帳號:guest(3.144.84.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈宗逸
作者(外文):Shen, Tsung-I
論文名稱(中文):以TRACE程式進行馬鞍山電廠在不同塞管率下之全黑事故與救援程序分析
論文名稱(外文):Analysis of Maanshan Station Blackout Accident and Rescue Procedures Under Different Tube Plugging Situations with TRACE
指導教授(中文):陳紹文
楊融華
指導教授(外文):Chen, Shao-Wen
Yang, Jung-Hua
口試委員(中文):施純寬
王仲容
口試委員(外文):Shih, Chunkuan
Wang, Jong-Rong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:106013501
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:馬鞍山電廠電廠全黑斷然處置塞管率壓水式電廠
外文關鍵詞:MaanshanNPPSBOURGFLEXTubePluggingPWR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用美國核管會所開發之最佳估算熱水流程式TRACE來模擬馬鞍山電廠發生全黑事故時,分別於一小時及四小時後執行斷然處置措施與FLEX救援措施的有效性。並探討在電廠的蒸汽產生器存在塞管率時對電廠一、二次側熱傳的影響。馬鞍山電廠為國內第三座核能機組,也是唯一一座的壓水式反應器。由西屋公司設計的三迴路兩部機組,在進行功率提升後每個機組皆具有980MWe。本研究一開始先假設了一假想地震,隨後發生的海嘯造成電廠發生全黑事故,並利用馬鞍山電廠的TRACE輸入模式分析不同處置措施之有效性。而後再利用修改過的輸入模式分析不同塞管率的電廠及其救援措施,了解塞管率對電廠發生事故及救援時的可能影響。
日本318福島事故過後,國際核能界了解到在大規模的複合事故下,電廠的監測儀器有機會失效。在無法確切了解電廠實際狀況的情形下,也大大增加了運轉員救援電廠的困難度。因此,除了電廠本身的設備,若能有一套具適用性與有效性的救援措施,將會大大提升電廠的安全。在國際上NEI提出了所謂FLEX救援措施,而台電也有斷然處置措施,二者皆是為了在嚴苛的災難下維持電廠安全,防止輻射外洩。在本研究的假設前提下,斷然處置措施與FLEX救援措施都能很好地應對全黑事故,並成功防止燃料護套溫度過高。
而在電廠運轉期間,電廠的設備會隨時間漸漸出現老舊與劣化。作為一次側與二次側最重要的熱交換邊界,蒸汽產生器內部管路之完整性不容破壞。若在大修期間發現其老化嚴重,如瑕疵深度高達40%或管端出現指示,則會將所有不合格的管路做塞管處置,防止其在運轉期間破裂影響電廠安全。由於預測塞管處置會影響一、二次側的熱交換效果,對電廠管制單位來說,存在著塞管率邊界條件的電廠,遇上意外事件或事故時,釐清原有的救援措施能否依然適用與有效便相當重要了。因此本研究運用TRACE來分析在2%、5%、10%的塞管條件下,馬鞍山電廠發生全黑事故時進行斷然處置措施及FLEX救援措施是否依然有效。而模擬結果顯示即使在最高的10%塞管率下,無論是斷然處置或是FLEX措施皆不受塞管率影響,能順利的救援電廠並解除電廠事故。
This research focused on the analysis of URG procedure and the FLEX strategy after one and four hours when Maanshan nuclear power plant is under station blackout (SBO) accident by using TRACE code. Then explore the influence on heat transfer between primary side and secondary side when there’s plugged tube in the steam generators of power plant. Maanshan nuclear power plant is the third nuclear power plant, also the only PWR in Taiwan. The two units each with three loops were built by Westinghouse, can generate 980MWe after small increase of power. A hypothetical earthquake was assumed in this research, and a tsunami attack site area caused SBO accident after the earthquake. With these accident, an input model of Maanshan nuclear power plant of TRACE was used to analyze the effectiveness of URG procedure and FLEX strategy. After that, a tube plugging analysis was made with a revised in put model of 2%, 5% and 10% of tube plugging to study the effect of plugged tube on SBO and rescue procedures of the plant.
The biggest lesson we learned from Fukushima accident, is when a large complex accident happen, any detectors an instruments in the plant could become invalid. Thus it’s very difficult for plant operators to rescue the plant when they can’t find out the real state of it. Thus, except for enhancing the equipment of the plant, it could be a large evaluation of plant safety if there’s a applicable and effective rescue procedure. The NEI had proposed the FLEX strategy and Taipower company also has the URG procedure, in order to keep the safety of plant from severe disaster. With the assumption in this research, the URG procedure and the FLEX strategy can appropriately deal with SBO accident and keep the peak cladding temperature in safe margin.
During the operation of the plant, the equipment of plant will become old and deteriorative as time passes by. Being the most important border of heat transfer between primary and secondary side, if there’s any problem of tubes in steam generators, operators shall plug the defective tube during outage inspection to prevent them from broken while the plant is operating. Predicting the effect of heat transfer be affected by tube plugging, this research use TRACE to analyze under 2%, 5% and 10% of tube plugging, is it still effective to use the URG procedure and the FLEX strategy rescuing the SBO accident of Maanshan nuclear power plant. The result shows that even under 10% of tube plugging, the URG procedure and the FLEX strategy won’t be affect by tube plugging and still can bring the plant back to safety.
摘要 i
ABSTRACT iii
致謝 v
目錄 vii
表目錄 ix
圖目錄 x
名詞縮寫表 xiii
第一章 緒論 1
1.1 研究動機 1
1-2 文獻回顧 2
1-3 論文架構 10
第二章 電廠與救援程序介紹 11
2-1 核三廠及塞管率介紹 11
2-2 URG與FLEX介紹 12
第三章 TRACE程式與分析方法論介紹 18
3-1 TRACE程式介紹 18
3-2 分析模式方法論 19
3-3 核三廠TRACE輸入模式介紹 21
3-4 馬鞍山電廠318事件模擬 31
第四章 SBO案例與URG/FLEX分析模擬 38
4-1 分析案例介紹 38
4-2 案例一模擬結果 42
4-3 案例二模擬結果 46
4-4 案例三模擬結果 49
4-5 案例四模擬結果 53
第五章 塞管率靈敏度分析 57
5-1 塞管率靈敏度分析方法 57
5-2 案例一塞管率分析結果 60
5-3 案例三塞管率分析結果 65
第六章 結論與建議 71
6-1 結論 71
6-2 建議 72
參考文獻 73

[1] NEI 12-06 “ Diverse and Flexible Coping Strategies (FLEX) Implementation Guide”, version endorsed by the NRC, 2012
https://www.nrc.gov/docs/ML1214/ML12143A232.pdf
[2] NEI 06-12, “B.5.b Phase 2 & 3 Submittal Guideline”, 2006 https://www.nrc.gov/docs/ML0700/ML070090060.pdf
[3] Westinghouse, WCAP 17601-P, Revision 0 “Reactor Coolant System Response to the Extended Loss of AC Power Event for Westinghouse, Combustion Engineering and Babcock & Wilcox NSSS Designs”, 2012
[4] 孫格非, 2016, “核三廠斷然處置措施與業界FLEX救援策略整併規劃”, 台電公司報告投影片,http://www.chns.org/attachments/article/194/
[5] 台電公司「核能電廠機組斷然處置程序」指引(壓水式電廠) 修訂5版106.09.12
[6] J. Freixa, A. Manera, “Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE”, Nuclear Engineering and Design, Volume 240, Issue 7, July 2010, Pages 1779-1788
[7] J. Freixa, A. Manera, “Verification of a TRACE EPRTM model on the basis of a scaling calculation of an SBLOCA ROSA test”, Nuclear Engineering and Design, Volume241, Issue 3, March 2011, Pages 888-896
[8] Konstantin Nikitin, Annalisa Manera, “Analysis of an ADS spurious opening event at a BWR/6 by means of the TRACE code”, Nuclear Engineering and Design, Volume 241, Issue 6, June 2011, Pages 2240-2247
[9] J. R. Wang, H. T. Lin, Y. H. Cheng, W. C. Wang, C. Shih, “TRACE modeling and its verification using Maanshan PWR start-up tests”, Annals of Nuclear Energy, Volume 36, Issue 4, 1 May 2009, Pages 527-536
[10] Y. H. Cheng, J. R. Wang, H. T. Lin, C. Shih, “Benchmark calculations of pressurizer model for Maanshan nuclear power plant using TRACE code”, Nuclear Engineering and Design, Volume 239, Issue 11, November 2009, Pages 2343-2348
[11] J. H. Yang, J. R. Wang, H. T. Lin, C. Shih, “LBLOCA analysis for the Maanshan PWR nuclear power plant using TRACE”, Energy Procedia, Volume 14, 2012, Pages 292-297
[12] 黃凱群, 2013, “以TRACE程式進行馬鞍山電廠全黑事故分析與斷然處置策略之探討”, 國立清華大學碩士論文
[13] K. Vierowa, Y. Liao, J. Johnson, M. Kenton, R. Gauntt, “Severe accident analysis of a PWR station blackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes”, Nuclear Engineering and Design, Volume 234, Issues 1–3, December 2004, Pages 129-145
[14] H. Esmaili, D. Helton, D. Marksberry, R. Sherry, P. Appignani, D. Dube, M. Tobin, R. Buell, T. Koonce, J. Schroeder, “Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the Standardized Plant Analysis Risk Models – Surry and Peach Bottom (NUREG-1953)”, USNRC NUREG Report, September 2011
[15] T. C. WANG, S. J. WANG, J. T. TENG, “Simulation of A PWR Reactor Vessel Level Indicating System During Station Blackout with MELCOR 1.8.5”, Nuclear Technology, Volume 156, Number 2, Pages 133-139, November 2006
[16] Westinghouse AP1000 Design Control Document Rev. 19 - Tier 2 Chapter 5 – Reactor Coolant System and Connected Systems
[17] M. Martin, I. Sol, F. Reventos, “Analysis of Steam Generator Tube Plugging in a PWR Influence in The Emergency Operating Procedures”, NENE2013
[18] P.Robinson, M. Emery, P. Huang, R. Sterids, I. Paik, “Steam Generator Tube Plugging Increase Licensing Report for Ginna Nuclear Power Station” Oct 1987, Westinghouse electric corperation
[19] 原子能委員會, 2018, “核能三廠基本資料”, https://www.aec.gov.tw/核能安全/核能電廠基本資料/核能三廠--3_19_286.html.
[20] Pressurized Water Reactor (PWR) Systems Concepts Manual, USNRC Technical Training Center
[21] 台灣電力公司第三核能發電廠, “核能發電訓練基本教材:壓水式反應器介紹”
[22] 台灣電力公司, “馬鞍山電廠訓練教材”
[23] 台灣電力公司, “程序書1451”
[24] TRACE V5.0 USER’S MANUAL, U. S. Nuclear Regulatory Commission, 2012
[25] U.S.NRC, 2018, “Thermal-Hydraulics Codes, TRACE”, U.S.NRC, USA
[26] T. I. Shen, J. R. Wang, C. Shih, J. H. Yang, S. W. Chen, "Uncertainty Analysis of PWR LBLOCA with TRACE and DAKOTA", BEPU2018
[27] 107年科技部研究計畫結案報告, 2018, “壓水式核能電廠之TRACE/ FRAPTRAN/ SNAP嚴重事故分析方法建立與應用”,科技部, 中華民國
[28] 李尚諭, 2017,“利用TRACE與FRAPTRAN程式分析馬鞍山電廠全黑事故與喪失冷卻水事故之核燃料行為”, 國立清華大學碩士論文.
[29] Applied Programming Technology, 2018, “SNAP”,
https://www.snaphome.com/.
[30] 行政院原子能委員會,「核三廠一號機三月十八日喪失廠內外交流電源事件調查報告」,中華民國九十年
[31] 黃俊富, 2017, “以TRACE程式進行馬鞍山電廠嚴重事故分析與事故緩和策略探討”, 國立清華大學碩士論文
[32] 10 CFR 50.2 - Definitions, Code of Federal Regulations
[33] U.S.NRC, “§ 50.46 Acceptance criteria for emergency core cooling systemsfor light-water nuclear power reactors”, 10 CFR 50.46 regulations, USNRC,USA. https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050- 0046.html
[34] 楊融華, 2016, “利用TRACE 程式分析核三廠SBO與FLEX評估”, 報 告投影片, http://www.chns.org/attachments/article/194/
[35] 核能三廠1號機第二十三次大修(EOC-23)視察報告,行政院原子能委員會
[36] 核能三廠2號機第二十二次大修(EOC-22)視察報告,行政院原子能委員會
[37] 邱永聰, “台灣核電廠斷然處置措施與演練”, 台灣電力公司核能發電處, 2013年12月
[38] 沈宗逸, “馬鞍山電廠TRACE計算書”, 2019年8月
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *