帳號:guest(18.221.92.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡一聲
作者(外文):Tsai, Yi-Sheng
論文名稱(中文):聚焦式超音波結合壓電二硫化鉬奈米層片選擇性刺激神經元活動
論文名稱(外文):Selectively Activating Neuronal Activity by Piezoelectric MoS2 Nanosheets with Focused Ultrasound
指導教授(中文):葉秩光
指導教授(外文):Yeh, Chih-Kuang
口試委員(中文):范景翔
林宗宏
林玉俊
口試委員(外文):Fan, Ching-Hsiang
Lin, Zong-Hong
Lin, Yu-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012546
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:超音波壓電奈米材料二硫化鉬奈米層片神經調控
外文關鍵詞:ultrasoundpiezoelectricityMoS2 nanosheetsneuromodulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:53
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
神經相關疾病通常肇因於特定腦區或神經元之過度活化或抑制。儘管許多相關疾病已能藉由藥物控制,但藥物在治療過程中可能會對健康組織造成後遺症。目前臨床上已有許多不需使用藥物亦可局部調控神經活性的方式,但仍有缺點,例如:深層腦部電刺激屬侵入性手術並常伴隨著術後感染與誘發併發症等;穿顱電刺激與穿顱磁刺激為非侵入性治療但其空間解析度不高,可能會同時刺激到非目標區域並引起副作用,且此方法無法刺激到較深層之腦區。因此發展非侵入性、高度空間選擇性的神經調控方式,是目前臨床腦疾病治療急需解決的問題。
我們的研究團隊先期已合成出具有壓電特性之二硫化鉬奈米層片,其層狀結構僅需較小之外力即能產生壓電效應,也能增加其與細胞之反應表面積。藉由二硫化鉬奈米層片可能具有將超音波機械力轉換成電能的特性,本研究將探討以超音波照射二硫化鉬奈米層片產生之電能,改變神經細胞膜之電位差以刺激神經細胞可行性,企圖發展出一套非侵入式且具有高度空間解析度之神經調控方式。
本研究分為兩個部分:第一部分證實了2 MHz頻率之超音波可以驅使二硫化鉬奈米層片產生壓電效應,其強度與超音波聲壓為正相關。接著在細胞實驗中,利用超音波驅使二硫化鉬奈米層片產生壓電效應並觀察到細胞內Ca2+濃度的變化,我們總結出驅動二硫化鉬奈米層片產生壓電刺激細胞之聲學參數閾值之聲壓為400 kPa、週波數為10^6週期,可驅動約37.9 ± 7.4%之細胞發生細胞內Ca2+濃度變化。並利用離子通道抑制劑驗證觀察到此現象並非由超音波之機械力誘發,而是藉由二硫化鉬奈米層片之壓電效應驅使電位門控型離子通道開啟,使細胞外之Ca2+進入細胞。實驗過程中我們也確保超音波參數對細胞沒有顯著之傷害,並且避免超音波對細胞產生之熱效應。
第二部份利用穿顱注射將二硫化鉬奈米層片種植於小鼠大腦之中隔內核,並且證實加入二硫化鉬奈米層片後,相較於只有超音波刺激之組別提高約29.5 ± 12.2%之細胞比例被刺激,超音波射束以外之區域則無細胞刺激。顯示此方式可穿顱精準刺激目標腦區之神經細胞。
綜合以上資料,本研究成功利用超音波與二硫化鉬奈米層片提出一項非侵入式且高空間解析度之神經調控方式,並首次應用於動物實驗。未來工作將進一步對二硫化鉬奈米層片進行功能化與非侵入式遞送手段,使材料標靶至目標腦區或特定細胞類型,提升材料對細胞類型之選擇性。
Neuronal diseases usually caused by over excitation or inhibition of specific brain area or neurons. Most of these diseases can be controlled by drugs, however, it may affect other health tissues. To date, several clinical methods have been developed that can partially control neuronal activities without drugs, but still have some problem. Deep brain stimulation is necessary an invasive surgery, followed by attendant risks including infection and induced complications. Transcranial direct-current stimulation and transcranial magnetic stimulation are non-invasive therapies but with low spatial resolution. Therefore, developing a non-invasive and high spatial resolution method to control neuronal activities is desired.
Our team have developed a new type of piezoelectric MoS2 nanosheets based on few layers. Layered-structure may increase the reactive surface with cells and can be triggered by low mechanical stress. Taking advantage of its ability to transfer mechanical stress to electricity, we use ultrasound to trigger MoS2 nanosheets. Piezoelectricity can change the membrane potential and excite the neurons. Here we combined ultrasound with MoS2 nanosheets to develop a non-invasive and high spatial resolution way to modulate neuronal activities.
There are two parts in our research. First, we demonstrated that 2-MHz ultrasound can trigger MoS2 nanosheets generating piezoelectricity, and the dielectric strength is proportional to acoustic pressure. In cell experiments, we observed the calcium fluxes when applying ultrasound treated with MoS2 nanosheets. The ultrasound threshold to activate cells was at a pressure of 400 kPa and cycle number of 10^6, with 37.9 ± 7.4% of cells activated; moreover, we tested with appropriate blockers and demonstrated that voltage-gated ion channels on the membrane were activated and the calcium ions fluxed from the out-site of the cell, but the mechanosensitive ion channels were not involved in.
Second, we planted the MoS2 nanosheets in the septal nucleus of mice brain. Compare to ultrasound only group, applying ultrasound treated with MoS2 nanosheets activated higher proportion of cells with 29.5 ± 12.2%. In addition, applying ultrasound without MoS2 nanosheets could not activate neurons. The result showing that combining ultrasound with MoS2 nanosheets could selectively stimulate neurons in targeted brain area without affecting nearby cells.
In conclusion, we used ultrasound and MoS2 nanosheets to develop a non-invasive and high spatial resolution method to modulate neuronal activities, and first applied to in vivo experiments. Future works will focus on functionalizing the MoS2 nanosheets with cell-specific targeting ligands and development of non-invasive routes to delivery MoS2 nanosheets into brain, allowing target nanoparticles to the specific brain area or cell types.
第1章 緒論 1
1.1 神經調控(neuromodulation) 1
1.1.1 深層腦部電刺激 1
1.1.2 穿顱電刺激 3
1.1.3 穿顱磁刺激 4
1.2 超音波(ultrasound)於腦神經調控之應用 5
1.2.1 超音波 5
1.2.2 聲遺傳學(sonogenetics) 8
1.3 壓電材料(piezoelectric material) 9
1.3.1 超音波與壓電材料應用於神經調控 10
1.4 二硫化鉬(MoS_2) 12
1.4.1 二硫化鉬之生物安全性 14
1.5 研究目的與方法 15
第2章 實驗材料與方法 17
2.1 緒論 17
2.2 材料製備 17
2.2.1 壓電材料製備 17
2.2.2 可見光吸收光譜分析 18
2.2.3 粒徑與介面電位(zeta-potential)量測分析 18
2.2.4 高解像能電子顯微鏡(HRTEM)拍攝 19
2.2.5 壓電力顯微鏡(PFM)拍攝 20
2.3 活性氧物質(reactive oxygen species)量測 21
2.4 細胞實驗 23
2.4.1 人類神經母細胞瘤細胞培養與繼代 23
2.4.2 細胞存活率測試 23
2.4.3 細胞轉染 24
2.4.4壓電效應誘發細胞反應之超音波參數閾值 25
2.4.5 MoS_2 NSs濃度對細胞產生螢光變化成功比例之影響 27
2.4.6 超音波與MoS_2 NSs誘發細胞內鈣離子濃度增加之機制探討 27
2.4.7 超音波刺激細胞之升溫測試 29
2.4.8 超音波重複刺激細胞之可行性測試 30
2.4.9 細胞螢光強度結果分析 30
2.4.10 細胞經刺激後之傷害評估 31
2.5 動物實驗 31
2.5.1 穿顱注射MoS_2 NSs於小鼠大腦 31
2.5.2 超音波刺激流程 32
2.5.3 免疫染色分析 33
2.5.4 動物實驗結果統計 34
2.6 統計分析 35
第3章 結果與討論 36
3.1 材料特性分析 36
3.1.1 可見光吸收光譜量測 36
3.1.2 粒徑與介面電位量測分析 37
3.1.3 高解像能電子顯微鏡拍攝 39
3.1.4 壓電力顯微鏡拍攝 40
3.2 活性氧物質量測 42
3.2.1 2 MHz超音波參數與壓電效應之關係 42
3.3 細胞實驗 43
3.3.1 細胞毒性測試 43
3.3.2 壓電效應誘發電位門控型離子通道開啟之超音波參數最佳化 44
3.3.3 MoS_2 NSs濃度對細胞產生螢光變化成功比例之影響 52
3.3.4 超音波與MoS_2 NSs誘發細胞內鈣離子濃度增加之機制探討 54
3.3.5 超音波刺激細胞之升溫測試 57
3.3.6 超音波重複刺激細胞之可行性測試 59
3.4 動物實驗 63
3.4.1超音波結合MoS_2 NSs誘發腦神經細胞去極化 63
第4章 結論與未來工作 67
4.1 結論 67
4.2 未來應用與發展 68
1. Hirtz, D., et al., How common are the "common" neurologic disorders? Neurology, 2007. 68(5): p. 326-37.
2. Pangalos, M.N., L.E. Schechter, and O. Hurko, Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nature Reviews Drug Discovery, 2007. 6(7): p. 521-U13.
3. Health, N.I.o.M., The numbers count: Mental disorders in America. NIH Publication, 2014: p. 01-4584.
4. Food and D. Administration. Premarket notification: Implantable deep brain stimulation for the treatment of tremor due to Parkinson’s disease and essential tremor. in Neurological devices panel meeting of the Medical Devices Advisory Committee. 1997.
5. Latteri, A., P. Arena, and P. Mazzone, Characterizing Deep Brain Stimulation effects in computationally efficient neural network models. Nonlinear Biomed Phys, 2011. 5(1): p. 2.
6. Gildenberg, P.L., Evolution of neuromodulation. Stereotact Funct Neurosurg, 2005. 83(2-3): p. 71-9.
7. Kringelbach, M.L., et al., Translational principles of deep brain stimulation. Nature Reviews Neuroscience, 2007. 8(8): p. 623-635.
8. Li, X., et al., Cognitive dysfunction precedes the onset of motor symptoms in the MitoPark mouse model of Parkinson's disease. PLoS One, 2013. 8(8): p. e71341.
9. Herzog, J., et al., Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Movement Disorders, 2004. 19(9): p. 1050-1054.
10. Rizzone, M., et al., Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry, 2001. 71(2): p. 215-9.
11. Anderson, V.C., et al., Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Archives of Neurology, 2005. 62(4): p. 554-560.
12. Dostrovsky, J.O., W.D. Hutchison, and A.M. Lozano, The globus pallidus, deep brain stimulation, and Parkinson's disease. Neuroscientist, 2002. 8(3): p. 284-90.
13. Middlebrooks, E.H., et al., Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. AJNR Am J Neuroradiol, 2018. 39(6): p. 1127-1134.
14. Krause, M., et al., Deep brain stimulation for the treatment of Parkinson's disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry, 2001. 70(4): p. 464-70.
15. Benabid, A.L., et al., [Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus]. Rev Neurol (Paris), 1989. 145(4): p. 320-3.
16. Kumar, K., M. Kelly, and C. Toth, Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson's disease and essential tremor. Stereotact Funct Neurosurg, 1999. 72(1): p. 47-61.
17. Dostrovsky, J.O., et al., Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol, 2000. 84(1): p. 570-4.
18. Urbano, F., Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study. Thalamus & Related Systems, 2002. 1(4): p. 371-378.
19. Salanova, V., Deep brain stimulation for epilepsy. Epilepsy Behav, 2018. 88S: p. 21-24.
20. Eastin, T.M. and M.A. Lopez-Gonzalez, Stimulation and Neuromodulation in the Treatment of Epilepsy. Brain Sci, 2017. 8(1).
21. Ziai, W.C., et al., Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia, 2005. 46(6): p. 878-888.
22. Chapin, E.M. and R. Andrade, Calcium-independent afterdepolarization regulated by serotonin in anterior thalamus. J Neurophysiol, 2000. 83(5): p. 3173-6.
23. Neuman, R.S. and P.M. Thompson, Serotonin mediates suppression of focal epileptiform activity induced by noxious stimulation. Epilepsia, 1989. 30(3): p. 307-13.
24. Phillip C. Jobe, J.W.D., Joe F. Wernicke, Critical Reviews™ in Neurobiology. Critical Reviews in Neurobiology, 1999. 13(4).
25. Herrington, T.M., J.J. Cheng, and E.N. Eskandar, Mechanisms of deep brain stimulation. J Neurophysiol, 2016. 115(1): p. 19-38.
26. Groiss, S.J., et al., Deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord, 2009. 2(6): p. 20-8.
27. Raviv, N., et al., A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery, 2020. 87(6): p. 1098-1110.
28. Fenoy, A.J. and R.K. Simpson, Jr., Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg, 2014. 120(1): p. 132-139.
29. Sorar, M., et al., Experience Reduces Surgical and Hardware-Related Complications of Deep Brain Stimulation Surgery: A Single-Center Study of 181 Patients Operated in Six Years. Parkinsons Dis, 2018. 2018: p. 3056018.
30. Hamani, C. and A.M. Lozano, Hardware-related complications of deep brain stimulation: A review of the published literature. Stereotactic and Functional Neurosurgery, 2006. 84(5-6): p. 248-251.
31. Doshi, P.K., Long-term surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg, 2011. 89(2): p. 89-95.
32. Sillay, K.A., P.S. Larson, and P.A. Starr, Deep brain stimulator hardware-related infections: Incidence and management in a large series. Neurosurgery, 2008. 62(2): p. 360-366.
33. Boviatsis, E.J., et al., Surgical and hardware complications of deep brain stimulation. A seven-year experience and review of the literature. Acta Neurochirurgica, 2010. 152(12): p. 2053-2062.
34. Polania, R., M.A. Nitsche, and C.C. Ruff, Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci, 2018. 21(2): p. 174-187.
35. Meinzer, M., et al., Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 2014. 50: p. 137-147.
36. Kang, J.H., et al., Effects of add-on transcranial direct current stimulation on pain in Korean patients with fibromyalgia. Sci Rep, 2020. 10(1): p. 12114.
37. Fecteau, S., et al., Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend, 2014. 140: p. 78-84.
38. Benninger, D.H., M. Lomarev, and G. Lopez, Transcranial direct current stimulation for the treatment of Parkinson's disease (vol 81, pg 1105, 2010). Journal of Neurology Neurosurgery and Psychiatry, 2011. 82(3): p. 354-354.
39. Pilato, F., et al., Synaptic plasticity in neurodegenerative diseases evaluated and modulated by in vivo neurophysiological techniques. Mol Neurobiol, 2012. 46(3): p. 563-71.
40. Podda, M.V., et al., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep, 2016. 6: p. 22180.
41. Ranieri, F., et al., Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol, 2012. 107(7): p. 1868-1880.
42. Agboada, D., et al., Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep, 2019. 9(1): p. 18185.
43. Lefaucheur, J.P., et al., Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol, 2017. 128(1): p. 56-92.
44. Fagerlund, A.J., O.A. Hansen, and P.M. Aslaksen, Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial. Pain, 2015. 156(1): p. 62-71.
45. Fregni, F., et al., A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis and Rheumatism, 2006. 54(12): p. 3988-3998.
46. Valle, A., et al., Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. J Pain Manag, 2009. 2(3): p. 353-361.
47. Tufail, Y., et al., Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc, 2011. 6(9): p. 1453-70.
48. Jalinous, R., Apparatus for the magnetic stimulation of cells or tissue. 1998, Google Patents.
49. Samoudi, A.M., et al., Deep Transcranial Magnetic Stimulation: Improved Coil Design and Assessment of the Induced Fields Using MIDA Model. Biomed Res Int, 2018. 2018: p. 7061420.
50. Tufail, Y., et al., Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 2010. 66(5): p. 681-94.
51. Speed, C.A., Therapeutic ultrasound in soft tissue lesions. Rheumatology (Oxford), 2001. 40(12): p. 1331-6.
52. Legon, W., et al., Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci, 2014. 17(2): p. 322-329.
53. Legon, W., et al., Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp, 2018. 39(5): p. 1995-2006.
54. Folloni, D., et al., Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron, 2019. 101(6): p. 1109-1116.
55. Schofield, C.M., et al., A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7630-5.
56. Zuiderwijk, M. and W.E. Ghijsen, Monitoring amino acid neurotransmitter release in the brain by in vivo microdialysis. Methods Mol Biol, 1997. 72: p. 239-50.
57. Yoo, S.S., et al., Focused ultrasound modulates region-specific brain activity. Neuroimage, 2011. 56(3): p. 1267-75.
58. Mehic, E., et al., Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One, 2014. 9(2): p. e86939.
59. Kiviranta, T., L. Tuomisto, and E.M. Airaksinen, Osmolality and electrolytes in cerebrospinal fluid and serum of febrile children with and without seizures. European Journal of Pediatrics, 1996. 155(2): p. 120-125.
60. Bezanilla, F. and R.E. Taylor, Temperature effects on gating currents in the squid giant axon. Biophysical Journal, 1978. 23(3): p. 479-484.
61. Bender, R.A., C. Dube, and T.Z. Baram, Febrile seizures and mechanisms of epileptogenesis: Insights from an animal model. Recent Advances in Epilepsy Research, 2004. 548: p. 213-225.
62. Dube, C.M., A.L. Brewster, and T.Z. Baram, Febrile seizures: Mechanisms and relationship to epilepsy. Brain & Development, 2009. 31(5): p. 366-371.
63. Andersen, P. and E.I. Moser, Brain temperature and hippocampal function. Hippocampus, 1995. 5(6): p. 491-498.
64. Gatti, S., et al., Effect of interleukin-18 on mouse core body temperature. Am J Physiol Regul Integr Comp Physiol, 2002. 282(3): p. R702-9.
65. Thomas, E.A., et al., Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Ann Neurol, 2009. 66(2): p. 219-26.
66. Yoon, K., et al., Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One, 2019. 14(10): p. e0224311.
67. King, R.L., et al., Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol, 2013. 39(2): p. 312-31.
68. Kim, H., et al., Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul, 2014. 7(5): p. 748-56.
69. Min, B.K., et al., Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci, 2011. 12: p. 23.
70. Ye, P.P., J.R. Brown, and K.B. Pauly, Frequency Dependence of Ultrasound Neurostimulation in the Mouse Brain. Ultrasound Med Biol, 2016. 42(7): p. 1512-1530.
71. Darvas, F., et al., Toward Deep Brain Monitoring with Superficial EEG Sensors Plus Neuromodulatory Focused Ultrasound. Ultrasound Med Biol, 2016. 42(8): p. 1834-1847.
72. Gulick, D.W., et al., Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med Biol, 2017. 43(12): p. 2824-2833.
73. Ibsen, S., et al., Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun, 2015. 6: p. 8264.
74. Kubanek, J., et al., Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J Neurosci, 2018. 38(12): p. 3081-3091.
75. Prieto, M.L., et al., Activation of Piezo1 but Not NaV1.2 Channels by Ultrasound at 43 MHz. Ultrasound Med Biol, 2018. 44(6): p. 1217-1232.
76. Coste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010. 330(6000): p. 55-60.
77. de Leon, A., et al., Bubble Trouble: Conquering Microbubble Limitations in Contrast Enhanced Ultrasound Imaging by Nature-Inspired Ultrastable Echogenic Nanobubbles. bioRxiv, 2019.
78. Garg, S., A.A. Thomas, and M.A. Borden, The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials, 2013. 34(28): p. 6862-70.
79. Neumann, D. and E. Kollorz, Ultrasound, in Medical Imaging Systems: An Introductory Guide, A. Maier, et al., Editors. 2018: Cham (CH). p. 237-249.
80. Qi, L., et al., Non-Contact High-Frequency Ultrasound Microbeam Stimulation: A Novel Finding and Potential Causes of Cell Responses. IEEE Trans Biomed Eng, 2020. 67(4): p. 1074-1082.
81. Marino, A., et al., Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. Acs Nano, 2015. 9(7): p. 7678-7689.
82. Hoop, M., et al., Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci Rep, 2017. 7(1): p. 4028.
83. Rojas, C., et al., Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J Neural Eng, 2018. 15(3): p. 036016.
84. Marino, A., et al., Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Sci Rep, 2018. 8(1): p. 6257.
85. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
86. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012. 7(11): p. 699-712.
87. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5(10): p. 722-726.
88. Hsu, A., et al., Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the Ieee, 2013. 101(7): p. 1638-1652.
89. Laursen, A.B., et al., Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012. 5(2): p. 5577-5591.
90. Chou, T.M., et al., A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy, 2019. 57: p. 14-21.
91. Zhang, J., et al., Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. ACS Nano, 2014. 8(6): p. 6024-6030.
92. Wang, D.Z., et al., Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014. 264: p. 229-234.
93. Ette, P.M., et al., MoS2 Nanoflower-Derived Interconnected CoMoO4 Nanoarchitectures as a Stable and High Rate Performing Anode for Lithium-Ion Battery Applications. ACS Appl Mater Interfaces, 2020. 12(10): p. 11511-11521.
94. Cao, J., et al., Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction. PLoS One, 2016. 11(8): p. e0161374.
95. Wang, S., et al., A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissue-Engineered 3D Scaffold. Adv Biosyst, 2017. 1(5): p. e1600042.
96. Yin, W., et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano, 2014. 8(7): p. 6922-6933.
97. Liu, T., et al., Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater, 2014. 26(21): p. 3433-3440.
98. Ding, X., et al., Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat Commun, 2019. 10(1): p. 41.
99. Liu, T., et al., Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano, 2015. 9(1): p. 950-960.
100. Wang, S., et al., Layered MoS2 nanoflowers for microwave thermal therapy. J Mater Chem B, 2016. 4(12): p. 2133-2141.
101. Yang, T., et al., Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Electrochimica Acta, 2014. 115: p. 165-169.
102. Zhao, X., C. Hu, and M. Cao, Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance. Chem Asian J, 2013. 8(11): p. 2701-2707.
103. Tan, G., et al., Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing. ACS Appl Mater Interfaces, 2016. 8(37): p. 24306-24309.
104. Grienberger, C. and A. Konnerth, Imaging calcium in neurons. Neuron, 2012. 73(5): p. 862-85.
105. de Melo Reis, R.A., H.R. Freitas, and F.G. de Mello, Cell Calcium Imaging as a Reliable Method to Study Neuron-Glial Circuits. Front Neurosci, 2020. 14: p. 569361.
106. Simons, T.J., Calcium and neuronal function. Neurosurg Rev, 1988. 11(2): p. 119-29.
107. Morgan, A.J. and R. Jacob, Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J, 1994. 300 ( Pt 3): p. 665-72.
108. Nakamura, S., et al., Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res, 2016. 50(11): p. 1214-1225.
109. van der Meer, A.D., et al., Shear stress induces a transient and VEGFR-2-dependent decrease in the motion of injected particles in endothelial cells. Biorheology, 2010. 47(3-4): p. 179-192.
110. Shurbaji, S., et al., Effect of Flow-Induced Shear Stress in Nanomaterial Uptake by Cells: Focus on Targeted Anti-Cancer Therapy. Cancers, 2020. 12(7).
111. Lee, C.H. and P.C. Ruben, Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels, 2008. 2(6): p. 407-412.
112. Stevens, M., S. Peigneur, and J. Tytgat, Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol, 2011. 2: p. 71.
113. Tonazzini, I., et al., Interaction of leech neurons with topographical gratings: comparison with rodent and human neuronal lines and primary cells. Interface Focus, 2014. 4(1): p. 20130047.
114. Harris, R.A. and J.W. Hanrahan, Effects of Egta on Calcium Signaling in Airway Epithelial-Cells. American Journal of Physiology-Cell Physiology, 1994. 267(5): p. C1426-C1434.
115. Barr, R., K.S. Troxel, and F.L. Crane, EGTA, a calcium chelator, inhibits electron transport in photosystem II of spinach chloroplasts at two different sites. Biochemical and Biophysical Research Communications, 1980. 92(1): p. 206-212.
116. Xu, Y., et al., GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci, 2020. 14: p. 660.
117. Hattori, R., et al., Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci, 2017. 20(9): p. 1199-1208.
118. Zhao, C., B. Eisinger, and S.C. Gammie, Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One, 2013. 8(8): p. e73750.
119. Salib, M., et al., GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3. J Neurosci, 2019. 39(23): p. 4527-4549.
120. Haidar, M., et al., Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat, 2019. 13: p. 30.
121. Cui, B., et al., Hydrothermal synthesis of SnS2/MoS2 Nanospheres for enhanced adsorption capacity of organic dyes. Materials Research Express, 2019. 7(1).
122. Tang, Z.H., et al., The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer, 2012. 53(2): p. 673-680.
123. Nguyen, T.T.T., et al., Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative. Arabian Journal of Chemistry, 2020. 13(1): p. 2671-2679.
124. Kristoffersen, A.S., et al., Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine B, coumarin 6 and lucifer yellow. J Fluoresc, 2014. 24(4): p. 1015-1024.
125. 實驗動物管理與使用指南編輯委員會, 實驗動物管理與使用指南. Vol. 16. 2005: 中華實驗動物學會.
126. Saint Marie, R.L., L. Luo, and A.F. Ryan, Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. Journal of Comparative Neurology, 1999. 404(2): p. 258-270.
127. Bors, L. and F. Erdő, Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Scientia Pharmaceutica, 2019. 87(1).
128. Pardridge, W.M., Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab, 2012. 32(11): p. 1959-72.
129. Kim, S.K., et al., Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy, 2016. 22: p. 483-489.
130. Itoh, H., et al., Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts. Biophysics, 2014. 10: p. 109-119.
131. Tseeb, V., et al., Highly thermosensitive Ca2+ dynamics in a HeLa cell through IP3 receptors. HFSP journal, 2009. 3(2): p. 117-123.
132. Stavermann, M., et al., Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium, 2012. 52(2): p. 113-123.
133. Dickinson, G.D. and I. Parker, Temperature dependence of IP3-mediated local and global Ca2+ signals. Biophysical journal, 2013. 104(2): p. 386-395.
134. Dode, L., et al., Low temperature molecular adaptation of the skeletal muscle sarco (endo) plasmic reticulum Ca2+-ATPase 1 (SERCA 1) in the wood frog (Rana sylvatica). Journal of Biological Chemistry, 2001. 276(6): p. 3911-3919.
135. Bettaieb, A. and D.A. Averill-Bates, Thermotolerance induced at a mild temperature of 40 degrees C alleviates heat shock-induced ER stress and apoptosis in HeLa cells. Biochim Biophys Acta, 2015. 1853(1): p. 52-62.
136. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine, 2012. 7: p. 5577-5591.
137. Ye, H. and S. Kaszuba, Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. J Biomed Sci, 2017. 24(1): p. 93.
138. Epsztein, J., et al., Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. Journal of Neuroscience, 2006. 26(26): p. 7082-7092.
139. Derchansky, M., et al., Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. Journal of Physiology-London, 2008. 586(2): p. 477-494.
140. Lasztoczi, B., et al., Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. J Neurophysiol, 2009. 102(4): p. 2538-53.
141. Huberfeld, G., et al., Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nature Neuroscience, 2011. 14(5): p. 627-U121.
142. Pitkänen A, S.P., Moshé SL., Models of Seizures and Epilepsy. 1st ed San Diego, CA: Academic Press. 2006.
143. Lu, W., et al., Activity-induced spontaneous spikes in GABAergic neurons suppress seizure discharges: an implication of computational modeling. Oncotarget, 2017. 8(20): p. 32384-32397.
144. Takayama, C. and Y. Inoue, Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Brain Res Dev Brain Res, 2005. 158(1-2): p. 41-9.
(此全文20260217後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *