備 22
3-3.2 影像捕捉與分析 22
3-3.3 淬冷後碎片分析 22
3-4 實驗步驟 23
3-5 實驗條件 24
第四章 實驗結果與討論 25
4-1 共晶熔融體Bi2O3-WO3淬冷 25
4-1.1 不同掉落高度之淬冷比較 26
4-1.2 不同冷卻水深度之淬冷比較 30
4-1.3 不同冷卻水之淬冷比較 32
4-1.4 沿不同角度之傾斜板滑落之淬冷比較 36
4-2 熔融流柱的破碎行為 40
4-3 研究結果比較與討論 43
4-3.1 熔體碎片尺寸分布之趨勢分析 43
4-3.2 流柱破碎長度與不穩定性臨界波長討論 44
4-3.3 熔體碎片尺寸之最大值討論 46
第五章 結論與建議 48
5-1 結論 48
5-2 未來建議 50
參考文獻 51

[1]王運迪編:《淬火介質》,上海科學技術出版社,上海,1981。
[2]北齊書,卷四九,補列傳第四一
https://zh.wikisource.org/zh-hant/%E5%8C%97%E9%BD%8A%E6%9B%B8/%E5%8D%B749
[3]S.-H. Hsu, Y.-H. Ho, M.-X. Ho, J.-C. Wang, C. Pan, “On the formation of vapor film during quenching in de-ionized water and elimination of film boiling quenching in natural sea water”, International Journal of Heat and Mass Transfer, vol. 86, pp. 65-71, July 2015
[4]Fukushima Daiichi Accident, World Nuclear Association,
http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx
[5]Fukushima Daiichi Accident, World Nuclear Association
https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx
[6]Stabilisation after Fukushima cooling change, World Nuclear News
http://www.world-nuclear-news.org/RS_Stabilisation_after_Fukushima_cooling_change_0702121.html
[7]Didier Jacquemain, Nuclear Power Reactor Core Melt Accidents, IRSN, page 112, figure 5.2, 2015
[8]張宇祐。「高溫熔融物質於不同冷卻情況之淬冷」。國立清華大學核子工程與科學研究所,碩士論文,2017。
[9]P. Kudinov, A. Karbojian, W. Ma, and T.-N. Dinh, “An Experimental Study on Debris Formation with Corium Simulant Materials” ,Proceedings of ICAPP 08, Anaheim, CCA USA, June 8-12, 2008, Paper 8390
[10]P. Kudinov, A. Karbojian, W. Ma, and T.-N. Dinh, “The DEFOR-S Experimental Study of Debris Formation with Corium Simulant Materials” , Nuclear technology, vol. 170(1), pp. 219-230, April 2010
[11]P. Kudinov, A. Karbojian, C.-T. Tran, W. Villanueva, “Agglomeration and size distribution of debris in DEFOR-A experiments with 〖Bi〗_2 O_3¬-〖WO〗_3 corium simulant melt”, Nuclear Engineering and Design, vol. 263, pp.284-295, 2013
[12]E. Matsuo, Y. Abe, K. Chitose, K. Koyama, K. Itoh, “Study on jet breakup behavior at core disruptive accident for fast breeder reactor”, Nuclear Engineering and Design, vol. 238, pp. 1996-2004, 2008
[13]Y. Abe, E. Matsuo, T. Arai, H. Nariai, K. Chitose, K. Koyama, K. Itoh, “Fragmentation behavior during molten material and coolant interactions”, Nuclear Engineering and Design, vol. 236, issues 14-16, August 2006, pp. 1668-1681
[14]Qi Lu, D. Chen, C. Li, “Visual investigation on the breakup of high superheated molten metal during FCI process”, Applied Thermal Engineering, vol.98, pp.962-975, 2016
[15]PLINIUS FP6, Transnational Access to the Prototypic Corium Platform PLINIUS
[16]CRC Press LLC, “Standard thermodynamic properties of chemical substances”, 2000
[17]L. Manickam, P. Kudinov, W. Ma, S. Bechta, D. Grishchenko, “On the influence of water subcooling and melt jet parameters in debris formation”, Nuclear Engineering and Design, vol. 309, pp.265-276, 2016
[18]L. Manickam, S. Bechta, W. Ma, “On the fragmentation characteristics of melt jets quenched in water”, International Journal of Multiphase Flow, vol. 91, pp.262-275, 2017 .
[19]C.C. Chu, J.J. Sienicki, B.W. Spencer, W. Frid, G. Löwenhielm, “Ex-vessel melt-coolant interactions in deep water pool : studies and accident management for Swedish BWRs”, Nuclear Engineering and Design, vol. 155, pp.159-213, 1995
[20]S. Thakre, L. Manickam, W. Ma, “A numerical simulation of jet breakup in melt coolant interactions”, Annals of Nuclear Energy, vol. 80, pp.467-475, 2015
[21]Li. Shengtai, Hui Li. "Parallel AMR Code for Compressible MHD or HD Equations". Los Alamos National Laboratory. Retrieved 2006-09-05.
[22]S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability", Sections 101 considers the stability of a slip surface between two fluids of different densities, section 106 considers the effect of a magnetic field on the problem.
[23]Yu-You Chang, Ben-Ran Fu, Chin Pan, “Quench of molten copper and eutectic mixture in natural seawater”, International Journal of Heat and Mass Transfer, vol. 136, June 2019, pp. 987-994
[24]D.F. Fletcher, “The particle size distribution of solidified melt debris from molten fuel-coolant interaction experiments”, Nuclear Engineering and Design, vol. 105, August 1988, pp. 313-319
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *