帳號:guest(3.22.240.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳靈海
作者(外文):Tran, Hai-Linh
論文名稱(中文):不同碳源製備石墨烯量子點於奈米感測器技術之開發應用
論文名稱(外文):GQDs-Based Nanocomposites Derived from Different Carbon Sources for Environmental and Biomedical Sensing Applications
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):蘇正寬
黃郁棻
周秀專
林芳新
口試委員(外文):Su, Cheng-Kuan
Huang, Yu-Fen
Chou, Hsiu-Chuan
Lin, Fang-Hsin
學位類別:博士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012885
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:242
中文關鍵詞:生物醫學傳感石墨烯量子點(GQD)P摻雜的GQDS摻雜的GQDN摻雜的GQDB,N共摻雜GQD基於GQD的納米複合材料植物血凝素L金納米星環境傳感
外文關鍵詞:biomedical sensingGraphene quantum dots (GQD)P doped GQDsS doped GQDsN doped GQDsB,N co-doped GQDsGQD based nanocompositesPhytohemagglutinin-LGolld nanostarenvironmental sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去的十年中,石墨烯量子點(GQD)是一個新開發的0維石墨烯家族,被認為是一種有前途的光學和電化學傳感材料。 GQD具有出色的熒光特性,高表面積,良好的化學穩定性,顯著的量子限制效應和穩定的光致發光等出色特性,使GQD成為用於選擇性和靈敏地檢測化學物質的新型傳感元件。 GQD已使用各種方法合成了不同的化學和天然前體。從天然來源合成GQD既環保又經濟。但是,由不同碳源合成的GQD在物理性質(如結構,形狀和大小)以及化學性質(如官能團)方面彼此不同,導致它們具有不同的靈敏度和選擇性。本文提出的研究集中在通過使用各種合成技術以及從不同的生物基碳前體中合成摻雜的GQD以及隨後將其作為生物傳感器的應用。
在這項研究中,將合成的GQD與其他材料進一步複合,以增強其在環境和生物醫學傳感領域的應用。這項研究分為以下幾個步驟:首先,對來自不同碳源及其光學傳感器的摻雜GQD進行合成和表徵,其次,使用GQD進行納米複合材料的合成,其中GQD是增強其電化學性能並最終改善其性能的主要材料。測試納米複合材料作為電化學傳感器的功效。
本研究的第一部分涉及磷(P)摻雜的GQD(PGQD),它們是通過微波輔助分別由L-抗壞血酸和磷酸三鈉分別作為碳和磷的前體成功製備的。 PGQD的粒徑約為3.5 ± 0.5 nm,厚度類似於2 - 4 層石墨烯。 PGQD能夠在1 nM – 150 µM的寬範圍內檢測到Ag+,而其檢測限極低,僅為0.02 nM。之後在葡萄糖和巰基琥珀酸分別作為碳和硫源的條件下,通過水熱熱解成功地合成了具有穩定綠色熒光的硫摻雜GQD(S-GQDs),用於快速,靈敏地檢測血紅蛋白(Hb)。所製備的S-GQD顯示出均勻的尺寸分佈,平均粒徑為4.5±0.5 nm。 S-GQD對Hb檢測具有極好的靈敏度,線性檢測範圍為10-1000 nM,在磷酸鹽緩衝溶液(PBS)和人血清(HS)中的檢測下限分別為0.28和0.48 nM。此外,採用新鮮百香果汁和硼酸為原料,通過微波輔助水熱法合成了硼和氮共摻雜的高QY的0維GQD(B,N-GQDs)。然後將平均粒徑為9 ± 1 nm的3 – 6層B,NGQD用於超靈敏和選擇性檢測四環素(TC)。 B,N-GQD在0.04 – 70 µM的線性檢測範圍內顯示出優異的TC測定分析性能,在PBS中檢測限(LOD)為1 nM,在尿液中的檢測限為1.9 nM,在HS中的檢測限為2.2 nM。此外,基於B,N-GQDs的紙納米傳感器對PBS,尿液和HS中0 – 30 µM TC的視覺檢測具有出色的分析性能。此後,在塗有氮摻雜GQD(N-GQDs)的絲網印刷電極(Es)上成功開發了新型超靈敏電化學免疫傳感器。 NGQD易於使用微波合成製造,其NGQD的粒徑範圍為3 – 12 nm。植物血凝素-L(PHA-L)可以通過N-GQDs表面的-COOH和-NH2基團直接附著在N-GQDs上,並作為特異性受體錨定發育中的乳腺癌細胞(MCF-7)。Es|N-GQDs/PHA-L免疫傳感器。 Es | N-GQDs / PHA-L免疫傳感器具有很寬的線性檢測範圍,從PBS中的5-106個細胞mL-1和HS中的20 - 106個細胞mL-1,其LOD極低,分別為1個細胞和2個細胞。此外,這項研究還證明了合成的N-GQDs作為檢測MCF-7的納米熒光生物成像探針的多功能作用,因此在快速、靈敏地診斷和治療乳腺癌方面比現有技術有了重大進展。最後,開發了新型的以3維(3-D)金納米星(AuNS / S-GQDs)納米複合材料修飾的S-GQD,作為電化學免疫傳感器中的活性生物傳感材料。大小為2 – 8 nm的S-GQD被均勻地沉積在大小為35 – 60 nm的AuNS表面。在將AuNS / S-GQDs沉積到絲網印刷電極(Es)上之後,Es || AuNS / S-GQDs / Ab免疫傳感器為PSA檢測提供了穩定,超靈敏且高度選擇性的平台。其檢測範圍很廣,分別在PBS及HS獲得10 fg mL-1至50 ng mL-1和30 fg mL-1至50 ng mL-1的檢測範圍,以及在PBS和HS中的LOD極低,僅為0.29 fg mL-1(9.7 aM)和1.1 fg mL-1。所有開發的用於Ag +,Hb,TC,MCF-7和PSA的納米材料均表現出優異的靈敏度和選擇性,已成功應用於實際樣品中,具有很高的生物傳感探針回收率。
總體而言,獲得的結果證明了基於GQD的納米複合材料作為生物醫學納米傳感、生物成像、藥物輸送和進一步擴展到其他應用的納米材料適用性。
ABSTRACT
During the last decade, Graphene quantum dots (GQDs) are a kind of 0-dimensional (0-D) graphene that has been developed as a material for optical and electrochemical sensing. The properties including remarkable fluorescence and electrical conductivity, a high surface area, good chemical, and photoluminescence stability make GQDs a novel sensing material that has the ability for enhancing sensing performance. GQDs have been synthesized from different chemical as well as natural precursors by using various methods. The synthesis of GQDs from natural sources is eco-friendly and cost effective. However, GQDs synthesized from different carbon sources are different from each other in terms of physical properties such as structure, shape and size as well as chemical properties such as functional groups leading to them possessing individualized sensitivity and selectivity. The study presented in this thesis focused on the synthesis of doped GQDs from different bio-based carbon precursors by using various synthesis techniques and their subsequent application as biosensors.
In this study, synthesized GQDs were further composited with other materials to enhance their application in the field of environmental and biomedical sensing. The study has been divided into the following steps: firstly the synthesis and characterization of doped GQDs obtained from different carbon sources and their optical sensor and secondly, the synthesis of nanocomposites using GQDs, where GQDs is a leading material to enhance its electrochemical properties and ultimately testing the efficacy of the nanocomposite as a electrochemical sensor.
The first part of this study deals with Phosphorus (P) doped GQDs (PGQDs) that were successfully prepared from L-ascorbic acid and trisodium phosphate as carbon and P precursors, respectively, via microwave-assisted. The PGQDs had an approximate particle size of 3.5 ± 0.5 nm with a thickness resembling 2 – 4 layers of graphene. The PGQDs were capable to detecting Ag+ at a wide range of 1 nM – 150 µM with an extremely low limit of detection (LOD) equivalent to 0.02 nM. Next, sulfur-doped GQDs (S-GQDs) with stable green fluorescence were successfully synthesized by hydrothermal method in the presence of glucose and mercaptosuccinic acid as the carbon and sulfur sources, respectively, for the rapid and sensitive detection of hemoglobin (Hb). The as-prepared S-GQDs showed uniform size distribution with a mean particle size of 4.5 ± 0.5 nm. The S-GQDs exhibited excellent sensitivity for the detection of Hb and a linear detection range of 10 - 1000 nM with a low LOD of 0.28 and 0.48 nM in phosphate buffer solution (PBS) and human serum (HS), respectively. Furthermore, boron and nitrogen co-doped GQDs (B,N-GQDs) with high QY were synthesized via microwave-assisted hydrothermal method using fresh passion fruit juice and boric acid as the beginning materials. The 3 - 6 layered B,N-GQDs with a mean particle size of 9 ± 1 nm were then applied for the ultra-sensitive and selective for tetracycline (TC) detection. The B,N-GQDs showed excellent toward TC determination in linear detection range of 0.04 - 70 µM and with LOD of 1 nM in PBS, 1.9 nM in urine and 2.2 nM in HS were obtained. In addition, B,N-GQDs based paper nanosensor exhibited excellent analytical performance for visual detection of 0 - 30 µM TC in PBS, urine, and HS. Thereafter, a novel ultra-sensitive electrochemical immunosensor was successfully developed on screen-printed electrodes (Es) coated with nitrogen doped GQDs (N-GQDs). N-GQDs were facile fabricated using a microwave process with N-GQDs obtained in a particle range of 3 - 12 nm. Phytohemagglutinin-L (PHA-L) could directly attach on N-GQDs via -COOH and -NH2 groups on the surface of N-GQDs and acted as a specific receptor to anchor breast cancer cell (MCF-7) in the developed Es|N-GQDs/PHA-L immunosensor. Es|N-GQDs/PHA-L immunosensor exhibited a wide linear detection range from 5 - 106 cells mL-1 in PBS and 20 - 106 cells mL-1 in HS with an extremely low LOD of 1 cell and 2 cells, respectively. Moreover, this study also demonstrated the multifunctional role of the synthesized N-GQDs as a nanofluorescent bioimaging probe to detect MCF-7 and thus presented a significant advance over available technologies for the rapid and sensitive diagnosis and treatment of breast cancer. Finally, novel S-GQDs decorated with 3-dimensional (3-D) gold nanostar (AuNS/S-GQDs) nanocomposite was developed as the active biosensing materials in electrochemical immunosensor. S-GQDs with a size in the range of 2 – 8 nm were homogenously deposited onto the surface of AuNS with a size of 35 – 60 nm. After deposition of AuNS/S-GQDs onto screen-printed electrode (Es), the Es||AuNS/S-GQDs/Ab immunosensor provided a stable, ultra-sensitive, and highly selective platform for PSA detection. Wide detection ranges from 10 fg mL-1 - 50 ng mL-1 and 30 fg mL-1 - 50 ng mL-1 with extremely low LOD of 0.29 fg mL-1 (9.7 aM) and 1.1 fg mL-1 in PBS and HS, respectively, we obtained. All of the developed nanomaterial for Ag+, Hb, TC, MCF-7, and PSA exhibited excellent sensitivity and selectivity are successfully applied in real samples with great recovery for sensing probe.
Overall, the obtained results prove the applicability of GQDs based nanocomposites as the capability nanomaterial for biomedical nanosensing, bioimaging, drug delivery, and further expansion to other applications as well.
OUTLINE
ABSTRACT v
Acknowledgement viii
LIST OF TABLES xv
LIST OF FIGURES xvii
ABBREVIATIONS, UNITS, AND SYMBOLS xxv
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Overviews of GQDs 4
1.2.1. GQDs structure 5
1.2.2. Dopant and functionalization of GQDs 6
1.2.3. Modification of GQDs base on nanocomposites 8
1.2.4. GQDs properties 8
1.3. Synthesis methods of GQDs 10
1.3.1 Top-down strategy 11
1.3.2. The bottom-up strategy 12
1.4. Precursors synthesize graphene quantum dots 13
1.4.1. Chemical precursors 13
1.4.2. Natural precursors and sensing applications 13
1.5. GQDs and GQDs base on nanocomposites applications 17
1.5.1. GQDs for sensing application 18
1.5.2. Bio-imaging, drug delivery, and cancer therapy 22
1.6. Cytotoxicity 24
1.7. Tagets detection and nanotechnology on nanosensor 25
1.7.1 Heavy metal and antibiotic pollutants 25
1.7.2 Disease biomarkers 26
1.7.3. Detection methods on nanomatrials 29
1.8 Objectives 30
Chapter 2. L-Ascorbic acid derived blue luminescent phosphorus doped graphene quantum dots for rapid detection of silver ions 34
2.1. Introduction 35
2.2. Experimental 38
2.2.1. Chemicals and materials 38
2.2.2. Synthesis of PGQDs 38
2.2.3. Preparing of interference chemicals and Ag+ stock solution 38
2.2.4. Detection of Ag+ by PGQD 39
2.2.5. The applicability of PGQD for in real samples 39
2.2.6. Cytotoxicity assay of pure GQDs, PGQD and AgNP/PGQD 39
2.2.7. Surface characterization 40
2.3. Results and discussion 41
2.3.1. Characterization of PGQD 41
2.3.2. The optical property, selectivity, and the pH effect of PGQD 47
2.3.3. PGQD as a fluorescence nanoprobe for Ag+ detection 51
2.3.4. Fluorescence nanoprobe of PGQD in real samples 54
2.3.5. The mechanism of PGQD nanosensing toward Ag+ 55
2.3.6. The changing morphology after toward Ag+ 58
2.3.7. Cytotoxicity of GQD, PGQD and AgNP/PGQD in cell culture 62
2.4. Conclusions 63
Chapter 3. Sustainable fabrication of green luminescent sulfur-doped GQDs for rapid visual detection of hemoglobin 65
3.1. Introduction 66
3.2. Experimental section 69
3.2.1 Chemicals and materials 69
3.2.2 Synthesis of S-GQDs 69
3.2.3. Characterization techniques 69
3.2.4. Preparation of stock solutions of Hb and S-GQDs 70
3.2.5. Detection of Hb by S-GQDs 71
3.3. Results and discussion 71
3.3.1. Characterization of S-GQDs 71
3.3.2. Optical property of S-GQDs 79
3.3.3. pH effect on the Detection of Hb using S-GQDs 81
3.3.4. Analytical performance of S-GQDs on Hb detection 84
3.3.5. Selectivity of S-GQD toward Hb detection 89
3.3.6. Cytotoxicity of S-GQDs 90
3.4. Conclusions 91
Chapter 4. Ultrasensitive detection of tetracycline using boron and nitrogen co-Doped GQDs from natural carbon source as the paper-based nanosensing probe in difference matrices 93
4.1. Introduction 94
4.2. Experimental section 97
4.2.1. Chemicals and materials 97
4.2.2. Synthesis of B,N-GQDs 97
4.2.3. Surface characterization 98
4.2.4. Detection of TC by B,N-GQDs in PBS, urine, and human serum 98
4.2.5. B,N-GQD based paper strip nanosensor for TC detection in human serum 99
4.2.6. Cytotoxicity assay of B,N-GQDs 99
4.3. Results and discussion 100
4.3.1. Characterization of B,N-GQDs 100
4.3.2. Optical Property of B,N-GQDs 107
4.3.3. Detection of TC by B,N-GQDs 113
4.3.4. Selectivity of B,N-GQDs 117
4.3.5. Possible sensing mechanism for TC detection by B,N-GQDs 119
4.3.6. Cytotoxicity of GQDs based nanomaterials 124
4.4 Conclusions 125
Chapter 5. Early detection of breast cancer using electrochemical immunosensor based on phytohemagglutinin-L specific receptor carried via N doped GQDs functioning as nanocarriers and nanofluorescent bioimaging probes 127
5.1. Introduction 128
5.2. Experimental section 131
5.2.1. Chemicals and materials 131
5.2.2. Synthesis of N-GQDs 132
5.2.3. Preparation of N-GQDs modified on Es and Es|N-GQDs/PHA-L immunosensor 132
5.2.4. Incubation of the Es|N-GQDs/PHA-L immunosensor with MCF-7 133
5.2.5. MCF-7 cell analysis using HS sample 133
5.2.6. Selectivity and stability of Es|N-GQDs/PHA-L immunosensor on sensing performance 133
5.2.7. Electrochemical measurement procedure 134
5.2.8. Cytotoxicity of the N-GQDs and N-GQDs/PHA-L on MCF-7 and MCF-10A cells 134
5.2.9. Bio-imaging MCF-7cell fluorescence and dark-field microscopy 135
5.2.10. Characterization techniques 135
5.3. Results and discussion 137
5.3.1. Characterization 137
5.3.2. Optical and electrochemical properties of N-GQDs 144
5.3.3. Analytical performance and sensitivity of various matrix immunosensor on MCF-7 147
5.3.4. The nanosensing mechanism for selectivity and stability of the Es|N-GQDs/PHA-L immunosensor 154
5.3.5. Cytotoxicity study of Es|N-GQDs/PHA-L and bioimaging of MCF-7 157
5.4. Conclusion 159
Chapter 6. Ultra-sensitive electrochemical immunosensor for attomolar detection of prostate specific antigen with sulfur-doped graphene quantum dot@gold nanostar 161
6.1. Introduction 162
6.2. Experimental section 165
6.2.1. Chemicals and reagents 165
6.2.2. Synthesis of AuNS/S-GQDs nanocomposites 166
6.2.3. Preparation of AuNS/S-GQDs modified electrode 166
6.2.4. Construction of the Es||AuNS/S-GQDs/Ab based immunosensor 167
6.2.5. Detection of PSA in human serum 167
6.2.6. Electrochemical measurement procedure 168
6.2.7. Selectivity of immunosensor 168
6.2.8. Cytotoxicity of the AuNS/S-GQDs nanocomposites 168
6.2.9. Characterization 169
6.3. Result and discussion 169
6.3.1. Characterization of AuNS/S-GQDs nanosensing materials 169
6.3.2. Electrochemical property of the Es||AuNS/S-GQDs immunosensor 177
6.3.3. Sensitivity of the Es||AuNS/S-GQDs immunosensor 179
6.3.4. Nanosensing of PSA in human serum 185
6.3.5. Stability and selectivity of AuNS/S-GQDs based immunosensor 186
6.3.6. Cytotoxicity of AuNS/S-GQDs based immunosensor 189
6.4. Conclusions 189
Chapter 7. Conclusions and future scope of the work 191
7.1. Conclusions 191
7.2. Future scope of the work 197
References 200


References
[1] T.A. Tabish, S. Zhang, P.G. Winyard, Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species, Redox Biol. 15 (2018) 34-40.
[2] I.E. Tothill, Biosensors for cancer markers diagnosis, Semin. Cell Dev. Biol., 20 (2009) 55-62.
[3] G. Chen, I. Roy, C. Yang, P.N. Prasad, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy, Chem. Rev. 116 (2016) 2826-2885.
[4] M. Zahran, Z. Khalifa, M.A.H. Zahran, M.A. Azzem, Natural latex-capped silver nanoparticles for two-way electrochemical displacement sensing of Eriochrome black T, Electrochim. Acta 356 (2020) 136825.
[5] L. Wu, X. Lu, X. Fu, L. Wu, H. Liu, Gold Nanoparticles dotted Reduction Graphene Oxide Nanocomposite Based Electrochemical Aptasensor for Selective, Rapid, Sensitive and Congener-Specific PCB77 Detection, Sci. Rep. 7 (2017) 5191.
[6] A.D. Chowdhury, A.B. Ganganboina, Y.-C. Tsai, H.-C. Chiu, R.-A. Doong, Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery, Anal. Chim. Acta 1027 (2018) 109-120.
[7] L. Yang, N. Li, K. Wang, X. Hai, J. Liu, F. Dang, A novel peptide/Fe3O4@SiO2-Au nanocomposite-based fluorescence biosensor for the highly selective and sensitive detection of prostate-specific antigen, Talanta 179 (2018) 531-537.
[8] S. Mohammadi, A. Salimi, Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair, Microchim. Acta 185 (2018) 372.
[9] X. Zheng, S. Wang, C. Xiong, G. Hu, In situ growth of 1T-MoS2 on liquid-exfoliated graphene: A unique graphene-like heterostructure for superior lithium storage, Carbon 133 (2018) 162-169. [10] S.M. Majd, A. Salimi, F. Ghasemi, An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor, Biosens. Bioelectron. 105 (2018) 6-13.
[11] A.B. Ganganboina, R.-A. Doong, The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione, Sens. Actuators B Chem. 273 (2018) 1179-1186.
[12] Y. Zhang, A. Nsabimana, L. Zhu, X. Bo, C. Han, M. Li, L. Guo, Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin, Talanta 129 (2014) 55-62.
[13] S.M. Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film, Anal. Chim. Acta 1000 (2018) 273-282.
[14] B. Kavosi, A. Salimi, R. Hallaj, K. Amani, A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/chitosan/ionic liquid nanocomposite, Biosens. Bioelectron. 52 (2014) 20-28.
[15] S. Basu, S. Pacelli, J. Wang, A. Paul, Adoption of nanodiamonds as biomedical materials for bone repair, Future Medicine, 2017.
[16] B. Babamiri, R. Hallaj, A. Salimi, Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru (bpy)32+ and PAMAM-CdTe@CdS nanocomposite, Biosens. Bioelectron. 99 (2018) 353-360
[17] B. Kavosi, A. Navaee, A. Salimi, Amplified fluorescence resonance energy transfer sensing of prostate specific antigen based on aggregation of CdTe QDs/antibody and aptamer decorated of AuNPs-PAMAM dendrimer, J. Lumin. 204 (2018) 368-374.
[18] S.A. Gomes, C.S. Vieira, D.B. Almeida, J.R. Santos-Mallet, R.F. Menna-Barreto, C.L. Cesar, D. Feder, CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms, Sensors, 11 (2011) 11664-11678.
[19] L.-L. Li, Y.-H. Cui, J.-J. Chen, H.-Q. Yu, Roles of glutathione and L-cysteine in the biomimetic green synthesis of CdSe quantum dots, Front. Environ. Sci. Eng. 11 (2017) 7.
[20] G. Qu, X. Wang, Z. Wang, S. Liu, G. Jiang, Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages, Nanoscale Res. Lett. 8 (2013) 198.
[21] L. Liu, Q. Miao, G. Liang, Quantum dots as multifunctional materials for tumor imaging and therapy, Materials 6 (2013) 483-499.
[22] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem. 36 (2012) 97-101.
[23] S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, C.P. A. Thakur, V.Kumar, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: A review, J. Clean. Prod. 228 (2019) 755-769.
[24] M. Pedrero, S. Campuzano, J.M. Pingarrón, Electrochemical (bio) sensing of clinical markers using quantum dots, Electroanalysis, 29 (2017) 24-37.
[25] S. Gu, C.-T. Hsieh, Y.-Y. Tsai, Y. Ashraf Gandomi, S. Yeom, K.D. Kihm, C.-C. Fu, R.-S. Juang, Sulfur and nitrogen co-doped graphene quantum dots as a fluorescent quenching probe for highly sensitive detection toward mercury ions, ACS Appl. Nano Mater. 2 (2019) 790-798.
[26] Y. Liu, X. Tang, M. Deng, Y. Cao, Y. Li, H. Zheng, F. Li, F. Yan, T. Lan, L. Shi, Nitrogen doped graphene quantum dots as a fluorescent probe for mercury (II) ions, Microchimi. Acta 186 (2019) 140.
[27] R. Wang, H. Fan, W. Jiang, G. Ni, S. Qu, Amino-functionalized graphene quantum dots prepared using high-softening point asphalt and their application in Fe3+ detection, Appl. Surf. Sci. 467 (2019) 446-455.
[28] N.T.N. Anh, R.-A. Doong, One-step synthesis of size-tunable gold@sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-nitrophenol in aqueous solutions with complex matrix, ACS Appl. Nano Mater. 1 (2018) 2153-2163.
[29] N.T.N. Anh, A.D. Chowdhury, R.-A. Doong, Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater, Sens. Actuators B Chem. 252 (2017) 1169-1178.
[30] P. Russo, R. Liang, E. Jabari, E. Marzbanrad, E. Toyserkani, Y.N. Zhou, Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions, Nanoscale 8 (2016) 8863-8877.
[31] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon 50 (2012) 4738-4743.
[32] R.L. Calabro, D.-S. Yang, D.Y. Kim, Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation, J. Colloid Interface Sci. 527 (2018) 132-140.
[33] Z. Yan, X. Qu, Q. Niu, C. Tian, C. Fan, B. Ye, A green synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the highly sensitive and selective detection of mercury (II) ions and biothiols, Anal. Methods 8 (2016) 1565-1571.
[34] D. Huang, H. Zhou, Y. Wu, T. Wang, L. Sun, P. Gao, Y. Sun, H. Huang, G. Zhou, J. Hu, Bottom-up synthesis and structural design strategy for graphene quantum dots with tunable emission to near infrared region, Carbon, 142 (2019) 673-684.
[35] Y. Song, S. Zhu, B. Yang, Bioimaging based on fluorescent carbon dots, RSC Adv. 4 (2014) 27184-27200.
[36] R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: A review, Mater. Today Chem. 8 (2018) 96-109.
[37] M. Pirsaheb, S. Mohammadi, A. Salimi, Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging, TRAC-Trend. Anal. Chem. (2019).
[38] F. Faridbod, A.L. Sanati, Graphene Quantum Dots in Electrochemical Sensors/Biosensors, Curr. Anal. Chem. 15 (2019) 103-123.
[39] R. Ye, Z. Peng, A. Metzger, J. Lin, J.A. Mann, K. Huang, C. Xiang, X. Fan, E.L. Samuel, L.B. Alemany, Bandgap engineering of coal-derived graphene quantum dots, ACS Appl. Mater. Interfaces 7 (2015) 7041-7048.
[40] M.H.M. Facure, R. Schneider, L.A. Mercante, D.S. Correa, A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications, Environ. Sci. Nano 7 (2020) 3710-3734.
[41] L. Liang, X. Peng, F. Sun, Z. Kong, J. Shen, A review on the cytotoxicity of graphene quantum dots: from experiment to simulation, Nanoscale Adv. 3 (2021) 904-917.
[42] H. Zhu, S. Wang, Sensitive detection of trace hemoglobin using fluorescence method based on functionalized quantum dots, Anal. Bioanal. Chem. 405 (2013) 4989-4991.
[43] S. Huang, L. Wang, C. Huang, J. Xie, W. Su, J. Sheng, Q. Xiao, A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin, Sens. Actuators B Chem. 221 (2015) 1215-1222.
[44] C. Liu, B. Xu, L. Zhou, Z. Sun, H. Mao, J. Zhao, L. Zhang, X. Chen, Graphene oxide functionalized long period fiber grating for highly sensitive hemoglobin detection, Sens. Actuators B Chem. 261 (2018) 91-96.
[45] K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8 (2009) 235.
[46] A. Güçlü, P. Potasz, P. Hawrylak, Electric-field controlled spin in bilayer triangular graphene quantum dots, Phys. Rev. B 84 (2011) 035425.
[47] S. Ahirwar, S. Mallick, D. Bahadur, Photodynamic therapy using graphene quantum dot derivatives, J. Solid State Chem. 282 (2020) 121107.
[48] S. Gu, C.-T. Hsieh, B.C. Mallick, Y. Gandomi Ashraf, Infrared-assisted synthesis of highly amidized graphene quantum dots as metal-free electrochemical catalysts, Electrochim. Acta 360 (2020) 137009.
[49] T.A.N. Bui, T.G. Nguyen, W. Darmanto, R.-A. Doong, 3-Dimensional ordered reduced graphene oxide embedded with N-doped graphene quantum dots for high performance supercapacitors, Electrochim. Acta 361 (2020) 137018.
[50] A.B. Ganganboina, E.Y. Park, R.-A. Doong, Boosting the energy storage performance of V2O5 nanosheets by intercalating conductive graphene quantum dots, Nanoscale 12 (2020) 16944-16955.
[51] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun. 47 (2011) 6858-6860.
[52] G. Jie, Q. Zhou, G. Jie, Graphene quantum dots-based electrochemiluminescence detection of DNA using multiple cycling amplification strategy, Talanta 194 (2019) 658-663.
[53] L. Ling, L. Ruiyi, W. Guangli, G. Zhiguo, L. Zaijun, Graphene quantum dots-NaYF4: Yb, Er hybrid with significant enhancement of upconversion emission for fluorescent detection of carcinoembryonic antigen with exonuclease III-aided target recycling amplification, Sens. Actuators B Chem. (2019).
[54] P. Jegannathan, A.T. Yousefi, M.S.A. Karim, N.A. Kadri, Enhancement of graphene quantum dots based applications via optimum physical chemistry: A review, Biocybern. Biomed. Eng. 38 (2018) 481-497.
[55] S. Benítez-Martínez, M. Valcárcel, Graphene quantum dots in analytical science, TRAC-Trend. Anal. Chem. 72 (2015) 93-113.
[56] R. Liu, D. Wu, X. Feng, K. Müllen, Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (2011) 15221-15223.
[57] M. Arvand, S. Hemmati, Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone, Sens. Actuators B Chem. 238 (2017) 346-356.
[58] S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape, ACS nano 6 (2012) 8203-8208.
[59] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012) 844-849.
[60] X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications, Small 11 (2015) 1620-1636.
[61] J. Wang, C.F. Wang, S. Chen, Amphiphilic egg‐derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns, Angew. Chem. Int. Ed. 51 (2012) 9297-9301.
[62] H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing, Materials today, 16 (2013) 433-442.
[63] A.B. Ganganboina, R.-A. Doong, Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion, Microchimi. Acta 185 (2018) 526.
[64] N. Shadjou, E. Saduooghi, M. Hasanzadeh, Highly sensitive quantification of hydrogen-transmitting coenzyme in physiological pH using silver nanoparticles dispersed on nitrogen doped graphene quantum dots, Microchem. J. 144 (2019) 383-390.
[65] P.R. Kharangarh, S. Umapathy, G. Singh, Investigation of sulfur related defects in graphene quantum dots for tuning photoluminescence and high quantum yield, Appl. Surf. Sci. 449 (2018) 363-370.
[66] J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, J. Liu, Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst, J. Phys. Chem. C 122 (2017) 349-358.
[67] I.S. Riyanto, K. Bindumadhavan, P.-Y. Chang, R.-A. Doong, Boron doped graphene quantum structure and MoS2 nanohybrid as anode materials for highly reversible lithium storage, Front. Chem. 7 (2019).
[68] Y. Wang, Y. Jing, L. Wang, W. Kong, S. Wang, Z. Wang, Y. Li, Q. Lu, Photoluminescence of graphene quantum dots doped with different elements, , Chi. Sci. Bull. 64 (2019) 411-418.
[69] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives, Nanoscale 5 (2013) 4015-4039.
[70] Y. Jing, Y. Zhu, X. Yang, J. Shen, C. Li, Ultrasound-triggered smart drug release from multifunctional core − shell capsules one-step fabricated by coaxial electrospray method, Langmuir 27 (2010) 1175-1180.
[71] H. Shen, M. Liu, H. He, L. Zhang, J. Huang, Y. Chong, J. Dai, Z. Zhang, PEGylated graphene oxide-mediated protein delivery for cell function regulation, ACS Appl. Mater. Interfaces 4 (2012) 6317-6323.
[72] B. Wang, J. Shen, Y. Huang, Z. Liu, H. Zhuang, Graphene quantum dots and enzyme-Coupled biosensor for highly sensitive determination of hydrogen peroxide and glucose, Int. J. Mol. Sci. 19 (2018) 1696.
[73] P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications, Mater. Today Chem. 10 (2018) 221-258.
[74] A.B. Ganganboina, A. Dutta Chowdhury, R.-A. Doong, N-doped graphene quantum dots-decorated v2o5 nanosheet for fluorescence turn off–on detection of cysteine, ACS Appl. Mater. Interfaces 10 (2018) 614-624.
[75] N. Khalaf, T. Ahamad, M. Naushad, N. Al-hokbany, S.I. Al-Saeedi, S. Almotairi, S.M. Alshehri, Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor, Int. J. Biol. Macromol. 146 (2020) 763-772.
[76] C. Li, J. Li, H. Tang, X. Yang, Q. Fei, C. Sun, A non-enzymatic electrochemical biosensor based on SiO2–Au nanoparticles for hemoglobin detection, Anal. Methods 9 (2017) 1265-1272.
[77] Y. Zhao, W. Gao, X. Ge, S. Li, D. Du, H. Yang, CdTe@SiO2 signal reporters-based fluorescent immunosensor for quantitative detection of prostate specific antigen, Anal. Chim. Acta 1057 (2019) 44-50.
[78] S. Tarasi, A.A. Tehrani, A. Morsali, The effect of methyl group functionality on the host-guest interaction and sensor behavior in metal-organic frameworks, Sens. Actuators B Chem. 305 (2020) 127341.
[79] V.D. Dang, A.B. Ganganboina, R.-A. Doong, Bipyridine- and copper-functionalized n-doped carbon dots for fluorescence turn off–on detection of ciprofloxacin, ACS Appl. Mater. Interfaces 12 (2020) 32247-32258.
[80] M. Safavipour, M. Kharaziha, E. Amjadi, F. Karimzadeh, A. Allafchian, TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance, Talanta 208 (2020) 120369.
[81] A.B. Ganganboina, R.-A. Doong, Graphene quantum dots decorated gold-polyaniline nanowire for impedimetric detection of carcinoembryonic antigen, Sci. Rep. 9 (2019) 7214.
[82] A. Baradoke, B. Jose, R. Pauliukaite, R.J. Forster, Properties of Anti-CA125 antibody layers on screen-printed carbon electrodes modified by gold and platinum nanostructures, Electrochim. Acta 306 (2019) 299-306.
[83] A. Dutta Chowdhury, N. Agnihotri, R.-A. Doong, A. De, label-free and nondestructive separation technique for isolation of targeted DNA from DNA–protein mixture using magnetic Au–Fe3O4 nanoprobes, Anal. Chem., 89 (2017) 12244-12251.
[84] A.D. Chowdhury, A.B. Ganganboina, E.Y. Park, R.-A. Doong, Impedimetric biosensor for detection of cancer cells employing carbohydrate targeting ability of concanavalin a, Biosens. Bioelectron. 122 (2018) 95-103.
[85] P.G. Luo, F. Yang, S.-T. Yang, S.K. Sonkar, L. Yang, J.J. Broglie, Y. Liu, Y.-P. Sun, Carbon-based quantum dots for fluorescence imaging of cells and tissues, RSC Adv. 4 (2014) 10791-10807.
[86] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy Environ. Sci. 5 (2012) 8869-8890.
[87] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater. 22 (2010) 505-509.
[88] T. García-Mendiola, I. Bravo, J.M. López-Moreno, F. Pariente, R. Wannemacher, K. Weber, J. Popp, E. Lorenzo, Carbon nanodots based biosensors for gene mutation detection, Sens. Actuators B Chem. 256 (2018) 226-233.
[89] L. Ruiyi, Z. Haiyan, L. Zaijun, L. Junkang, Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots, Microchimi. Acta 185 (2018) 145.
[90] M. Srivastava, N.R. Nirala, S. Srivastava, R.J. Prakash, A comparative study of aptasensor vs immunosensor for label-free PSA cancer detection on GQDs-AuNRs modified screen-printed electrodes, Sci. Rep. 8 (2018) 1923.
[91] J. Feng, H. Dong, L. Yu, L. Dong, The optical and electronic properties of graphene quantum dots with oxygen-containing groups: a density functional theory study, J. Phys. Chem. C 5 (2017) 5984-5993.
[92] R. Xie, Z. Wang, W. Zhou, Y. Liu, L. Fan, Y. Li, X. Li, Graphene quantum dots as smart probes for biosensing, Anal. Methods 8 (2016) 4001-4016.
[93] J. Ali, Y.J. Yang, K.T. Lee, K. Um, K.H. Choi, Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays, RSC Adv. 6 (2016) 5068-5078.
[94 J.M. Bai, L. Zhang, R.P. Liang, J.D. Qiu, Graphene quantum dots combined with europium ions as photoluminescent probes for phosphate sensing, Chem. Eur. J. 19 (2013) 3822-3826.
[95] D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. Eur. J. 18 (2012) 12522-12528.
[96] R.K. Puddy, C. Chua, M. Buitelaar, Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography, Appl. Phys. Lett. 103 (2013) 183117.
[97] C. Hu, Y. Liu, Y. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide, J. Mater. Chem. B 1 (2013) 39-42.
[98] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission, RSC Adv. 2 (2012) 2717-2720.
[99] X. Tan, Y. Li, X. Li, S. Zhou, L. Fan, S. Yang, Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform, Chem. Commun. 51 (2015) 2544-2546.
[100] S. Wei, R. Zhang, Y. Liu, H. Ding, Y.-L. Zhang, Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: an efficient photocatalyst promoter, Catal. Commun. 74 (2016) 104-109.
[101] Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo, J. Zhang, Graphene quantum dots/gold electrode and its application in living cell H2O2 detection, Nanoscale 5 (2013) 1816-1819.
[102] J. Kim, J.S. Suh, Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet, ACS Nano 8 (2014) 4190-4196.
[103] L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, A facile microwave avenue to electrochemiluminescent two‐color graphene quantum dots, Adv. Funct. Mater. 22 (2012) 2971-2979.
[104] M. Hassan, E. Haque, K.R. Reddy, A.I. Minett, J. Chen, V.G. Gomes, Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance, Nanoscale 6 (2014) 11988-11994.
[105] X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, J.X. Zhao, Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing, J. Phys. Chem. C 1 (2013) 4676-4684.
[106] S. Bak, D. Kim, H. Lee, Graphene quantum dots and their possible energy applications: A review, Curr. Appl. Phys. 16 (2016) 1192-1201.
[107] H.L. Tran, W. Darmanto, R.-A. Doong, Ultrasensitive detection of tetracycline using boron and nitrogen co-doped graphene quantum dots from natural carbon source as the paper-based nanosensing probe in difference matrices, Nanomaterials 10 (2020) 1883.
[108] T.V. Huynh, N.T.N. Anh, W. Darmanto, R.-A. Doong, Erbium-doped graphene quantum dots with up- and down-conversion luminescence for effective detection of ferric ions in water and human serum, Sens. Actuators B Chem. 328 (2021) 129056.
[109] H.L. Tran, R.-A. Doong, Sustainable fabrication of green luminescent sulfur-doped graphene quantum dots for rapid visual detection of hemoglobin, Anal. Methods 11 (2019) 4421-4430.
[110] S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+, Anal. Chem., 86 (2014) 10201-10207.
[111] J.-J. Liu, X.-L. Zhang, Z.-X. Cong, Z.-T. Chen, H.-H. Yang, G.-N. Chen, Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites, Nanoscale 5 (2013) 1810-1815.
[112] J. Ju, R. Zhang, S. He, W. Chen, Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging, RSC Adv. 4 (2014) 52583-52589.
[113] X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence, Nanoscale 4 (2012) 5572-5575.
[114] H. Sun, N. Gao, K. Dong, J. Ren, X. Qu, Graphene quantum dots-band-aids used for wound disinfection, ACS Nano 8 (2014) 6202-6210.
[115] S. Jahan, F. Mansoor, S. Naz, J. Lei, S. Kanwal, Oxidative Synthesis of Highly Fluorescent Boron/Nitrogen Co-Doped Carbon Nanodots Enabling Detection of Photosensitizer and Carcinogenic Dye, Analyt. Chemi. 85 (2013) 10232-10239.
[116] L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, Size‐dependent structural and optical characteristics of glucose‐derived graphene quantum dots, Part. Part. Syst. Charact. 30 (2013) 523-531.
[117] V. Sharma, P. Tiwari, S.M. Mobin, Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging, J. Mater. Chem. B 5 (2017) 8904-8924.
[118] W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury (II) ions, J. Nanoparticle Res. 15 (2013) 1344.
[119] S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem. Commun. 48 (2012) 8835-8837.
[120] B. De, N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice, RSC Adv. 3 (2013) 8286-8290.
[121] P. Suvarnaphaet, C.S. Tiwary, J. Wetcharungsri, S. Porntheeraphat, R. Hoonsawat, P.M. Ajayan, I.-M. Tang, P. Asanithi, Blue photoluminescent carbon nanodots from limeade, Mater. Sci. Eng. C 69 (2016) 914-921.
[122] A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis, RSC Adv. 6 (2016) 72423-72432.
[123] B. Yin, J. Deng, X. Peng, Q. Long, J. Zhao, Q. Lu, Q. Chen, H. Li, H. Tang, Y. Zhang, Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay, Analyst 138 (2013) 6551-6557.
[124] Y. Guo, L. Zhang, F. Cao, Y. Leng, Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+, Sci. Rep. 6 (2016) 35795.
[125] Y. Liu, Y. Zhao, Y. Zhang, One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (II) ion detection, Sens. Actuators B Chem. 196 (2014) 647-652.
[126] W. Chen, D. Li, L. Tian, W. Xiang, T. Wang, W. Hu, Y. Hu, S. Chen, J. Chen, Z. Dai, Synthesis of graphene quantum dots from natural polymer starch for cell imaging, Green Chem. 20 (2018) 4438-4442.
[127] W. Chen, J. Shen, G. Lv, D. Li, Y. Hu, C. Zhou, X. Liu, Z. Dai, Green synthesis of graphene quantum dots from cotton cellulose, Chem. Select. 4 (2019) 2898-2902.
[128] J. Zhou, Z. Sheng, H. Han, M. Zou, C. Li, Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source, Mater. Lett. 66 (2012) 222-224.
[129] D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon 64 (2013) 424-434.
[130] S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles, Nanoscale 3 (2011) 1533-1540.
[131] D. Gu, S. Shang, Q. Yu, J. Shen, Green synthesis of nitrogen-doped carbon dots from lotus root for Hg (II) ions detection and cell imaging, Appl. Surf. Sci. 390 (2016) 38-42.
[132] V.N. Mehta, S. Jha, S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells, Mater. Sci. Eng. C 38 (2014) 20-27.
[133] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A.M. Asiri, A.O. Al‐Youbi, X. Sun, Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions, Adv. Mater. 24 (2012) 2037-2041.
[134] H. Huang, J.-J. Lv, D.-L. Zhou, N. Bao, Y. Xu, A.-J. Wang, J.-J. Feng, One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions, RSC Adv. 3 (2013) 21691-21696.
[135] A.-M. Alam, B.-Y. Park, Z.K. Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chem. 17 (2015) 3791-3797.
[136] H. Xu, X. Yang, G. Li, C. Zhao, X. Liao, Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples, J. Agric. Food Chem. 63 (2015) 6707-6714.
[137] H. Wu, C. Mi, H. Huang, B. Han, J. Li, S. Xu, Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application, J. Lumin, 132 (2012) 1603-1607.
[138] S.A.A. Vandarkuzhali, V. Jeyalakshmi, G. Sivaraman, S. Singaravadivel, K.R. Krishnamurthy, B. Viswanathan, Highly fluorescent carbon dots from pseudo-stem of banana plant: applications as nanosensor and bio-imaging agents, Sens. Actuators B Chem. 252 (2017) 894-900.
[139] A. Kalluri, D. Debnath, B. Dharmadhikari, P. Patra, Graphene quantum dots: synthesis and applications, Methods Enzymol. 609 (2018) 335-354.
[140] M. Li, T. Chen, J.J. Gooding, J. Liu, Review of Carbon and Graphene Quantum Dots for Sensing, ACS Sens. 4 (2019) 1732-1748.
[141] S. Pakapongpan, R. Palangsuntikul, W. Surareungchai, Electrochemical sensors for hemoglobin and myoglobin detection based on methylene blue-multiwalled carbon nanotubes nanohybrid-modified glassy carbon electrode, Electrochim. Acta 56 (2011) 6831-6836.
[142] U. Jain, N. Chauhan, Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet, Biosens. Bioelectron. 89 (2017) 578-584.
[143] S.L. Ting, S.J. Ee, A. Ananthanarayanan, K.C. Leong, P. Chen, Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions, Electrochim. Acta 172 (2015) 7-11.
[144] L. Ponomarenko, F. Schedin, M. Katsnelson, R. Yang, E. Hill, K. Novoselov, A. Geim, Chaotic Dirac billiard in graphene quantum dots, Science 320 (2008) 356-358.
[145] R. Sekiya, Y. Uemura, H. Murakami, T. Haino, White‐light‐emitting edge‐functionalized graphene quantum dots, Angew. Chem. Int. Ed. 53 (2014) 5619-5623.
[146] S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, X. Dong, Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection, Sens. Actuators B Chem. 242 (2017) 231-237.
[147] Y. Li, N. Cai, M. Wang, W. Na, F. Shi, X. Su, Fluorometric detection of tyrosine and cysteine using graphene quantum dots, RSC Adv. 6 (2016) 33197-33204.
[148] Z. Qian, X. Shan, L. Chai, J. Ma, J. Chen, H. Feng, A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA, Nanoscale 6 (2014) 5671-5674.
[149] J. Li, S. Guo, E. Wang, Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors, RSC Adv. 2 (2012) 3579-3586.
[150] W. Miao, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev. 108 (2008) 2506-2553.
[151] M.M. Richter, Electrochemiluminescence (ecl), Chem. Rev. 104 (2004) 3003-3036.
[152] Y. Dong, H. Wu, P. Shang, X. Zeng, Y. Chi, Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor, Nanoscale 7 (2015) 16366-16371.
[153] K.L. Schroeder, R.V. Goreham, T. Nann, Graphene quantum dots for theranostics and bioimaging, Pharm. Res. 33 (2016) 2337-2357.
[154] J. Wen, Y. Xu, H. Li, A. Lu, S. Sun, Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging, Chem. Commun. 51 (2015) 11346-11358.
[155] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications, Light Sci. Appl. 4 (2015) e364.
[156] J. Dong, K. Wang, L. Sun, B. Sun, M. Yang, H. Chen, Y. Wang, J. Sun, L. Dong, Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery, Sens. Actuators B Chem. 256 (2018) 616-623.
[157] C.-I. Wang, A.P. Periasamy, H.-T. Chang, Photoluminescent C-dots@rGO probe for sensitive and selective detection of acetylcholine, Anal. Chem. 85 (2013) 3263-3270.
[158] C. Yang, K.K. Chan, G. Xu, M. Yin, G. Lin, X. Wang, W.-J. Lin, M.D. Birowosuto, S. Zeng, T. Ogi, K. Okuyama, F.A. Permatasari, F. Iskandar, C.-K. Chen, K.-T. Yong, Biodegradable polymer-coated multifunctional graphene quantum dots for light-triggered synergetic therapy of pancreatic cancer, ACS Appl. Mater. Interfaces 11 (2019) 2768-2781.
[159] Z. Li, J. Fan, C. Tong, H. Zhou, W. Wang, B. Li, B. Liu, W.J.N. Wang, A smart drug-delivery nanosystem based on carboxylated graphene quantum dots for tumor-targeted chemotherapy, Nanomedicine 14 (2019) 2011-2025.
[160] S. Zhang, X. Pei, Y. Xue, J. Xiong, J. Wang, Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison, Chi. Chem. Lett. 31 (2020) 1654-1659.
[161] I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 65 (2001) 232-260.
[162] L. Zhang, L. Chen, Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline, ACS Appl. Mater. Interfaces 8 (2016) 16248-16256.
[163] B.D.W. Group, A.J. Atkinson Jr, W.A. Colburn, V.G. DeGruttola, D.L. DeMets, G.J. Downing, D.F. Hoth, J.A. Oates, C.C. Peck, R.T. Schooley, Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clinical pharmacology & therapeutics, 69 (2001) 89-95.
[164] A.K. Füzéry, J. Levin, M.M. Chan, D.W. Chan, Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges, Clin. Proteom. 10 (2013) 13.
[165] A. Mordente, E. Meucci, G.E. Martorana, A. Silvestrini, Cancer biomarkers discovery and validation: state of the art, problems and future perspectives, advances in cancer biomarkers, Springer (2015) 9-26.
[166] A.J. Haes, R.P. Van Duyne, A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J. Am. Chem. Soc. 124 (2002) 10596-10604.
[167] R. Cush, J. Cronin, W. Stewart, C. Maule, J. Molloy, N. Goddard, The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation, Biosens. Bioelectron. 8 (1993) 347-354.
[168] P. Buckle, R. Davies, T. Kinning, D. Yeung, P. Edwards, D. Pollard-Knight, C. Lowe, The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions part II: applications, Biosens. Bioelectron. 8 (1993) 355-363.
[169] A. TermehYousefi, H. Tanaka, S. Bagheri, Enhancement of glucose oxide electron-transfer mechanism in glucose biosensor via optimum physical chemistry of functionalized carbon nanotubes, Rev. Chem. Eng. 33 (2017) 201-215.
[170] P.D. Hale, T. Inagaki, H.I. Karan, Y. Okamoto, T.A. Skotheim, A new class of amperometric biosensor incorporating a polymeric electron-transfer mediator, J. Am. Chem. Soc. 111 (1989) 3482-3484.
[171] Z. Muhammad-Tahir, E.C. Alocilja, A conductometric biosensor for biosecurity, Biosens. Bioelectron. 18 (2003) 813-819.
[172] A.A. Karyakin, O.A. Bobrova, L.V. Lukachova, E.E. Karyakina, Potentiometric biosensors based on polyaniline semiconductor films, , Sens. Actuators B Chem. 33 (1996) 34-38.
[173] M. Shamsipur, S.H. Kazemi, M.F. Mousavi, Impedance studies of a nano-structured conducting polymer and its application to the design of reliable scaffolds for impedimetric biosensors, Biosens. Bioelectron. 24 (2008) 104-110.
[174] S.K. Kahlon, G. Sharma, J.M. Julka, A. Kumar, S. Sharma, F.J. Stadler, Impact of heavy metals and nanoparticles on aquatic biota, Environ. Chem. Lett. 16 (2018) 919-946.
[175] N. Hadrup, H.R. Lam, Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review, Regul. Toxicol. Pharmacol. 68 (2014) 1-7.
[176] L.A. Malik, A. Bashir, A. Qureashi, A.H. Pandith, Detection and removal of heavy metal ions: a review, Environ. Chem. Lett. 17 (2019) 1495-1521.
[177] C. Greulich, D. Braun, A. Peetsch, J. Diendorf, B. Siebers, M. Epple, M. Köller, The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range, RSC Adv. 2 (2012) 6981-6987.
[178] N. Hadrup, A.K. Sharma, K. Loeschner, Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review, Regul. Toxicol. Pharmacol. 98 (2018) 257-267.
[179] M.D. Boudreau, M.S. Imam, A.M. Paredes, M.S. Bryant, C.K. Cunningham, R.P. Felton, M.Y. Jones, K.J. Davis, G.R.J.T.S. Olson, Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks, Tox. Sci. 150 (2016) 131-160.
[180] Y. Li, T. Qin, T. Ingle, J. Yan, W. He, J.-J. Yin, T. Chen, Differential genotoxicity mechanisms of silver nanoparticles and silver ions, Arch. Toxicol. 91 (2017) 509-519.
[181] J.D. Strickland, W.R. LeFew, J. Crooks, D. Hall, J.N. Ortenzio, K. Dreher, T.J. Shafer, In vitro screening of silver nanoparticles and ionic silver using neural networks yields differential effects on spontaneous activity and pharmacological responses, Toxicology 355 (2016) 1-8.
[182] S. Weigel, R. Peters, K. Loeschner, R. Grombe, T.P.J. Linsinger, Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS), Anal. Bioanal. Chem. 409 (2017) 4839-4848.
[183] Q. Meng, H. Jia, P. Succar, L. Zhao, R. Zhang, C. Duan, Z. Zhang, A highly selective and sensitive on–off–on fluorescence chemosensor for cysteine detection in endoplasmic reticulum, Biosens. Bioelectron. 74 (2015) 461-468.
[184] J.A. López-López, B. Herce-Sesa, C. Moreno, Solvent bar micro-extraction with graphite atomic absorption spectrometry for the determination of silver in ocean water, Talanta 159 (2016) 117-121.
[185] A.D. Chowdhury, K. Takemura, T.-C. Li, T. Suzuki, E.Y. Park, Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection, Nat. Commun. 10 (2019) 3737.
[186] D. Shao, S. Bi, R. Zhao, X. Sun, X. Li, J. Yu, Selective determination of dinitolmide and toltrazuril by surface-enhanced raman spectroscopy (SERS) using AgNPs as substrate, Sens. Actuators B Chem. 307 (2020) 127644.
[187] R. Jalili, A. Khataee, M.-R. Rashidi, R. Luque, Dual-colored carbon dot encapsulated metal-organic framework for ratiometric detection of glutathione, Sens. Actuators B Chem. 297 (2019) 126775.
[188] G. Mo, D. Qin, X. Jiang, X. Zheng, W. Mo, B. Deng, A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection, Sens. Actuators B Chem. 310 (2020) 127852.
[189] S. Panneer Selvam, K. Yun, A self-assembled silver chalcogenide electrochemical sensor based on rGO-Ag2Se for highly selective detection of serotonin, Sens. Actuators B Chem. 302 (2020) 127161.
[190] S. Niazi, I.M. Khan, Y. Yu, I. Pasha, Y. Lv, A. Mohsin, B.S. Mushtaq, Z. Wang, A novel fluorescent aptasensor for aflatoxin M1 detection using rolling circle amplification and g-C3N4 as fluorescence quencher, Sens. Actuators B Chem. 315 (2020) 128049.
[191] A.D. Chowdhury, R.-A. Doong, Highly sensitive and selective detection of nanomolar ferric ions using dopamine functionalized graphene quantum dots, ACS Appl. Mater. Intefaces 8 (2016) 21002-21010.
[192] Y. Jiao, Y. Gao, Y. Meng, W. Lu, Y. Liu, H. Han, S. Shuang, L. Li, C.J.A.a.m. Dong, interfaces, One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications, ACS appl. Mater. Interfaces 11 (2019) 16822-16829.
[193] S. Bian, C. Shen, Y. Qian, J. Liu, F. Xi, X.J.S. Dong, Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection, Sens. Actuators B Chem. 242 (2017) 231-237.
[194] D.K. Dang, C. Sundaram, Y.-L.T. Ngo, J.S. Chung, E.J. Kim, S.H. Hur, One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution, Sens. Actuators B Chem. 255 (2018) 3284-3291.
[195] S. Kadian, G. Manik, N. Das, P. Nehra, R.P. Chauhan, P. Roy, Synthesis, characterization and investigation of synergistic antibacterial activity and cell viability of silver–sulfur doped graphene quantum dot (Ag@S-GQDs) nanocomposites, J. Mater. Chem. B 8 (2020) 3028-3037.
[196] J.M. Maier, P. Li, J. Hwang, M.D. Smith, K.D. Shimizu, Measurement of Silver−π Interactions in Solution Using Molecular Torsion Balances, J. Am. Chem. Soc. 137 (2015) 8014-8017.
[197] N. Ramanathan, K. Sankaran, K. Sundararajan, PCl3–C6H6 heterodimers: evidence for P⋯π phosphorus bonding at low temperatures, Phys. Chem. Chem. Phys.18 (2016) 19350-19358.
[198] B. Zhi, M.J. Gallagher, B.P. Frank, T.Y. Lyons, T.A. Qiu, J. Da, A.C. Mensch, R.J. Hamers, Z. Rosenzweig, D.H. Fairbrother, C.L. Haynes, Investigation of phosphorous doping effects on polymeric carbon dots: Fluorescence, photostability, and environmental impact, Carbon 129 (2018) 438-449.
[199] T. Rahimi-Aghdam, Z. Shariatinia, M. Hakkarainen, V. Haddadi-Asl, Nitrogen and phosphorous doped graphene quantum dots: Excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites, J. Hazard. Mater. 381 (2020) 121013.
[200] ] J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, J. Liu, Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst, J. Phys. Chem. C 122 (2018) 349-358.
[201] Y. Wang, Y. Jing, L. Wang, W. Kong, S. Wang, Z. Wang, Y. Li, Q. Lu, Photoluminescence of graphene quantum dots doped with different elements, Chin. Sci. Bull. 64 (2019) 411-418.
[202] M. Khan, M.R. Shaik, S.F. Adil, S.T. Khan, A. Al-Warthan, M.R.H. Siddiqui, M.N. Tahir, W. Tremel, Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis, Dalton Trans. 47 (2018) 11988-12010.
[203] L. Fu, A. Wang, K. Xie, J. Zhu, F. Chen, H. Wang, H. Zhang, W. Su, Z. Wang, C. Zhou, C, S. Ruan, Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode, Sens. Actuators B Chem. 304 (2020) 127390.
[204] X.-E. Zhao, C. Lei, Y. Gao, H. Gao, S. Zhu, X. Yang, J. You, H. Wang, A ratiometric fluorescent nanosensor for the detection of silver ions using graphene quantum dots, Sens. Actuators B Chem. 253 (2017) 239-246.
[205] H. Lu, C. Yu, S. Xu, A dual reference ion-imprinted ratiometric fluorescence probe for simultaneous detection of silver (I) and lead (II), Actuators B Chem. 288 (2019) 691-698.
[206] P.G. Mahajan, N.C. Dige, B.D. Vanjare, S.-K. Hong, K.H. Lee, Gallotannin functionalized gold nanoparticles for rapid, selective and sensitive colorimetric detection of Ag+ in aqueous medium: Approach to eco-friendly water analysis, Actuators B Chem. 281 (2019) 720-729.
[207] ] F. Wang, Y. Lu, Y. Chen, J. Sun, Y. Liu, Colorimetric nanosensor based on the aggregation of AuNP triggered by carbon quantum dots for detection of Ag+ ions, ACS Sustain. Chem. Eng. 6 (2018) 3706-3713.
[208] B. Chen, J. Liu, T. Yang, L. Chen, J. Hou, C. Feng, C. Z Huang, Development of a portable device for Ag+ sensing using CdTeQDs as fluorescence probe via an electron transfer process, Talanta 191 (2019) 357-363.
[209] Z. Wang, X. Xiao, Y. Yang, T. Zou, X. Xing, R. Zhao, Z. Wang, Y. Wang, L-aspartic acid capped CdS quantum dots as a Hhgh performance fluorescence assay for sliver ions (I) detection, Nanomaterials 9 (2019) 1165.
[210] J.-J. Liu, Z.-T. Chen, D.-S. Tang, Y.-B. Wang, L.-T. Kang, J.-N. Yao, Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid, Sens. Actuators B Chem. 212 (2015) 214-219.
[211] Y. Li, S. Li, Y. Wang, J. Wang, H. Liu, X. Liu, L. Wang, X. Liu, W. Xue, N. Ma, Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging, Phys. Chem. Chem. Phys. 19 (2017) 11631-11638.
[212] T.-B. Nguyen, C.P. Huang, R.-A Doong, C.-W. Chen, C.-D. Dong, Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water, Chem. Eng. J. 384 (2020) 123383.
[213] U. Gul, S. Kanwal, S. Tabassum, M.A. Gilani, A. Rahim, Microwave-assisted synthesis of carbon dots as reductant and stabilizer for silver nanoparticles with enhanced-peroxidase like activity for colorimetric determination of hydrogen peroxide and glucose, Microchimi. Acta 187 (2020) 135.
[214] J.L. Johnson, Oxygen carriers: Are they enough for cellular support. In neuroprotective therapy for stroke and ischemic disease, Springer 2017, 621-640.
[215] S. Maghsoudlou, S. Cnattingius, O. Stephansson, M. Aarabi, S. Semnani, S.M. Montgomery, S. Bahmanyar, Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: a population-based case-control study, BMC Pregnancy Childb. 16 (2016) 135.
[216] R.N. Das, Y. Lee, Impact of hemoglobin on cardiac parameters for shock patients, Clin. Med. Rev. Case. Rep. 5 (2018) 858-862.
[217] A.K. Sharma, Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations, J. Appl. Phys. 114 (2013) 044701.
[218] E.J. Jo, H. Mun, M.G. Kim, Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles, Anal. Chem. 88 (2016) 2742-2746.
[219] J. Tanaka, Y. Ishige, R. Iwata, B. Maekawa, H. Nakamura, T. Sawazaki, M. Kamahori, Direct detection for concentration ratio of HbA1c to total hemoglobin by using potentiometric immunosensor with simple process of denaturing HbA1c, Sens. Actuators B Chem. 260 (2018) 396-399.
[220] Y. Peng, P. Wang, L. Luo, L. Liu, F. Wang, Green synthesis of fluorescent palladium nanoclusters, Materials 11 (2018) 191.
[221] N. Butwong, L. Zhou, E. Moore, S. Srijaranai, J.H. Luong, J.D. Glennon, A highly sensitive hydrogen peroxide biosensor based on hemoglobin immobilized on cadmium sulfide quantum dots/chitosan composite modified glassy carbon electrode, Electroanalysis 26 (2014) 2465-2473.
[222] H. Li, X. Wei, Y. Zhang, Y. Xu, K. Lu, C. Li, Y. Yan, Rapid and sensitive detection of hemoglobin with gold nanoparticles based fluorescence sensor in aqueous solution, J. Alloys Compd. 685 (2016) 820-827.
[223] J.-M. Moon, D.-M. Kim, M.H. Kim, J.-Y. Han, D.-K. Jung, Y.-B. Shim, A disposable amperometric dual-sensor for the detection of hemoglobin and glycated hemoglobin in a finger prick blood sample, Biosens. Bioelectron. 91 (2017) 128-135.
[224] L.-Y. Chen, C.-C. Huang, W.-Y. Chen, H.-J. Lin, H.-T. Chang, Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples, Biosens. Bioelectron. 43 (2013) 38-44.
[225] N. Pourreza, H. Golmohammadi, Hemoglobin detection using curcumin nanoparticles as a colorimetric chemosensor, RSC Adv. 5 (2015) 1712-1717.
[226] S. Bian, C. Shen, H. Hua, L. Zhou, H. Zhu, F. Xi, J. Liu, X. Dong, One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead (II), RSC Adv. 6 (2016) 69977-69983.
[227] L. Ling, L. Ruiyi, W. Guangli, G. Zhiguo, L. Zaijun, Graphene quantum dots-NaYF4:Yb,Er hybrid with significant enhancement of upconversion emission for fluorescent detection of carcinoembryonic antigen with exonuclease III-aided target recycling amplification, Sens. Actuators B Chem. 285 (2019) 453-461.
[228] S. Dey, A. Govindaraj, K. Biswas, C. Rao, Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples, Chem. Phys. Lett. 595 (2014) 203-208.
[229] X. Jia, X. Ji, Electrochemical probing of carbon quantum dots: not suitable for a single electrode material, RSC Adv. 5 (2015) 107270-107275.
[230] M. Mukherjee, S. Sangam, A. Gupta, A. Shakeel, R. Bhattacharya, A.K. Sharma, D. Suhag, S. Chakrabarti, S.K. Garg, S. Chattopadhyay, Sustainable synthesis of single crystalline sulphur-doped graphene quantum dots for bioimaging and beyond, Green Chem. (2018).
[231] T.K. Mondal, D. Dinda, S.K. Saha, Nitrogen, Sulphur co-doped graphene quantum dot: An excellent sensor for nitroexplosives, Sens. Actuators B Chem. 257 (2018) 586-593.
[232] P.R. Kharangarh, S. Umapathy, G. Singh, Thermal effect of sulfur doping for luminescent graphene quantum dots, ECS J. Solid State Sci. Technol 7 (2018) 29-34.
[233] W. Zhang, Y. Liu, X. Meng, T. Ding, Y. Xu, H. Xu, Y. Ren, B. Liu, J. Huang, J. Yang, Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots, Phys. Chem. Chem. Phys. 17 (2015) 22361-22366.
[234] C.-H. Huang, Q. Zhang, T.-C. Chou, C.-M. Chen, D.S. Su, R.-A. Doong, Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage, Chem. Sus. Chem. 5 (2012) 563-571.
[235] A. Lippitz, J.F. Friedrich, W.E. Unger, Plasma bromination of HOPG surfaces: A NEXAFS and synchrotron XPS study, Surf. Sci. 611 (2013) L1-L7.
[236] A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies, J. Phys. Chem. C 115 (2011) 17009-17019.
[237] K. Wang, J. Dong, L. Sun, H. Chen, Y. Wang, C. Wang, L. Dong, Effects of elemental doping on the photoluminescence properties of graphene quantum dots, RSC Adv. 6 (2016) 91225-91232.
[238] L. Wang, J. Han, B. Sundahl, S. Thornton, Y. Zhu, R. Zhou, C. Jaye, H. Liu, Z.-Q. Li, G.T. Taylor, D.A. Fischer, J. Appenzeller, R.J. Harrison, S.S. Wong, Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures, Nanoscale 8 (2016) 15553-15570.
[239] Y. Ye, A. Kawase, M.-K. Song, B. Feng, Y.-S. Liu, M.A. Marcus, J. Feng, E.J. Cairns, J. Guo, J. Zhu, X-ray absorption spectroscopy characterization of a Li/S cell, Nanomaterials 6 (2016) 14.
[240] A.M. El-Sawy, I.M. Mosa, D. Su, C.J. Guild, S. Khalid, R. Joesten, J.F. Rusling, S.L. Suib, Controlling the active sites of sulfur-doped carbon nanotube–graphene nanolobes for highly efficient oxygen evolution and reduction catalysis, Adv. Energy Mater. 6 (2016) 1501966.
[241] M. Sandström, F. Jalilehvand, I. Persson, U. Gelius, P. Frank, I. Hall-Roth, Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid, Nature 415 (2002) 893-897.
[242] V.A. Chhabra, R. Kaur, N. Kumar, A. Deep, C. Rajesh, K.-H. Kim, Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics, RSC Adv. 8 (2018) 11446-11454.
[243] U. Manna, S. Patil, Hollow hemisphere and microcapsules of nonionic copolymer, J. Mater. Chem. 21 (2011) 263-268.
[244] S. Liao, X. Zhao, F. Zhu, M. Chen, Z. Wu, H. Yang, X. Chen, Novel S, N-doped carbon quantum dot-based" off-on" fluorescent sensor for silver ion and cysteine, Talanta 180 (2018) 300-308.
[245] F. Nemati, M. Hosseini, R. Zare-Dorabei, M.R. Ganjali, Sensitive recognition of ethion in food samples using turn-on fluorescence N and S co-doped graphene quantum dots, Anal. Methods 10 (2018) 1760-1766.
[246] Q. Xu, R. Su, Y. Chen, S. Theruvakkattil Sreenivasan, N. Li, X. Zheng, J. Zhu, H. Pan, W. Li, C. Xu, Metal charge transfer doped carbon dots with reversibly switchable, ultra-high quantum yield photoluminescence, ACS Appl. Nano Mater. 1 (2018) 1886-1893.
[247] Y. Luo, M. Li, L. Sun, Y. Xu, G. Hu, T. Tang, J. Wen, X. Li, J. Zhang, L. Wang, High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties, J. Colloid Interface Sci. (2018).
[248] A. Barati, M. Shamsipur, H. Abdollahi, Hemoglobin detection using carbon dots as a fluorescence probe, Biosens. Bioelectron. 71 (2015) 470-475.
[249] S. Pang, S. Liu, X. Su, A novel fluorescence assay for the detection of hemoglobin based on the G-quadruplex/hemin complex, Talanta 118 (2014) 118-122.
[250] G.D. Wright, Solving the antibiotic crisis, ACS Infect. Dis. 1 (2015) 80-84.
[251] Q. Guo, X. Li, C. Shen, S. Zhang, H. Qi, T. Li, M. Yang, Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters, Microchimi. Acta 182 (2015) 1483-1489.
[252 I. Khalil, W.A. Yehye, N.M. Julkapli, S. Rahmati, A.A.I. Sina, W.J. Basirun, M.R. Johan, Bioelectronics, Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced raman scattering, Biosens. Bioelectron. 131 (2019) 214-223.
[253] C. Li, L. Zhu, W. Yang, X. He, S. Zhao, X. Zhang, W. Tang, J. Wang, T. Yue, Z. Li, Amino-functionalized Al–MOF for fluorescent detection of tetracyclines in milk, J. Agric. Food Chem. 67 (2019) 1277-1283.
[254] L.C. Spangler, J.P. Cline, J.D. Sakizadeh, C.J. Kiely, S. McIntosh, Enzymatic synthesis of supported CdS quantum dot/reduced graphene oxide photocatalysts, Green Chem. 21 (2019) 4046-4054.
[255] M. Zhong, L. Yang, H. Yang, C. Cheng, W. Deng, Y. Tan, Q. Xie, S. Yao, An electrochemical immunobiosensor for ultrasensitive detection of escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags, Biosens. Bioelectron. 126 (2019) 493-500.
[256] N. Chaudhary, P.K. Gupta, S. Eremin, P.R. Solanki, One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions, J. Environ. Chem. Eng. 8 (2020) 103720.
[257] A.-M. Alam, B.-Y. Park, Z.K. Ghouri, M. Park, H.-Y. Kim, Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chem.17 (2015) 3791-3797.
[258] H. Miao, Y. Wang, X. Yang, Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracycline, Nanoscales 10 (2018) 8139-8145.
[259] N. Ahmadi, M. Bagherzadeh, A.J.B. Nemati, Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite, Biosens. Bioelectron. 151 (2020) 111977.
[260] Y. Cao, Y. Dai, H. Chen, Y. Tang, X. Chen, Y. Wang, J. Zhao, X. Zhu, Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells, Biosens. Bioelectron. 130 (2019) 132-138.
[261] Y. Chen, P.-X. Yuan, A.-J. Wang, X. Luo, Y. Xue, L. Zhang, J.-J Feng, Bioelectronics, A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification, Biosens. Bioelectron. 126 (2019) 187-192.
[262] F. You, M. Zhu, L. Ding, Y. Xu, K. Wang, Design and construction of Z-scheme Bi2S3/nitrogen-doped graphene quantum dots: Boosted photoelectric conversion efficiency for high-performance photoelectrochemical aptasensing of sulfadimethoxine, Biosens. Bioelectron. 130 (2019) 230-235.
[263] N.E.A. El Hassani, A. Baraket, S. Boudjaoui, E.T.T. Neto, J. Bausells, N. El Bari, B. Bouchikhi, A. Elaissari, A. Errachid, N. Zine, Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS, Biosens. Bioelectron. 130 (2019) 330-337.
[264] F. Gao, F. Liu, X. Bai, X. Xu, W. Kong, J. Liu, F. Lv, L. Long, Y. Yang, M. Li, Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination, Carbon 141 (2019) 331-338.
[265] F. Ghorbani, H. Abbaszadeh, J.E.N. Dolatabadi, L. Aghebati-Maleki, M. Yousefi, Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review, Biosens. Bioelectron. (2019) 111484.
[266] M.L. Liu, B.B. Chen, C.M. Li, C.Z Huang, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications, Green Chem. 21 (2019) 449-471.
[267] A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, I. Papagiannouli, Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties, Carbon 83 (2015) 173-179.
[268] Y. Yan, J.H. Liu, R.S. Li, Y.F. Li, C.Z. Huang, S.J. Zhen, Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride, Anal. Chem. Acta 1063 (2019) 144-151.
[269] W. Li, J. Zhu, G. Xie, Y. Ren, Y.-Q. Zheng, Ratiometric system based on graphene quantum dots and Eu3+ for selective detection of tetracyclines, Anal. Chem. Acta 1022 (2018) 131-137.
[270] N.T.N. Anh, R.-A. Doong, One-step synthesis of size-tunable gold@ sulfur-doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-nitrophenol in aqueous solutions with complex matrix, ACS Appl. Nano Mater. 1 (2018) 2153-2163.
[271] K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud'Homme, I.A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8 (2008) 36-41.
[272] T. Van Tam, S.G. Kang, K.F. Babu, E.-S. Oh, S.G. Lee, W.M. Choi, Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A 5 (2017) 10537-10543.
[273] R.S. Sahu, K. Bindumadhavan, R.-A Doong, Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene, Environ. Sci. Nano 4 (2017) 565-576.
[274] W.-S. Kuo, Y.-T. Shao, K.-S. Huang, T.-M. Chou, C.-H. Yang, Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation, ACS Appl. Mater. Interfaces 10 (2018) 14438-14446.
[275] T.V. Tam, S.G. Kang, M.H. Kim, S.G. Lee, S.H. Hur, J.S. Chung, W.M. Choi, Novel graphene hydrogel/B‐doped graphene quantum dots composites as trifunctional electrocatalysts for Zn− Air batteries and overall water splitting, Adv. Energy Mater. (2019) 1900945.
[276] Y. Yan, J.H. Liu, R.S. Li, Y.F. Li, C.Z. Huang, S.J. Zhen, Carbon dots synthesized at room temperature for detection of tetracycline hydrochloride, Anal. Chim. Acta 1063 (2019) 144-151.
[277] J.R. Bhamore, S. Jha, T.J. Park, S.K. Kailasa, Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells, J. Photochem. Photobiol. B 191 (2019) 150-155.
[278] A. Kumar, A.R. Chowdhuri, D. Laha, T.K. Mahto, P. Karmakar, S.K. Sahu, Green synthesis of carbon dots from ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging, Sens. Actuators B Chem. 242 (2017) 679-686.
[279] A. Bayat, S. Masoum, E.S. Hosseini, Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects, J. Mol. Liq.281 (2019) 134-140.
[280] S. Zhao, X. Song, X. Chai, P. Zhao, H. He, Z. Liu, Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe3+, J. Clean. Prod. (2020) 121561.
[281] R. Bao, Z. Chen, Z. Zhao, X. Sun, J. Zhang, L. Hou, C. Yuan, Green and facile synthesis of nitrogen and phosphorus co-doped carbon quantum dots towards fluorescent ink and sensing applications, Nanomaterials 8 (2018) 386.
[282] Y. Hu, Z. Gao, Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-nitrophenol, J. Hazard. Mater. (2019) 121048.
[283] Q. Liang, Y. Wang, F. Lin, M. Jiang, P. Li, B. Huang, A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application, Anal. Methods 9 (2017) 3675-3681.
[284] N. Arsalani, P. Nezhad-Mokhtari, E. Jabbari, Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery, Artif. Cells Nanomed. Biotechnol. 47 (2019) 540-547.
[285] S. Bajpai, A. D’Souza, B. Suhail, Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells, Int. Nano Lett. (2019) 1-10.
[286] P. Rani, V.K Jindal, Designing band gap of graphene by B and N dopant atoms, RCS Adv. 3 (2013) 802-812.
[287] S. Adhikari, S. Selvaraj, D.-H. Kim, Construction of heterojunction photoelectrode via atomic layer deposition of Fe2O3 on Bi2WO6 for highly efficient photoelectrochemical sensing and degradation of tetracycline, Appl. Catal. B Environ. 244 (2019) 11-24.
[288] M. Ramezani, N.M. Danesh, P. Lavaee, K. Abnous, S.M. Taghdisi, A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline, Biosens. Bioelectron. 70 (2015) 181-187.
[289] H. Guo, Y. Su, Y. Shen, Y. Long, W. Li, i. science, In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline, J. Colloid Interface Sci. 536 (2019) 646-654.
[290] N.E.A. El Hassani, A. Baraket, S. Boudjaoui, E.T.T. Neto, J. Bausells, N. El Bari, B. Bouchikhi, A. Elaissari, A. Errachid, N. Zine, Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical Bio-MEMS, Biosens. Bioelectron.130 (2019) 330-337.
[291] T. Wang, Q. Mei, Z. Tao, H. Wu, M. Zhao, S. Wang, Y. Liu, Bioelectronics, A smartphone-integrated ratiometric fluorescence sensing platform for visual and quantitative point-of-care testing of tetracycline, Biosens. Bioelectron. 148 (2020) 111791.
[292] Z. Shen, C. Zhang, X. Yu, J. Li, Z. Wang, Z. Zhang, B. Liu, Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection, J. Mater. Chem. C 6 (2018) 9636-9641.
[293] J. Wang, R. Cheng, Y. Wang, L. Sun, L. Chen, X. Dai, J. Pan, G. Pan, Y. Yan, Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples, Sens. Actuators B Chem. 263 (2018) 533-542.
[294] A. Dutta Chowdhury, R.-A Doong, Highly sensitive and selective detection of nanomolar ferric ions using dopamine functionalized graphene quantum dots, Appl. Mater. Interfaces 8 (2016) 21002-21010.
[295] Y. Wei, D. Wang, Y. Zhang, J. Sui, Z. Xu, Multicolor and photothermal dual-readout biosensor for visual detection of prostate specific antigen, Biosens. Bioelectron. 140 (2019) 111345.
[296] G. Dong, L. Huang, X. Wu, C. Wang, Y. Liu, G. Liu, L. Wang, X. Liu, H. Xia, Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline, Chemosphere 193 (2018) 702-710.
[297] Q. Tang, Z. Zhou, Z.J.N. Chen, Graphene-related nanomaterials: tuning properties by functionalization, Nanoscales 5 (2013) 4541-4583.
[298] A. Dettlaff, P. Jakóbczyk, M. Ficek, B. Wilk, M. Szala, J. Wojtas, T. Ossowski, R. Bogdanowicz, Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2, 4, 6-trinitrotoluene and 2, 4, 6-trinitroanisole in liquid effluents, J. Hazard. Mater. 387 (2020) 121672.
[299] H. Larijani, M. Khorshidian, Theoretical insight into the role of pyridinic nitrogen on the catalytic activity of boron-doped graphene towards oxygen reduction reaction, Apply. Surf. Sci. 492 (2019) 826-842.
[300] Z. Ding, F. Li, J. Wen, X. Wang, R. Sun, Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass, Talanta 20 (2018) 1383-1390.
[301] M.L. Liu, L. Yang, R.S. Li, B.B. Chen, H. Liu, C.Z. Huang, Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature, Green Chem. 19 (2017) 3611-3617.
[302] F. Vajhadin, S. Ahadian, J. Travas-Sejdic, J. Lee, M. Mazloum-Ardakani, J. Salvador, G.E. Aninwene, P. Bandaru, W. Sun, A. Khademhossieni, Electrochemical cytosensors for detection of breast cancer cells, Biosens. Bioelectron. 151 (2020) 111984.
[303] Y. Yang, Y. Fu, H. Su, L. Mao, M. Chen, Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor, Biosens. Bioelectron. 122 (2018) 175-182.
[304] Y.-S. Borghei, S. Hosseinkhani, Colorimetric assay of apoptosis through in-situ biosynthesized gold nanoparticles inside living breast cancer cells, Talanta 208 (2020) 120463.
[305] V. Bon, E. Brunner, A. Pöppl, S. Kaskel, Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques, Adv. Funct. Mater. (2020) 1907847.
[306] X. Wang, X. Wang, S. Cheng, M. Ye, C. Zhang, Y. Xian, Near-infrared light switched MoS2 nanoflakes@gelatin bioplatform for capture, detection and non-destructive release of circulating tumor cells, Anal. Chem. 92 (2020) 3111-3117.
[307] J. Soleymani, M. Hasanzadeh, M.H. Somi, N. Shadjou, A. Jouyban, Probing the specific binding of folic acid to folate receptor using amino-functionalized mesoporous silica nanoparticles for differentiation of MCF 7 tumoral cells from MCF 10A, Biosens. Bioelectron. 115 (2018) 61-69.
[308] Y. Yang, Y. Fu, H. Su, L. Mao, M. Chen, Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor, Biosens. Bioelectron. 122 (2018) 175-182.
[309] Y. Cao, Y. Dai, H. Chen, Y. Tang, X. Chen, Y. Wang, J. Zhao, X. Zhu, Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells, Biosens. Bioelectron.130 (2019) 132-138.
[310] E. Cominelli, M. Galimberti, P. Pongrac, M. Landoni, A. Losa, D. Paolo, M.G. Daminati, R. Bollini, K.A. Cichy, K. Vogel-Mikuš, F. Sparvoli, Calcium redistribution contributes to the hard-to-cook phenotype and increases PHA-L lectin thermal stability in common bean low phytic acid 1 mutant seeds, Food Chem. 321 (2020) 126680.
[311] M. Lastovickova, D. Strouhalova, J. Bobalova, Use of lectin-based affinity techniques in breast cancer glycoproteomics: A Review, J. Proteome. Res. 19 (2020) 1885-1899.
[312] N. Zhou, F. Su, Z. Li, X. Yan, C. Zhang, B. Hu, L. He, M. Wang, Z. Zhang, Gold nanoparticles conjugated to bimetallic manganese (II) and iron (II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells, Microchim. Acta 186 (2019) 75.
[313] V. Bon, E. Brunner, A. Pöppl, S. Kaskel, Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques, Adv. Funct. Mater. 30 (2020) 1907847.
[314] G. Wang, Q. Guo, D. Chen, Z. Liu, X. Zheng, A. Xu, S. Yang, G. Ding, Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian, ACS Appl. Mater. Interfaces 10 (2018) 5750-5759.
[315] A.B. Ganganboina, A.D. Chowdhury, I.M. Khoris, R.-A. Doong, T.-C. Li, T. Hara, F. Abe, T. Suzuki, E.Y. Park, Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection, Biosens. Bioelectron. 170 (2020) 112680.
[316] A.D. Chowdhury, K. Takemura, I.M. Khorish, F. Nasrin, M.M. Ngwe Tun, K. Morita, E.Y. Park, The detection and identification of dengue virus serotypes with quantum dot and AuNP regulated localized surface plasmon resonance, Nanoscale Adv. 2 (2020) 699-709.
[317] S. Zhang, M.A. Zahed, M. Sharifuzzaman, S. Yoon, X. Hui, S. Chandra Barman, S. Sharma, H.S. Yoon, C. Park, J.Y. Park, A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration, Biosens. Bioelectron. (2020) 112844.
[318] N. Ahmadi, M. Bagherzadeh, A. Nemati, Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite, Biosens. Bioelectron. 151 (2020) 111977.
[319] J. Luo, D. Liang, X. Li, L. Deng, Z. Wang, M. Yang, Aptamer-based photoelectrochemical assay for the determination of MCF-7, Microchim. Acta 187 (2020) 1-7.
[320] N. Zhou, F. Su, Z. Li, X. Yan, C. Zhang, B. Hu, L. He, M. Wang, Z.J.M.A. Zhang, Gold nanoparticles conjugated to bimetallic manganese (II) and iron (II) Prussian Blue analogues for aptamer-based impedimetric determination of the human epidermal growth factor receptor-2 and living MCF-7 cells, Microchim. Acta 186 (2019) 75.
[321] M. Safavipour, M. Kharaziha, E. Amjadi, F. Karimzadeh, A. Allafchian, TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance, Talanta 208 (2020) 120369.
[322] N. Israni, S. Shivakumar, 17 - Interface influence of materials and surface modifications, in: P. Balakrishnan, S. M S, S. Thomas (Eds.) Fundamental biomaterials: metals, Woodhead Publishing 2018, 371-409.
[323] M. Mazalovska, J.C. Kouokam, Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools, Biomed Res. Int. 2020 (2020) 1631394.
[324] C.M. Muytjens, S.K. Vasiliou, K. Oikonomopoulou, I. Prassas, E.P. Diamandis, Putative functions of tissue kallikrein-related peptidases in vaginal fluid, Nat. Rev. Urol. 13 (2016) 596.
[325] T.K. Takayama, C.A. Carter, T.J.B. Deng, Activation of prostate-specific antigen precursor (pro-PSA) by prostin, a novel human prostatic serine protease identified by degenerate PCR, 40 (2001) 1679-1687.
[326] M.H. Umbehr, B. Gurel, T.J. Murtola, S. Sutcliffe, S.B. Peskoe, C.M. Tangen, P.J. Goodman, I.M. Thompson, S.M. Lippman, M.S.J.P.c. Lucia, p. diseases, Intraprostatic inflammation is positively associated with serum PSA in men with PSA< 4 ng mL− 1, normal DRE and negative for prostate cancer, Prostate Cancer Prostatic Dis. 18 (2015) 264-269.
[327] L. Guo, S. Xu, X. Ma, B. Qiu, Z. Lin, G. Chen, Dual-color plasmonic enzyme-linked immunosorbent assay based on enzyme-mediated etching of Au nanoparticles, Sci. Rep. 6 (2016) 32755.
[328] Z.K. Farka, M.J. Mickert, A. Hlavacek, P. Skládal, H.H. Gorris, Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers, Anal. Chem. 89 (2017) 11825-11830.
[329] J. Hahn, E. Kim, Y.S. You, Y.J. Choi, Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker, Analyst 144 (2019). 4439-4446.
[330] P.-Y. You, F.-C. Li, M.-H. Liu, Y.-H. Chan, Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood, ACS Appl. Mater. Interfaces 11 (2019) 9841-9849.
[331] Q. Lei, Y. Wang, W. Dong, H. Sun, J. Lv, H. Li, Self-powered electrochromic sensing for visual determination of PSA in serum using PB as an indicator, J. Electroanal. Chem. 839 (2019) 108-115.
[332] J. Zhao, S. Wang, S. Zhang, P. Zhao, J. Wang, M. Yan, S. Ge, J. Yu, Peptide cleavage-mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection, Biosens. Bioelectron. 150 (2020) 111958.
[333] L. Zhang, Z. Luo, R. Zeng, Q. Zhou, D. Tang, All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen, Biosens. Bioelectron. 134 (2019) 1-7.
[334] S. Barman, M. Hossain, H. Yoon, J.Y. Park, Trimetallic Pd@Au@Pt nanocomposites platform on-COOH terminated reduced graphene oxide for highly sensitive CEA and PSA biomarkers detection, Biosens. Bioelectron. 100 (2018) 16-22.
[335] H. Ehzari, M. Amiri, M. Safari, Enzyme-free sandwich-type electrochemical immunosensor for highly sensitive prostate specific antigen based on conjugation of quantum dots and antibody on surface of modified glassy carbon electrode with core–shell magnetic metal-organic frameworks, Talanta 210 (2020) 120641.
[336] A.S. Nugraha, V. Malgras, M. Iqbal, B. Jiang, C. Li, Y. Bando, A. Alshehri, J. Kim, Y. Yamauchi, T. Asahi, Electrochemical synthesis of mesoporous Au–Cu Alloy films with vertically oriented mesochannels using block copolymer micelles, ACS Appl. Mater. Interfaces 10 (2018) 23783-23791.
[337] H.-W. Li, J.-Y. Mao, C.-W. Lien, C.-K. Wang, J.-Y. Lai, R.P. Mandal, H.-T. Chang, L. Chang, D.H.-K. Ma, C.-C. Huang, Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections, J. Mater. Chem. B 8 (2020) 3506-3512.
[338] C. Thunkhamrak, P. Chuntib, K. Ounnunkad, P. Banet, P.-H. Aubert, G. Saianand, A.-I. Gopalan, J. Jakmunee, Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode, Talanta 208 (2020) 120389.
[339] H. de Puig, J.O. Tam, C.-W. Yen, L. Gehrke, K. Hamad-Schifferli, Extinction coefficient of gold nanostars, J. Phys. Chem. C 119 (2015) 17408-17415.
[340] Y. Li, J. Ma, Z.J.E.A. Ma, Synthesis of gold nanostars with tunable morphology and their electrochemical application for hydrogen peroxide sensing, Microchim. Acta 108 (2013) 435-440.
[341] Y.-H. You, Y.-F. Lin, B. Nirosha, H.-T. Chang, Y.-F. Huang, Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer, Nanotheranostics 3 (2019) 266-283.
[342] S.-C. Wei, L. Chang, C.-C. Huang, H.-T. Chang, Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice, Biomater. Sci. 7 (2019) 4482-4490.
[343] L. Wu, X. Lu, X. Fu, L. Wu, H.J.S.r. Liu, Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection, Sci. Rep. 7 (2017) 1-7.
[344] M. Khater, A.d.l. Escosura-Muñiz, L. Altet, A. Merkoçi, In situ plant virus nucleic acid isothermal amplification detection on gold nanoparticle-modified electrodes, Anal. Chem. 91 (2019) 4790-4796.
[345] M. Reyes, M. Piotrowski, S.K. Ang, J. Chan, S. He, J.J.H. Chu, J.C.Y. Kah, Exploiting the anti-aggregation of gold nanostars for rapid detection of hand, foot, and mouth disease causing enterovirus 71 using surface-enhanced raman spectroscopy, Anal. Chem. 89 (2017) 5373-5381.
[346] H. Dies, J. Raveendran, C. Escobedo, A. Docoslis, Rapid identification and quantification of illicit drugs on nanodendritic surface-enhanced raman scattering substrates, Sens. Actuators B Chem. 257 (2018) 382-388.
[347] Q. Fang, Z. Lin, F. Lu, Y. Chen, X. Huang, W. Gao, A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator, Electrochim. Acta 302 (2019) 207-215.
[348] T.B. Nguyen, C.P. Huang, R.-A. Doong, Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites, Appl. Cat. B Environ. 240 (2019) 337-347.
[349] F.-H. Lin, R.-A Doong, Catalytic nanoreactors of Au@Fe3O4 yolk–shell nanostructures with various au sizes for efficient nitroarene reduction, J. Phys. Chem. C 121 (2017) 7844-7853.
[350] M. Kataria, K. Yadav, A. Nain, H.-I. Lin, H.-W. Hu, C.R. Paul Inbaraj, T.-J. Chang, Y.-M. Liao, H.-Y. Cheng, K.-H. Lin, H.-T. Chang, F.-G. Tseng, W.-H. Wang, Y.-F. Chen, Self-sufficient and highly efficient gold sandwich upconversion nanocomposite lasers for stretchable and bio-applications, ACS Appl. Mater. Interfaces 12 (2020) 19840-19854.
[351] Y. Chen, P.-X. Yuan, A.-J. Wang, X. Luo, Y. Xue, L. Zhang, J.-J. Feng, A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification, Biosens. Bioelectron. 126 (2019) 187-192.
[352] H. Chang, H. Kang, E. Ko, B.-H. Jun, H.-Y. Lee, Y.-S. Lee, D.H. Jeong, PSA detection with femtomolar sensitivity and a broad dynamic range using sers nanoprobes and an area-scanning method, ACS Sens. 1 (2016) 645-649.
[353] H. Malekzad, M. Hasanzadeh, N. Shadjou, A. Jouyban, Highly sensitive immunosensing of prostate specific antigen using poly cysteine caped by graphene quantum dots and gold nanoparticle: a novel signal amplification strategy, Int. J. Biol. Macromol. 105 (2017) 522-532.
[354] Y. Zhao, W. Gao, X. Ge, S. Li, D. Du, H. Yang, CdTe@SiO2 signal reporters-based fluorescent immunosensor for quantitative detection of prostate specific antigen, Anal. Chim. Acta 1057 (2019) 44-50.
[355] Q. Fang, Z. Lin, F. Lu, Y. Chen, X. Huang, W. Gao, A sensitive electrochemiluminescence immunosensor for the detection of PSA based on CdWS nanocrystals and Ag+@UIO-66-NH2 as a novel coreaction accelerator, Electrochim. Acta 302 (2019) 207-215.
[356] C. Thunkhamrak, P. Chuntib, K. Ounnunkad, P. Banet, P.-H. Aubert, G. Saianand, A.-I. Gopalan, J. Jakmunee, Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode, Talanta 208 (2020) 120389.
[357] B. Kavosi, A. Salimi, R. Hallaj, F. Moradi, Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy, Biosensors. Bioelectron.74 (2015) 915-923.
[358] F. Meng, H. Sun, Y. Huang, Y. Tang, Q. Chen, P. Miao, Peptide cleavage-based electrochemical biosensor coupling graphene oxide and silver nanoparticles, Anal. Chim. Acta 1047 (2019) 45-51.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *