|
[1]王運迪編:《淬火介質》,上海科學技術出版社,上海,1981。 [2]北齊書,卷四九,補列傳第四一 https://zh.wikisource.org/zh-hant/%E5%8C%97%E9%BD%8A%E6%9B%B8/%E5%8D%B749 [3]S.-H. Hsu, Y.-H. Ho, M.-X. Ho, J.-C. Wang, C. Pan, “On the formation of vapor film during quenching in de-ionized water and elimination of film boiling quenching in natural sea water”, International Journal of Heat and Mass Transfer, vol. 86, pp. 65-71, July 2015 [4]Fukushima Daiichi Accident, World Nuclear Association, http://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx [5]Fukushima Daiichi Accident, World Nuclear Association https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx [6]Stabilisation after Fukushima cooling change, World Nuclear News http://www.world-nuclear-news.org/RS_Stabilisation_after_Fukushima_cooling_change_0702121.html [7]Didier Jacquemain, Nuclear Power Reactor Core Melt Accidents, IRSN, page 112, figure 5.2, 2015 [8]張宇祐。「高溫熔融物質於不同冷卻情況之淬冷」。國立清華大學核子工程與科學研究所,碩士論文,2017。 [9]P. Kudinov, A. Karbojian, W. Ma, and T.-N. Dinh, “An Experimental Study on Debris Formation with Corium Simulant Materials” ,Proceedings of ICAPP 08, Anaheim, CCA USA, June 8-12, 2008, Paper 8390 [10]P. Kudinov, A. Karbojian, W. Ma, and T.-N. Dinh, “The DEFOR-S Experimental Study of Debris Formation with Corium Simulant Materials” , Nuclear technology, vol. 170(1), pp. 219-230, April 2010 [11]P. Kudinov, A. Karbojian, C.-T. Tran, W. Villanueva, “Agglomeration and size distribution of debris in DEFOR-A experiments with 〖Bi〗_2 O_3¬-〖WO〗_3 corium simulant melt”, Nuclear Engineering and Design, vol. 263, pp.284-295, 2013 [12]E. Matsuo, Y. Abe, K. Chitose, K. Koyama, K. Itoh, “Study on jet breakup behavior at core disruptive accident for fast breeder reactor”, Nuclear Engineering and Design, vol. 238, pp. 1996-2004, 2008 [13]Y. Abe, E. Matsuo, T. Arai, H. Nariai, K. Chitose, K. Koyama, K. Itoh, “Fragmentation behavior during molten material and coolant interactions”, Nuclear Engineering and Design, vol. 236, issues 14-16, August 2006, pp. 1668-1681 [14]Qi Lu, D. Chen, C. Li, “Visual investigation on the breakup of high superheated molten metal during FCI process”, Applied Thermal Engineering, vol.98, pp.962-975, 2016 [15]PLINIUS FP6, Transnational Access to the Prototypic Corium Platform PLINIUS [16]CRC Press LLC, “Standard thermodynamic properties of chemical substances”, 2000 [17]L. Manickam, P. Kudinov, W. Ma, S. Bechta, D. Grishchenko, “On the influence of water subcooling and melt jet parameters in debris formation”, Nuclear Engineering and Design, vol. 309, pp.265-276, 2016 [18]L. Manickam, S. Bechta, W. Ma, “On the fragmentation characteristics of melt jets quenched in water”, International Journal of Multiphase Flow, vol. 91, pp.262-275, 2017 . [19]C.C. Chu, J.J. Sienicki, B.W. Spencer, W. Frid, G. Löwenhielm, “Ex-vessel melt-coolant interactions in deep water pool : studies and accident management for Swedish BWRs”, Nuclear Engineering and Design, vol. 155, pp.159-213, 1995 [20]S. Thakre, L. Manickam, W. Ma, “A numerical simulation of jet breakup in melt coolant interactions”, Annals of Nuclear Energy, vol. 80, pp.467-475, 2015 [21]Li. Shengtai, Hui Li. "Parallel AMR Code for Compressible MHD or HD Equations". Los Alamos National Laboratory. Retrieved 2006-09-05. [22]S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability", Sections 101 considers the stability of a slip surface between two fluids of different densities, section 106 considers the effect of a magnetic field on the problem. [23]Yu-You Chang, Ben-Ran Fu, Chin Pan, “Quench of molten copper and eutectic mixture in natural seawater”, International Journal of Heat and Mass Transfer, vol. 136, June 2019, pp. 987-994 [24]D.F. Fletcher, “The particle size distribution of solidified melt debris from molten fuel-coolant interaction experiments”, Nuclear Engineering and Design, vol. 105, August 1988, pp. 313-319
|