|
1. Hirtz, D., et al., How common are the "common" neurologic disorders? Neurology, 2007. 68(5): p. 326-37. 2. Pangalos, M.N., L.E. Schechter, and O. Hurko, Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nature Reviews Drug Discovery, 2007. 6(7): p. 521-U13. 3. Health, N.I.o.M., The numbers count: Mental disorders in America. NIH Publication, 2014: p. 01-4584. 4. Food and D. Administration. Premarket notification: Implantable deep brain stimulation for the treatment of tremor due to Parkinson’s disease and essential tremor. in Neurological devices panel meeting of the Medical Devices Advisory Committee. 1997. 5. Latteri, A., P. Arena, and P. Mazzone, Characterizing Deep Brain Stimulation effects in computationally efficient neural network models. Nonlinear Biomed Phys, 2011. 5(1): p. 2. 6. Gildenberg, P.L., Evolution of neuromodulation. Stereotact Funct Neurosurg, 2005. 83(2-3): p. 71-9. 7. Kringelbach, M.L., et al., Translational principles of deep brain stimulation. Nature Reviews Neuroscience, 2007. 8(8): p. 623-635. 8. Li, X., et al., Cognitive dysfunction precedes the onset of motor symptoms in the MitoPark mouse model of Parkinson's disease. PLoS One, 2013. 8(8): p. e71341. 9. Herzog, J., et al., Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Movement Disorders, 2004. 19(9): p. 1050-1054. 10. Rizzone, M., et al., Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry, 2001. 71(2): p. 215-9. 11. Anderson, V.C., et al., Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Archives of Neurology, 2005. 62(4): p. 554-560. 12. Dostrovsky, J.O., W.D. Hutchison, and A.M. Lozano, The globus pallidus, deep brain stimulation, and Parkinson's disease. Neuroscientist, 2002. 8(3): p. 284-90. 13. Middlebrooks, E.H., et al., Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease. AJNR Am J Neuroradiol, 2018. 39(6): p. 1127-1134. 14. Krause, M., et al., Deep brain stimulation for the treatment of Parkinson's disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry, 2001. 70(4): p. 464-70. 15. Benabid, A.L., et al., [Treatment of Parkinson tremor by chronic stimulation of the ventral intermediate nucleus of the thalamus]. Rev Neurol (Paris), 1989. 145(4): p. 320-3. 16. Kumar, K., M. Kelly, and C. Toth, Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson's disease and essential tremor. Stereotact Funct Neurosurg, 1999. 72(1): p. 47-61. 17. Dostrovsky, J.O., et al., Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol, 2000. 84(1): p. 570-4. 18. Urbano, F., Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study. Thalamus & Related Systems, 2002. 1(4): p. 371-378. 19. Salanova, V., Deep brain stimulation for epilepsy. Epilepsy Behav, 2018. 88S: p. 21-24. 20. Eastin, T.M. and M.A. Lopez-Gonzalez, Stimulation and Neuromodulation in the Treatment of Epilepsy. Brain Sci, 2017. 8(1). 21. Ziai, W.C., et al., Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia, 2005. 46(6): p. 878-888. 22. Chapin, E.M. and R. Andrade, Calcium-independent afterdepolarization regulated by serotonin in anterior thalamus. J Neurophysiol, 2000. 83(5): p. 3173-6. 23. Neuman, R.S. and P.M. Thompson, Serotonin mediates suppression of focal epileptiform activity induced by noxious stimulation. Epilepsia, 1989. 30(3): p. 307-13. 24. Phillip C. Jobe, J.W.D., Joe F. Wernicke, Critical Reviews™ in Neurobiology. Critical Reviews in Neurobiology, 1999. 13(4). 25. Herrington, T.M., J.J. Cheng, and E.N. Eskandar, Mechanisms of deep brain stimulation. J Neurophysiol, 2016. 115(1): p. 19-38. 26. Groiss, S.J., et al., Deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord, 2009. 2(6): p. 20-8. 27. Raviv, N., et al., A Systematic Review of Deep Brain Stimulation Targets for Obsessive Compulsive Disorder. Neurosurgery, 2020. 87(6): p. 1098-1110. 28. Fenoy, A.J. and R.K. Simpson, Jr., Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg, 2014. 120(1): p. 132-139. 29. Sorar, M., et al., Experience Reduces Surgical and Hardware-Related Complications of Deep Brain Stimulation Surgery: A Single-Center Study of 181 Patients Operated in Six Years. Parkinsons Dis, 2018. 2018: p. 3056018. 30. Hamani, C. and A.M. Lozano, Hardware-related complications of deep brain stimulation: A review of the published literature. Stereotactic and Functional Neurosurgery, 2006. 84(5-6): p. 248-251. 31. Doshi, P.K., Long-term surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg, 2011. 89(2): p. 89-95. 32. Sillay, K.A., P.S. Larson, and P.A. Starr, Deep brain stimulator hardware-related infections: Incidence and management in a large series. Neurosurgery, 2008. 62(2): p. 360-366. 33. Boviatsis, E.J., et al., Surgical and hardware complications of deep brain stimulation. A seven-year experience and review of the literature. Acta Neurochirurgica, 2010. 152(12): p. 2053-2062. 34. Polania, R., M.A. Nitsche, and C.C. Ruff, Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci, 2018. 21(2): p. 174-187. 35. Meinzer, M., et al., Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex, 2014. 50: p. 137-147. 36. Kang, J.H., et al., Effects of add-on transcranial direct current stimulation on pain in Korean patients with fibromyalgia. Sci Rep, 2020. 10(1): p. 12114. 37. Fecteau, S., et al., Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend, 2014. 140: p. 78-84. 38. Benninger, D.H., M. Lomarev, and G. Lopez, Transcranial direct current stimulation for the treatment of Parkinson's disease (vol 81, pg 1105, 2010). Journal of Neurology Neurosurgery and Psychiatry, 2011. 82(3): p. 354-354. 39. Pilato, F., et al., Synaptic plasticity in neurodegenerative diseases evaluated and modulated by in vivo neurophysiological techniques. Mol Neurobiol, 2012. 46(3): p. 563-71. 40. Podda, M.V., et al., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep, 2016. 6: p. 22180. 41. Ranieri, F., et al., Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol, 2012. 107(7): p. 1868-1880. 42. Agboada, D., et al., Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep, 2019. 9(1): p. 18185. 43. Lefaucheur, J.P., et al., Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol, 2017. 128(1): p. 56-92. 44. Fagerlund, A.J., O.A. Hansen, and P.M. Aslaksen, Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial. Pain, 2015. 156(1): p. 62-71. 45. Fregni, F., et al., A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis and Rheumatism, 2006. 54(12): p. 3988-3998. 46. Valle, A., et al., Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. J Pain Manag, 2009. 2(3): p. 353-361. 47. Tufail, Y., et al., Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc, 2011. 6(9): p. 1453-70. 48. Jalinous, R., Apparatus for the magnetic stimulation of cells or tissue. 1998, Google Patents. 49. Samoudi, A.M., et al., Deep Transcranial Magnetic Stimulation: Improved Coil Design and Assessment of the Induced Fields Using MIDA Model. Biomed Res Int, 2018. 2018: p. 7061420. 50. Tufail, Y., et al., Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 2010. 66(5): p. 681-94. 51. Speed, C.A., Therapeutic ultrasound in soft tissue lesions. Rheumatology (Oxford), 2001. 40(12): p. 1331-6. 52. Legon, W., et al., Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci, 2014. 17(2): p. 322-329. 53. Legon, W., et al., Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp, 2018. 39(5): p. 1995-2006. 54. Folloni, D., et al., Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron, 2019. 101(6): p. 1109-1116. 55. Schofield, C.M., et al., A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc Natl Acad Sci U S A, 2009. 106(18): p. 7630-5. 56. Zuiderwijk, M. and W.E. Ghijsen, Monitoring amino acid neurotransmitter release in the brain by in vivo microdialysis. Methods Mol Biol, 1997. 72: p. 239-50. 57. Yoo, S.S., et al., Focused ultrasound modulates region-specific brain activity. Neuroimage, 2011. 56(3): p. 1267-75. 58. Mehic, E., et al., Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One, 2014. 9(2): p. e86939. 59. Kiviranta, T., L. Tuomisto, and E.M. Airaksinen, Osmolality and electrolytes in cerebrospinal fluid and serum of febrile children with and without seizures. European Journal of Pediatrics, 1996. 155(2): p. 120-125. 60. Bezanilla, F. and R.E. Taylor, Temperature effects on gating currents in the squid giant axon. Biophysical Journal, 1978. 23(3): p. 479-484. 61. Bender, R.A., C. Dube, and T.Z. Baram, Febrile seizures and mechanisms of epileptogenesis: Insights from an animal model. Recent Advances in Epilepsy Research, 2004. 548: p. 213-225. 62. Dube, C.M., A.L. Brewster, and T.Z. Baram, Febrile seizures: Mechanisms and relationship to epilepsy. Brain & Development, 2009. 31(5): p. 366-371. 63. Andersen, P. and E.I. Moser, Brain temperature and hippocampal function. Hippocampus, 1995. 5(6): p. 491-498. 64. Gatti, S., et al., Effect of interleukin-18 on mouse core body temperature. Am J Physiol Regul Integr Comp Physiol, 2002. 282(3): p. R702-9. 65. Thomas, E.A., et al., Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Ann Neurol, 2009. 66(2): p. 219-26. 66. Yoon, K., et al., Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One, 2019. 14(10): p. e0224311. 67. King, R.L., et al., Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol, 2013. 39(2): p. 312-31. 68. Kim, H., et al., Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul, 2014. 7(5): p. 748-56. 69. Min, B.K., et al., Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci, 2011. 12: p. 23. 70. Ye, P.P., J.R. Brown, and K.B. Pauly, Frequency Dependence of Ultrasound Neurostimulation in the Mouse Brain. Ultrasound Med Biol, 2016. 42(7): p. 1512-1530. 71. Darvas, F., et al., Toward Deep Brain Monitoring with Superficial EEG Sensors Plus Neuromodulatory Focused Ultrasound. Ultrasound Med Biol, 2016. 42(8): p. 1834-1847. 72. Gulick, D.W., et al., Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med Biol, 2017. 43(12): p. 2824-2833. 73. Ibsen, S., et al., Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun, 2015. 6: p. 8264. 74. Kubanek, J., et al., Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J Neurosci, 2018. 38(12): p. 3081-3091. 75. Prieto, M.L., et al., Activation of Piezo1 but Not NaV1.2 Channels by Ultrasound at 43 MHz. Ultrasound Med Biol, 2018. 44(6): p. 1217-1232. 76. Coste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 2010. 330(6000): p. 55-60. 77. de Leon, A., et al., Bubble Trouble: Conquering Microbubble Limitations in Contrast Enhanced Ultrasound Imaging by Nature-Inspired Ultrastable Echogenic Nanobubbles. bioRxiv, 2019. 78. Garg, S., A.A. Thomas, and M.A. Borden, The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials, 2013. 34(28): p. 6862-70. 79. Neumann, D. and E. Kollorz, Ultrasound, in Medical Imaging Systems: An Introductory Guide, A. Maier, et al., Editors. 2018: Cham (CH). p. 237-249. 80. Qi, L., et al., Non-Contact High-Frequency Ultrasound Microbeam Stimulation: A Novel Finding and Potential Causes of Cell Responses. IEEE Trans Biomed Eng, 2020. 67(4): p. 1074-1082. 81. Marino, A., et al., Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. Acs Nano, 2015. 9(7): p. 7678-7689. 82. Hoop, M., et al., Ultrasound-mediated piezoelectric differentiation of neuron-like PC12 cells on PVDF membranes. Sci Rep, 2017. 7(1): p. 4028. 83. Rojas, C., et al., Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J Neural Eng, 2018. 15(3): p. 036016. 84. Marino, A., et al., Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells. Sci Rep, 2018. 8(1): p. 6257. 85. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150. 86. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012. 7(11): p. 699-712. 87. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010. 5(10): p. 722-726. 88. Hsu, A., et al., Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the Ieee, 2013. 101(7): p. 1638-1652. 89. Laursen, A.B., et al., Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012. 5(2): p. 5577-5591. 90. Chou, T.M., et al., A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy, 2019. 57: p. 14-21. 91. Zhang, J., et al., Scalable growth of high-quality polycrystalline MoS(2) monolayers on SiO(2) with tunable grain sizes. ACS Nano, 2014. 8(6): p. 6024-6030. 92. Wang, D.Z., et al., Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014. 264: p. 229-234. 93. Ette, P.M., et al., MoS2 Nanoflower-Derived Interconnected CoMoO4 Nanoarchitectures as a Stable and High Rate Performing Anode for Lithium-Ion Battery Applications. ACS Appl Mater Interfaces, 2020. 12(10): p. 11511-11521. 94. Cao, J., et al., Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction. PLoS One, 2016. 11(8): p. e0161374. 95. Wang, S., et al., A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissue-Engineered 3D Scaffold. Adv Biosyst, 2017. 1(5): p. e1600042. 96. Yin, W., et al., High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano, 2014. 8(7): p. 6922-6933. 97. Liu, T., et al., Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater, 2014. 26(21): p. 3433-3440. 98. Ding, X., et al., Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat Commun, 2019. 10(1): p. 41. 99. Liu, T., et al., Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano, 2015. 9(1): p. 950-960. 100. Wang, S., et al., Layered MoS2 nanoflowers for microwave thermal therapy. J Mater Chem B, 2016. 4(12): p. 2133-2141. 101. Yang, T., et al., Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Electrochimica Acta, 2014. 115: p. 165-169. 102. Zhao, X., C. Hu, and M. Cao, Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance. Chem Asian J, 2013. 8(11): p. 2701-2707. 103. Tan, G., et al., Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing. ACS Appl Mater Interfaces, 2016. 8(37): p. 24306-24309. 104. Grienberger, C. and A. Konnerth, Imaging calcium in neurons. Neuron, 2012. 73(5): p. 862-85. 105. de Melo Reis, R.A., H.R. Freitas, and F.G. de Mello, Cell Calcium Imaging as a Reliable Method to Study Neuron-Glial Circuits. Front Neurosci, 2020. 14: p. 569361. 106. Simons, T.J., Calcium and neuronal function. Neurosurg Rev, 1988. 11(2): p. 119-29. 107. Morgan, A.J. and R. Jacob, Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J, 1994. 300 ( Pt 3): p. 665-72. 108. Nakamura, S., et al., Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res, 2016. 50(11): p. 1214-1225. 109. van der Meer, A.D., et al., Shear stress induces a transient and VEGFR-2-dependent decrease in the motion of injected particles in endothelial cells. Biorheology, 2010. 47(3-4): p. 179-192. 110. Shurbaji, S., et al., Effect of Flow-Induced Shear Stress in Nanomaterial Uptake by Cells: Focus on Targeted Anti-Cancer Therapy. Cancers, 2020. 12(7). 111. Lee, C.H. and P.C. Ruben, Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels, 2008. 2(6): p. 407-412. 112. Stevens, M., S. Peigneur, and J. Tytgat, Neurotoxins and their binding areas on voltage-gated sodium channels. Front Pharmacol, 2011. 2: p. 71. 113. Tonazzini, I., et al., Interaction of leech neurons with topographical gratings: comparison with rodent and human neuronal lines and primary cells. Interface Focus, 2014. 4(1): p. 20130047. 114. Harris, R.A. and J.W. Hanrahan, Effects of Egta on Calcium Signaling in Airway Epithelial-Cells. American Journal of Physiology-Cell Physiology, 1994. 267(5): p. C1426-C1434. 115. Barr, R., K.S. Troxel, and F.L. Crane, EGTA, a calcium chelator, inhibits electron transport in photosystem II of spinach chloroplasts at two different sites. Biochemical and Biophysical Research Communications, 1980. 92(1): p. 206-212. 116. Xu, Y., et al., GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci, 2020. 14: p. 660. 117. Hattori, R., et al., Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nat Neurosci, 2017. 20(9): p. 1199-1208. 118. Zhao, C., B. Eisinger, and S.C. Gammie, Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One, 2013. 8(8): p. e73750. 119. Salib, M., et al., GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3. J Neurosci, 2019. 39(23): p. 4527-4549. 120. Haidar, M., et al., Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat, 2019. 13: p. 30. 121. Cui, B., et al., Hydrothermal synthesis of SnS2/MoS2 Nanospheres for enhanced adsorption capacity of organic dyes. Materials Research Express, 2019. 7(1). 122. Tang, Z.H., et al., The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer, 2012. 53(2): p. 673-680. 123. Nguyen, T.T.T., et al., Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative. Arabian Journal of Chemistry, 2020. 13(1): p. 2671-2679. 124. Kristoffersen, A.S., et al., Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: rhodamine B, coumarin 6 and lucifer yellow. J Fluoresc, 2014. 24(4): p. 1015-1024. 125. 實驗動物管理與使用指南編輯委員會, 實驗動物管理與使用指南. Vol. 16. 2005: 中華實驗動物學會. 126. Saint Marie, R.L., L. Luo, and A.F. Ryan, Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. Journal of Comparative Neurology, 1999. 404(2): p. 258-270. 127. Bors, L. and F. Erdő, Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Scientia Pharmaceutica, 2019. 87(1). 128. Pardridge, W.M., Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab, 2012. 32(11): p. 1959-72. 129. Kim, S.K., et al., Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy, 2016. 22: p. 483-489. 130. Itoh, H., et al., Microscopic heat pulse-induced calcium dynamics in single WI-38 fibroblasts. Biophysics, 2014. 10: p. 109-119. 131. Tseeb, V., et al., Highly thermosensitive Ca2+ dynamics in a HeLa cell through IP3 receptors. HFSP journal, 2009. 3(2): p. 117-123. 132. Stavermann, M., et al., Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium, 2012. 52(2): p. 113-123. 133. Dickinson, G.D. and I. Parker, Temperature dependence of IP3-mediated local and global Ca2+ signals. Biophysical journal, 2013. 104(2): p. 386-395. 134. Dode, L., et al., Low temperature molecular adaptation of the skeletal muscle sarco (endo) plasmic reticulum Ca2+-ATPase 1 (SERCA 1) in the wood frog (Rana sylvatica). Journal of Biological Chemistry, 2001. 276(6): p. 3911-3919. 135. Bettaieb, A. and D.A. Averill-Bates, Thermotolerance induced at a mild temperature of 40 degrees C alleviates heat shock-induced ER stress and apoptosis in HeLa cells. Biochim Biophys Acta, 2015. 1853(1): p. 52-62. 136. Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine, 2012. 7: p. 5577-5591. 137. Ye, H. and S. Kaszuba, Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. J Biomed Sci, 2017. 24(1): p. 93. 138. Epsztein, J., et al., Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. Journal of Neuroscience, 2006. 26(26): p. 7082-7092. 139. Derchansky, M., et al., Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation. Journal of Physiology-London, 2008. 586(2): p. 477-494. 140. Lasztoczi, B., et al., Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. J Neurophysiol, 2009. 102(4): p. 2538-53. 141. Huberfeld, G., et al., Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nature Neuroscience, 2011. 14(5): p. 627-U121. 142. Pitkänen A, S.P., Moshé SL., Models of Seizures and Epilepsy. 1st ed San Diego, CA: Academic Press. 2006. 143. Lu, W., et al., Activity-induced spontaneous spikes in GABAergic neurons suppress seizure discharges: an implication of computational modeling. Oncotarget, 2017. 8(20): p. 32384-32397. 144. Takayama, C. and Y. Inoue, Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Brain Res Dev Brain Res, 2005. 158(1-2): p. 41-9. |