帳號:guest(3.142.171.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝任濠
作者(外文):Hsieh, Jen-Hao
論文名稱(中文):具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
論文名稱(外文):The Delivery of Immune Checkpoint Blockade (ICB) by Triangular Ag@Au Core/Shell Nanoplates Decorated-Macrophage Exosomes for Photothermal Immunotherapy of Metastatic Tumors
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):陳三元
陳冠宇
姜文軒
口試委員(外文):Chen, San-Yuan
Chen, Guan-Yu
Chiang, Wen-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012534
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:152
中文關鍵詞:金銀合金納米粒子光熱免疫療法外泌體裝飾免疫檢查點封鎖
外文關鍵詞:Gold-silver alloy nanoparticlesPhotothermal immunotherapyExosome decorationImmune checkpoint blockade
相關次數:
  • 推薦推薦:0
  • 點閱點閱:223
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據世界衛生組織的數據,到2020年癌症相關死亡人數將增加到約1.5億。在90%的人類癌症相關死亡中,惡性轉移是主要原因。目前臨床上的主流療法,例如手術切除術,化學療法和放射療法,對於已經擴散和轉移的晚期癌症功效很有限,且對正常組織與細胞會造成附帶傷害,嚴重影響患者生活品質。許多研究顯示系統性激活免疫反應,在治療晚期或轉移性腫瘤方面有顯著效果。所以在本研究中我們將結合光熱消融(Photothermia ablation) 和免疫 (Immunotherapy) 的特性,合成出「高均一具尺寸優勢的三角Ag @ Au核/殼納米板」平台,並在外層裝飾巨噬細胞外泌體(Macrophage exosomes) ,以提高細胞的相容性和攝取量,並降低脫靶造成的毒性,及修飾「標靶性蛋白藥物爾必得舒 (Erbitux®)」,達到專一性標靶的目的。利用近紅外(NIR)照射以觸發由Ag @ Au納米板誘導的局部熱療,影響外泌體膜的滲透性,從而將包覆的治療性Ag @ Au納米板到標靶腫瘤區釋放,達到腫瘤穿透及治療效果。此外,等離子體貴金屬納米晶體的特徵,可以局部光熱療法(PTT)選擇性地消除腫瘤細胞,以產生腫瘤特異性抗原促進免疫。且治療性Ag @ Au納米板釋放的銀離子也可誘發免疫並協同免疫檢查點阻斷 (αPD-1),建構了用於惡性和轉移性腫瘤的強效且可行的治療策略。
論文第一部分為巨噬細胞外泌體裝飾金/銀殼核三角納米板的合成與特性研究。以Ag納米片為犧牲模板的典型合成中,經由聚乙烯吡咯烷酮(PVP ) 作為用於調節晶體生長尺寸的封端劑、四氯合金酸(HAuCl4)作為Au源,可得到多孔Au-Ag合金納米板。但Au元素的比例僅為25.39%,使其結構穩定度不高並有過量的細胞毒性。因此,我們採用亞硫酸鹽絡合物( Na2Au(SO3)2 )作為Au源可以快速增加Au / Ag比,從而產生具化學穩定性的三角形Ag @ Au核/殼納米板,其周圍的金元素比率提升為56.67%。使用超聲處理外泌體,並且修飾爾必得舒最終合成Ag @ Au @ Exo-Er約為90-120 nm,可以減少其在血液的流動中被單核吞噬細胞系統清除的機會,同時增加腫瘤累積和癌症治療的效率。利用奈米粒子追蹤分析儀(Nanoparticle Tracking Analysis, NTA)分析外泌體的性質,得到平均大小約為88.5nm,透過不同時間點使用電子顯微鏡(TEM & EDS)、動態光散射(DLS)分析,觀察到外泌體逐漸凝結並裝飾Ag @ Au納米板的過程,且得知表面zeta電位為-18.3 mV,同時也確定金/銀三角納米板Ag的核心與分布周圍的Au元素輪廓。且使用凝膠電泳(SDS-PAGE)和西方墨點法專一性地檢測到Ag@Au@Exo上的外泌體蛋白質標記(CD63)。
第二部分以CT-26 (小鼠結腸癌成纖維細胞) 做為動物腫瘤模型。使用暗視野顯微鏡發現在不到2個小時Ag @ Au @ Exo-Er就有很明顯的細胞攝取,而12小時細胞累積的效果更大於Ag @ Au @ Exo組別。相較於單獨近紅外光生熱及單獨裝飾外泌體的組別,結合標靶性及光熱協同治療對於癌細胞的毒殺能力最佳。在流式細胞儀檢測CT-26腫瘤中T細胞浸潤比例,結果顯示給予光熱並結合αPD-1的組別可促使最佳免疫效果,數據分析cytotoxic T lymphocytes (CTLs) 達到6.52%,修飾標靶後更能提升至7.69%,而在單純Ag @ Au /αPD-1中,CTLs的百分比也增加到5.30%,顯然Ag @ Au釋放的銀離子可以誘導免疫應答,並進一步與αPD-1協同治療癌症,同時我們也發現在淋巴結中CTLs達到23.26%的顯著提升;在老鼠皮下腫瘤模式中,有修飾Erbitux的Ag @ Au@Exo納米板,尾靜脈注射後1天至3天腫瘤累積率可高達58-65%,接著施加NIR誘導外泌體包覆的治療性Ag @ Au納米板釋放與穿透至腫瘤深部,同時光熱轉換溫度達攝氏 53 度以上。腫瘤切片免疫螢光成像上,協同αPD-1免疫檢查點阻斷的激光治療組在CTLs細胞的浸潤顯著強於其他組別,而在Ag @ Au /αPD-1組別,還存在許多CTLs,表明腫瘤組織中仍存在抗腫瘤免疫,與流式細胞儀檢測結果相應。平均腫瘤生長方面有效的抑制,且在28天後皮下腫瘤已明顯消融。在治療組誘發記憶性免疫的成效,觀察到幾乎沒有肺轉移性腫瘤的產生,且沒有造成小鼠器官的傷害。故此光熱免疫協同αPD-1的標靶載體是一個有潛力的治療平台。
According to the World Health Organization, the number of cancer-related deaths will increase to about 150 million by 2020. Malignant metastasis is the leading cause of 90% of human cancer-related deaths. Many studies have shown that activation of the immune system has a significant effect in the treatment of advanced or metastatic tumors. In this study, we will combine the characteristics of photothermal ablation and immunity to synthesize a "highly uniform triangular Ag @ Au core/shell nanoplate" platform, and decorate macrophage exosomes in the outer layer to reduce the toxicity caused by off-target. In addition, the characteristics of metal nanoparticles can be used to selectively eliminate tumor cells by local photothermotherapy to produce tumor-specific antigens to promote immunity. Silver ions released from therapeutic Ag @ Au nanoplates can also induce immunity and synergistic immunological checkpoint blockade (αPD-1), constructing a powerful and feasible therapeutic strategy for malignant and metastatic tumors.
The first part of the article is the synthesis and characterization of Ag@Au@Exo-Er. The use of a sulfite complex (Na2Au(SO3)2) as the Au source can rapidly increase the Au / Ag ratio, resulting in a chemically stable triangular Ag @ Au core/shell nanoplate with an increase in the ratio of gold elements around it to 56.67%. The nature of the exosomes was analyzed using a nanoparticle tracking analyzer to obtain an average size of about 88.5 nm. Analysis of Ag @ Au @ Exo-Er is approximately 90-120 nm using an transmission electron microscope. The exosomal protein marker (CD63) on Ag@Au@Exo was specifically detected by gel electrophoresis (SDS-PAGE) and Western blotting.
The second part of the essay is in the cell experiment, and CT-26 (mouse colon cancer fibroblast) is used as an animal tumor model. In less than 2 hours, Ag @ Au @ Exo-Er has obvious cellular uptake, and the combination of target and photothermal therapy has the best ability to kill cancer cells. The cytotoxic T lymphocytes (CTL) reached 7.69%, while in Ag @ Au /αPD-1, the percentage of CTL increased to 5.30%. It is clear that the silver ions released by Ag @ Au can induce an immune response and further with αPD-1 synergistic treatment of cancer. In the subcutaneous tumor model of mice, the tumor accumulation rate can be as high as 58-65% from 1 day to 3 days after the tail vein injection. Effective inhibition in terms of mean tumor growth, and subcutaneous tumors had a significant ablation after 28 days. Then, the effect of the memory immunity induced by the treatment group was studied. It was observed that almost no lung metastatic tumor was produced, and no damage was caused to the organs in the mouse. This sophisticated Ag@Au@Exo-Er is an excellent delivery platform .
中文摘要 I
Abstract III
致謝 V
List of Figures X
List of Schemes XVII
Chapter 1 Literature Review and Theory 1
1.1 Progress of metastatic tumors 1
1.2 Nanoparticles as drug delivery systems 4
1.2.1 The particle size effect 7
1.2.2 The particle shape effect- Nanodisk vs Nanosphere 9
1.2.3 The surface chemistry effect 14
1.3 Nanocomposites targeted tumor delivery systems. 16
1.4 Characteristics of Gold-silver alloy nanoparticles 17
1.4.1 Gold-silver alloy nanoparticles reduce the toxicity of silver 21
1.4.2 Application of gold-silver alloy nanoparticle in anticancer and photothermal therapy 24
1.5 Cancer Immunotherapy 31
1.6 Immunomodulatory properties of silver nanoparticles 37
1.7 Application of metal nanoparticles in photothermal immunotherapy 39
1.8 Synergistic treatment of Anti-PD1 checkpoint blockers 43
1.9 Exosome summary and exosomes secreted by macrophages 48
1.9.1 Exosome for drug delivery systems 53
Chapter 2 Experimental Section 56
2.1 Materials 56
2.2 Apparatus 60
2.3 Method 62
2.3.1 Synthesis of Ag Nanoplates (Seeds) 62
2.3.2 Preparation of Growth Solution of Au 62
2.3.3 Synthesis of Triangular Ag@Au Core/Shell Nanoplates 64
2.3.4 Synthesis of Ag@Au@Exo-Er 65
2.3.5 Characterizations 67
2.3.6 Photothermal Ablation Effect of Ag@Au 68
2.3.7 Ag@Au Loading Efficiency and Encapsulation Efficiency 68
2.3.8 Synthesis of the triangular Ag@Au core/shell nanoplates analysis 69
2.3.9 Cell culture 69
2.3.10 Cellular Uptake 71
2.3.11 Cell viability assay 72
2.3.12 Targeting ability of the Ag@Au@Exo-Er was quantified by flow cytometry 73
2.3.13 SDS PAGE experiments 74
2.3.14 Western Blot 74
2.3.15 Ex vivo analysis of different groups of T cells 75
2.3.16 Long-term immune effect of Ag@Au@Exo-Er (L) + AP on post-therapy rechallenged tumor 78
2.3.17 CT-26 Cells were stained to visualize live and dead cells 79
2.3.18 Histology Analysis. 80
2.3.19 Cell loading for spheroid formation 80
2.3.20 Penetration of the nanoparticles in CT-26 spheroids 82
2.3.21 Tissue section immunostaining 83
2.3.22 In vivo experiments 84
Chapter 3 Results and Discussions 86
3.1 Synthesis and morphology of Ag nanoplates, Exosome, Holey Au@Ag alloy nanoplates, Triangular Ag@Au Nanoplates and Ag@Au@Exo-Er 88
3.2 Characterization of Ag@Au, Ag@Au@Exo, Exosome and Ag@Au@Exo-Er 103
3.3 Triangular Ag @ Au core / shell nanoplates by NIR-laser photothermal conversion 109
3.4 Cytotoxicity and cell uptake of Ag@Au@Exo-Er 111
3.8 In vivo animal experiment 127
Chapter 4 Conclusions 143
Reference 144

1. IJ Fidler. The pathogenesis of cancer metastasis: the’seed and soil’ hypothesis revisited. Nature Review Cancer 2003, 3, 453-458.
2. Ahmedin Jemal DVM, PhD. Cancer statistics, 2019. A: A Cancer Journal for Clinicians.08 January 2019
3. Sugarbaker, E. V. Cancer metastasis: a product of tumour-host interactions. Curr. Probl. Cancer 3, 1–59 (1979).
4. Fidler, I. J. The organ microenvironment and cancer metastasis. Differentiation 70, 498–505 (2002).
5. Wingo PA, Cardinez CJ, Landis SH, et al. Long‐term trends in cancer mortality in the United States, 1930–1998. Cancer. 2003; 97( suppl 12): 3133‐ 3275.
6. Statistical Research and Applications Branch, National Cancer Institute. DevCan: Probability of Developing or Dying of Cancer Software. Version 6.7.6. Bethesda, MD: Surveillance Research Program, Statistical Methodology and Applications, National Cancer Institute; 2018.
7. Halina Car. Nanoparticles as drug delivery systems.Pharmacological Reports October 2012, Pages 1020-1037.
8. Albanese, A.; Tang, P. S.; Chan, W. C., The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012, 14, 1-16.*
9. Alexis F., Pridgen E. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008;5(4):505–515.
10. Angra P.K., Rizvi S.A.A. Novel approach for preparing nontoxic stealth microspheres for drug delivery. Eur. J. Chem. 2011;2:125–129.
11. Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P. C.; He, S.; Zhang, X.; Liang, X. J., Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012, 6 (5), 4483-93.
12. Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.; Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G., A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 2010, 49 (46), 8649-52.
13. Tang, L.; Fan, T. M.; Borst, L. B.; Cheng, J., Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS Nano 2012, 6 (5), 3954-66.
14. Lazzari, G.; Couvreur, P.; Mura, S., Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chemistry 2017, 8 (34), 4947-4969.
15. Sen Gupta, A., Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016, 8 (2), 255-70.
16. Mitragotri, S.; Lahann, J., Physical approaches to biomaterial design. Nat Mater 2009, 8 (1), 15-23.
17. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9 (8), 615-27.
18. Singh, R.; Lillard, J. W., Jr., Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009, 86 (3), 215-23.
19. Li, B.; Li, Q.; Mo, J.; Dai, H., Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front Pharmacol 2017, 8, 51.
20. Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y., Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014, 53 (46), 12320-64.
21. Xiaoyuan Chen. Suppressing Nanoparticle-Mononuclear Phagocyte System Interactions of Two- Dimensional Gold Nanorings for Improved Tumor Accumulation and Photothermal Ablation of Tumors. ACS Nano 2017, 11, 10539-10548.
22. M. Ferrari. Size and shape effects in the biodistribution of intravascularly injected particles.Journal of Controlled Release 141 (2010) 320–327.
23. Pinkhassik, and Bing Yan. Permission to Enter Cell by Shape: Nanodisk vs Nanosphere. ACS Appl. Mater. Interfaces 2012, 4, 4099−4105.
24. Bantz C., Koshkina O. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Zellner, R., ed. Beilstein J. Nanotechnol. 2014;5:1774–1786.
25. Han-Seung Shin. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnologyvolume 16, Article number: 71 (2018).
26. Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomed. 2015;10:6055.
27. Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol. 2011;2:510.
28. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E., Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007, 2 (4), 249-55.
29. Toy, R.; Peiris, P. M.; Ghaghada, K. B.; Karathanasis, E., Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 2014, 9 (1), 121-34.
30. Duan, X.; Li, Y., Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking.
31. Shah, S.; Liu, Y.; Hu, W.; Gao, J., Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 2011, 11 (2), 919-28.
32. Champion, J. A.; Katare, Y. K.; Mitragotri, S., Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007, 121 (1-2), 3-9.
33. Mammen, M.; Choi, S. K.; Whitesides, G. M., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed Engl 1998, 37 (20), 2754-2794.
34. Park, J. H.; von Maltzahn, G.; Zhang, L.; Schwartz, M. P.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Adv Mater 2008, 20 (9), 1630-1635.
35. Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S., Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 2013, 110 (9), 3270-5.
36. Chompoosor, A.; Saha, K.; Ghosh, P. S.; Macarthy, D. J.; Miranda, O. R.; Zhu, Z. J.; Arcaro, K. F.; Rotello, V. M., The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6 (20), 2246-9.
37. Hillaireau, H.; Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences 2009, 66 (17), 2873-2896.
38. Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J.; Rao, J.; Chen, X.; Banin, U.; Wu, A. M.; Sinclair, R.; Weiss, S.; Gambhir, S. S., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5 (1), 126-34.
39. Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M., Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 2012, 41 (7), 2539-44.
40. Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical Journal of Pharmaceutical Research 2013, 12 (2), 265-273.
41. Kim, B.; Han, G.; Toley, B. J.; Kim, C. K.; Rotello, V. M.; Forbes, N. S., Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 2010, 5 (6), 465-72.
42. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31 (13), 3657-66.
43. Caban, S.; Aytekin, E.; Sahin, A.; Capan, Y., Nanosystems for drug delivery. OA Drug Des Deliv 2014, 18 (2), 1-7.
44. Donghyun Lee, and Heebeom Koo. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems.Cancers 2019, 11, 640.
45. Alyssa M Master and Anirban Sen Gupta. EGF receptor-targeted nanocarriers for enhanced cancer treatment.Nanomedicine (Lond). 2012 December ; 7(12): 1895–1906.
46. Mu-Ping Nieh and Ying Li.Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges.Polymers 2016, 8(3), 83.
47. Yadong Yinb and Chuanbo Gao.Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering. Nanoscale, 2016, 8, 15689.
48. Chuanbo Gao , * and Yadong Yin *.Etching-Free Epitaxial Growth of Gold on Silver Nanostructures for High Chemical Stability and Plasmonic Activity. Adv. Funct. Mater. 2015, 25, 5435–5443.
49. Hesketh and Timothy L. Kelly* Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms.Phys. Chem. Chem. Phys., 2014, 16, 12407--12414.
50. Kyunghee Choi, Kwangsik Par.Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism.Toxicology in Vitro 24 (2010) 872–878.
51. Qiang Chen, and Chunying Chen.Cytotoxic Potential of Silver Nanoparticles.Yonsei Med J 55(2):283-291, 2014.
52. Yixiang Xu, Hongmei Liu and Tao Jiang, Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule, Journal of Nanoparticle Research, 10.1007/s11051-019-4532-3, 21, 5, (2019).
53. Siva Kumar Krishnan, Rodrigo Esparza, F. J. Flores-Ruiz, Erika Padilla-Ortega, Gabriel Luna-Bárcenas, Isaac. C. Sanchez and Umapada Pal, Seed-Mediated Growth of Ag@Au Nanodisks with Improved Chemical Stability and Surface-Enhanced Raman Scattering, ACS Omega, 10.1021/acsomega.8b02333, 3, 10, (12600-12608), (2018).
54. Ali Abou-Hassan, and Claire Wilhelm.Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy.ACS Nano 2018, 12, 6523−6535.
55. Mark R. Wiesner, and Gregory V. Lowry.Sulfidation of Silver Nanoparticles: Natural Antidote to Their Toxicity. Environ. Sci. Technol. 2013, 47, 13440−13448.
56. Jean-Christophe Lerouxc and Sotiris E. Pratsinis.Plasmonic biocompatible silver–gold alloyed nanoparticles.Chem. Commun., 2014, 50, 13559.
57. M. G. Somekh, M. C. Pitter, and O. L. Muskens.Spatial modulation microscopy for real-time imaging of plasmonic nanoparticles and cells.Optics Letters 3015-3017 (2012).
58. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008, 47 (44), 8438-41.
59. Derrick M Mott and Shinya Maenosono.Chemical stabilization of gold coated by silver core–shell nanoparticles via electron transfer.Nanotechnology 23 (2012) 245704 (10pp).
60. Shekhar Agnihotri, Soumyo Mukherji and Suparna Mukherji.Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver.Nanoscale, 2013, 5, 7328–7340.
61. Devin Wang, Jun Huang.Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment.Sustainable Materials and Technologies 22 (2019) e00109.
62. Dong Qin, and Younan Xia.Bimetallic Nanocrystals: Syntheses, Properties, and Applications.Chem. Rev. 2016, 116, 10414−10472.
63. E. Mart´ın Rodr´ıguez and J. Garc´ıa Sol´e. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494–9530.
64. Wolfgang Meyer-Zaika and Matthias Epple.An easy synthesis of autofluorescent alloyed silver– gold nanoparticles.J. Mater. Chem. B, 2014, 2, 7887–7895.
65. Gagan Dhawan & Ramesh Chandra. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1210-1220.
66. Horikoshi S, Serpone N. Introduction to nanoparticles. Microwaves in nanoparticle synthesis: fundamentals and Applications. Hoboken (NJ): John Wiley & Sons; 2013. p. 1–24.
67. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133.
68. Chong-Su Cho, and In-Kyu Park.Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment.Biomacromolecules 2018, 19, 1869−1887.
69. Siddhartha Sankar Ghosh. Bimetallic silver nanoparticle–gold nanocluster embedded composite nanoparticles for cancer theranostics. J. Mater. Chem. B, 2016, 4, 793--800.
70. Lyon, J. G.; Mokarram, N.; Saxena, T.; Carroll, S. L.; Bellamkonda, R. V. Engineering challenges for brain tumor immunotherapy. Adv. Drug Delivery Rev. 2017, 114, 19– 32.
71. Fan, Y.; Moon, J. J. Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines (Basel, Switz.) 2015, 3 (3), 662– 85.
72. Morrissey, K. M.; Yuraszeck, T. M.; Li, C. C.; Zhang, Y.; Kasichayanula, S. Immunotherapy and Novel Combinations in Oncology: Current Landscape, Challenges, and Opportunities. Clin Transl Sci. 2016, 9 (2), 89– 104.
73. Tay, Z. W.; Chandrasekharan, P.; Chiu-Lam, A.; Hensley, D. W.; Dhavalikar, R.; Zhou, X. Y.; Yu, E. Y.; Goodwill, P. W.; Zheng, B.; Rinaldi, C.; Conolly, S. M. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. ACS Nano 2018, 12, 3699.
74. Adriano Bellotti Zhen Gu. Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook.Adv. Mater. 2017, 29, 1606036.
75. Zhijian J. Chen, Jinming Gao. Synthetic nanovaccines for immunotherapy. Journal of Controlled Release 263 (2017) 200–210.
76. Wei Sang, Zhan Zhang, Yunlu Dai and Xiaoyuan Chen.Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev., 2019, 48, 3771.
77. Shengrong Guo, and Yaping Li. Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics.Theranostics. 2016; 6(6): 762–772.
78. Xiaoyang Hou, Yingkai Tao, Yanyu Pang, Xinxin Li Guan, Jiang Yanqun Liu.Nanoparticle‐based photothermal and photodynamic immunotherapy for tumor treatment.Int. J. Cancer: 143, 3050–3060 (2018).
79. SabinaQuader, KazunoriKataoka. Nanomaterial-Enabled Cancer Therapy.olecular Therapy Vol. 25 No 7 July 2017,1501-1513.
80. Dewan Shahidur Rahman, Sujit Kumar Ghosh and Mahuya Sengupta. Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma. Cellular & Molecular Immunology (2016), 13, 191-205.
81. Rita Mendes, Pedro V. Baptista and Alexandra R. Fernandes.Targeting Tumor Microenvironment for Cancer Therapy. settings Open Access Int. J. Mol. Sci. 2019, 20(4), 840.
82. Jie Wang, Yue Dong, Yiwei Li, Wei Li, Kai Cheng, Yuan Qian, Guoqiang Xu, Xiaoshuai Zhang, Liang Hu, Peng Chen, Wei Du, Xiaojun Feng, Yuan-Di Zhao, Zhihong Zhang, and Bi-Feng Liu. Designer Exosomes for Active Targeted Chemo-Photothermal Synergistic Tumor Therapy. Adv Funct Mater 2018, 28, 1707360.
83. Austin C.V. Doughty, Ashley R. Hoover, Elivia Layton, Cynthia K. Murray, Eric W. Howard, and Wei R. Chen.Nanomaterial Applications in Photothermal Therapy for Cancer. Materials (Basel). 2019 Mar; 12(5): 779.
84. Yoest J.M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint inhibitor treatments in cancer: A short review. ImmunoTargets Ther. 2017;6:73–82.
85. Hsiao C.-W., Chuang E.-Y., Chen H.-L., Wan D., Korupalli C., Liao Z.-X., Chiu Y.-L., Chia W.-T., Lin K.-J., Sung H.-W. Photothermal tumor ablation in mice with repeated therapy sessions using nir-absorbing micellar hydrogels formed in situ. Biomaterials. 2015;56:26–35.
86. Chen Q., Xu L., Liang C., Wang C., Peng R., Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016;7:13193.
87. Zhou F., Li X., Naylor M.F., Hode T., Nordquist R.E., Alleruzzo L., Raker J., Lam S.S.K., Du N., Shi L., et al. Incvax—A novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett. 2015;359:169–177.
88. Chen W.R., Adams R.L., Carubelli R., Nordquist R.E. Laser-photosensitizer assisted immunotherapy: A novel modality for cancer treatment. Cancer Lett. 1997;115:25–30.
89. Niidome T., Yamagata M., Okamoto Y., Akiyama Y., Takahashi H., Kawano T., Katayama Y., Niidome Y. Peg-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release. 2006;114:343–347.
90. Dickerson E.B., Dreaden E.C., Huang X., El-Sayed I.H., Chu H., Pushpanketh S., McDonald J.F., El-Sayed M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (pptt) of squamous cell carcinoma in mice. Cancer Lett. 2008;269:57–66.
91. Li Shi, Shaohua Chen, Lijian Yang, and Yangqiu Li.The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013; 6: 74.
92. Qin Fan, Zhipeng Chen, Chao Wang,* and Zhuang Liu*. Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy.Adv. Funct. Mater. 2018, 28, 1802540.
93. Shengjie Chai, Laura E. Herring, Longzhen Zhang, Tian Zhang,
Joseph M. DeSimone, Joel E. Tepper, Benjamin G. Vincent, Jonathan S. Serody and Andrew Z. Wang.Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nature Nanotechnology volume 12, pages 877–882 (2017).
94. Lihua Luo, Chunqi Zhu, Hang Yin, Mengshi Jiang, Junlei Zhang, Bing Qin, Zhenyu Luo, Xiaoling Yuan, Jie Yang, Wei Li, Yongzhong Du, and Jian You*. Laser Immunotherapy in Combination with Perdurable PD‑1 Blocking for the Treatment of Metastatic Tumors. ACS Nano 2018, 12, 7647−7662.
95. Tingting Wang, Dangge Wang, Haijun Yu, Bing Feng, Fangyuan Zhou, Hanwu Zhang, Lei Zhou, Shi Jiao & Yaping Li. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nature Communicationsvolume 9, Article number: 1532 (2018).
96. Zhouqi Meng, Xuanfang Zhou, Jun Xu, Xiao Han, Ziliang Dong, Hairong Wang, Yaojia Zhang, Jialin She, Ligeng Xu, Chao Wang, and Zhuang Liu*. Light-Triggered In Situ Gelation to Enable Robust Photodynamic-Immunotherapy by Repeated Stimulations.Adv. Mater. 2019, 1900927.
97. Guangbao Yang, Ligeng Xu, Yu Chao, Jun Xu, Xiaoqi Sun, Yifan Wu, Rui Peng & Zhuang Liu. Hollow MnO2 as a tumor microenvironmentresponsive biodegradable nano-platform for combination therapy favoring antitumor immune responses.Nature Communicationsvolume 8, Article number: 902 (2017).
98. Martina H. Stenzele, Sung Giu Jinf, Chul Soon Yongd, Duy Hieu Truongg, Jong Oh Kim.Nanoparticles for dendritic cell-based immunotherapy. International Journal of Pharmaceutics 542 (2018) 253–265.
99. Yeon Woong Choo, Mikyung Kang, Han Young Kim, Jin Han, Seokyung Kang, Ju-Ro Lee, Gun-Jae Jeong, Sung Pil Kwon, Seuk Young Song, Seokhyeong Go, Mungyo Jung, Jihye Hong, and Byung-Soo Kim.M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano 2018, 12, 8977−8993.
100. Young-Woock Noh, Sun-Young Kim, Jung-Eun Kim, Sohyun Kim, Jooyeon Ryu, Inhye Kim, Eunji Lee, Soong Ho Um, and Yong Taik Lim*Multifaceted Immunomodulatory Nanoliposomes: Reshaping Tumors into Vaccines for Enhanced Cancer Immunotherapy. Adv. Funct. Mater. 2017, 27, 1605398.
101. Jun Xu, Ligeng Xu, Chenya Wang, Rong Yang, Qi Zhuang, Xiao Han, Ziliang Dong, Wenwen Zhu,† Rui Peng, and Zhuang Liu.Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano 2017, 11, 4463−4474.
102. Santiswarup Singha, Kun Shao, Kristofor K. Ellestad, Yang Yang, and Pere Santamaria. Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS Nano 2018,12,11,10621-10635.
103. Diana Gule, Alexandra Iulia Irimie, Roxana Cojocneanu-Petric, Joachim L. Schultze, and Ioana Berindan-Neagoe. Exosomes-Small Players, Big Sound. Bioconjugate Chem. 2018, 29, 635−648.
104. Sophia G. Antimisiaris, Spyridon Mourtas, and Antonia Marazioti. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery.Pharmaceutics 2018, 10, 218.
105. Dinh Ha, Ningning Yang, and Venkatareddy Nadithe.Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016 Jul; 6(4): 287–296.
106. M. Frydrychowicz, A. Kolecka‐Bednarczyk, M. Madejczyk, S. Yasar G. Dworacki. Exosomes – Structure, Biogenesis and Biological Role in Non‐Small‐Cell Lung Cancer. Scandinavian Journal of Immunology, 2015, 81, 2–10.
107. Arian Aryani & Bernd Denecke. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine? Mol Neurobiol (2016) 53:818–834.
108. David Rufino-Ramosa, Patrícia R. Albuquerquea, Vitor Carmonaa, Rita Perfeito Rui Jorge Nobrea, Luis Pereira de Almeida. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. Journal of Controlled Release 262 (2017) 247–258.
109. Edwin J. Bunggulawa, Wei Wang, Tieying Yin, Nan Wang, Colm Durkan, Yazhou Wang and Guixue Wang. Recent advancements in the use of exosomes as drug delivery systems. Bunggulawa et al. J Nanobiotechnol (2018) 16:81.
110. CI Edvard Smith, Katarina Le Blanc, Paolo Macchiarini, Philipp Jungebluth, Matthew J. A. Wood & Samir EL Andaloussi. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles 2015, 4: 26316.
111. Onyi Okolieb, Shawn D. Hingtgen, PhD, Alexander V. Kabanov, PhD, Elena V. Batrakova, PhD. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine 12 (2016) 655–664.
112. Natalia L. Klyachko, PhD, Alexander V. Kabanov, PhD, Elena V. Batrakova, PhD. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine: Nanotechnology, Biology, and Medicine 14 (2018) 195–204.
113. Bernhard Illes, Patrick Hirschle, Sabine Barnert, Valentina Cauda, Stefan Wuttke, and Hanna Engelke.Exosome-Coated Metal−Organic Framework Nanoparticles: An Efficient Drug Delivery Platform. Chem. Mater. 2017, 29, 8042−8046.
114. Dongfen Yuan, Yuling Zhao, William A. Banks, Kristin M. Bullock, Matthew Haney, Elena Batrakova, Alexander V. Kabanov. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142 (2017) 1-12.
115. Kasper Bendix Johnsen, Johann Mar Gudbergsson, Martin Najbjerg Skov, Linda Pilgaard, Torben Moos, Meg Duroux. A comprehensive overview of exosomes as drug delivery vehicles — Endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta 1846 (2014) 75–87.
116. Yuko T. Sato, Kaori Umezaki, Shinichi Sawada, Sada-atsu Mukai, Yoshihiro Sasaki, Naozumi Harada, Hiroshi Shiku & Kazunari Akiyoshi. Engineering hybrid exosomes by membrane fusion with liposomes. Scientific Reports volume 6, Article number: 21933 (2016).
117. Xin-Chi Jiang, Jian-Qing Gao. Exosomes as novel bio-carriers for gene and drug delivery. International Journal of Pharmaceutics 521 (2017) 167–175.
118. Elena V. Batrakova, Myung Soo Kim. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release 219 (2015) 396–405.
119. Nam-Trung Nguyen. A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.Lab Chip, 2016, 16, 2946–2954.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
2. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
3. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
4. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
5. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
6. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
7. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
13. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
14. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *