|
1. M. Winter and R. J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews. 104 (2004). 10. 4245-4270 2. V.S. Bagot͡skiĭ. (2006). Fundamentals of Electrochemistry. Wiley-Interscience. 3. 吳永富(2018)。電化學工程應用。台灣。五南出版社。 4. 胡啟章(2011)。電化學原理與方法。二版。台灣。五南出版社。 5. Crouch, R. Stanley, Skoog, A. Douglas. (2006). Principles of instrumental analysis. Cengage Learning. 6. P. Zanello. (2003). Inorganic Electrochemistry: Theory, Practice and Application. The Royal Society of Chemistry. 7. R. Kötz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta. 45 (2000). 15-16. 2483-2498 8. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nature Materials. 7 (2008). 845–854 9. 洪健雄(2018)。Description of ACS-serie。台灣。中鋼碳素。 10. G. Wang, L. Zhang and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews. 41 (2012). 797-828 11. A. Burke. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources. 91 (2000). 37-50 12. 林勲佑(2005)。資源再利用粉性活性碳吸附氣相氯化汞之研究。中山大學環境工程研究所博士論文,高雄市。 13. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Prog. Progress in electrical energy storage system: A critical review. Journal of Nature and Science. 19 (2009). 291 14. A. González, E. Goikolea, J. A. Barrena, R. Mysyk. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58 (2016). 1189-1206 15. A. Pandolfo, A. Hollenkamp. Carbon properties and their role in supercapacitors. Journal of Power Sources. 157 (2006).1 .11-27 16. M. Endo, T. Takeda, Y. Kim, K. Koshiba, K. Ishii. High power electric double layer capacitor (EDLC׳s); from operating principle to pore size control in advanced activated carbons. Carbon. 13 (2001). 117-128 17. S.H. Yoon, J.W. Lee, T.W Hyeon and S. M. Oh. Electric Double‐Layer Capacitor Performance of a New Mesoporous Carbon. Journal of The Electrochemical Society. 147(2000). 7 18. J. P. Zheng, J. Huang and T. R. Jow, The Limitations of Energy Density for Electrochemical Capacitors. Journal of The Electrochemical Society. 144(1997). 2026. 19. Y. M. Vol'fkovich and T. M. Serdyuk, Russ. Journal of The Electrochemical Society. 38(2002). 935 20. P. Sharma, T. Bhatti. A review on electrochemical double-layer capacitors. Energy Conversion and Management. 51(2010). 12. 2901-2912 21. O. Barbieri, M. Hahn, A. Herzog, R. Kötz. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon. 43(2005). 6. 1303-1310 22. Y. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon. 42(2004). 8-9. 1491-1500 23. P.Y. Chang, Bindumadhavan K, R.A. Doong. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery. Nanomaterials. 5(2015). 2348-2358 24. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin. Electrochemical energy storage in ordered porous carbon materials. Carbon. 43(2005). 6. 1293-1302 25. B. E. Conway. (1999). Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer. USA 26. K. Jost, G. Dion, Y. Gogotsi. Textile energy storage in perspective. Journal of Materials Chemistry A. 2(2014). 10776 27. L. L. Zhang and X. S. Zhao. Carbon-based materials as supercapacitor electrodes. Journal of the American Chemical Society. 38(2009) 2520-2531 28. W. H. Zuo, R. Z. Li, C. Zhou, Y. Y. Li, J. L. Xia, J. P. Liu. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.Advanced Science. 4(2017). 1600539 29. A. I. Belyakov. (2008) Asymmetric electrochemical supercapacitors with aqueous electrolytes. In: ESSCAP׳08, 3, Roma 30. M. Y. Ho, P. S. Khiew, D. Isa, T. K. Tan, W. S. Chiu, C. H. Chia. A Review of metal oxide composite electrode materials for electrochemical capacitors. Nano. 09(2014). 06. 1430002 31. Zoran Stevic. (2016). Supercapacitor Design and Applications. BoD - Books on Demand. Germany. 32. C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, and P. Simon. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society. 130 (2018). 2730-2731 33. Y Kim, Y Horie, Ozaki S, Matsuzawa Y, Suezaki H, Kim C, et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 2004. 42(8–9). 1491-500 34. G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50(2005). 5. 1197-1206 35. 羅聖全。研發奈米科技的基本工具之一電子顯微鏡介紹-SEM。清華大學。 36. 羅聖全。研發奈米科技的基本工具之一電子顯微鏡介紹-TEM。清華大學。 37. 伍秀菁,汪若文,林美吟。儀器總覽-表面分析儀器。新竹。行政院國家科學委員會精密儀器發展中心。2003.(TEM) 38. DeWitt, Kelsey M. (2015). X-Ray Powder Diffraction Method Development and Validation for the Identification of Counterfeit Pharmaceuticals. 39. 丁志華。科普講堂-讓我們一起探索什麼是石墨烯。國家奈米元件實驗室/奈米元件組。 40. Z. H. Ni, Y. Y. Wang, T. Yu and Z. X. Shen. Raman spectroscopy and imaging of graphene. Nano Research. 1(2008). 273291 41. Z. H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng and Z. X. Shen . Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano.3(2009).2 . 483 42. K.S.W. Sing and R. T. Williams. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology. 22(2004).10 . 773-782 43. 朱兆強、杜衛民、郭威、朱文娟,過渡金屬三元化合物的製備及其應用於超級電容器的研究進展,應用化學Chinese Journal of Applied Chemistry。33(2016)。3。 44. Y.M. Li, X. Han, T.F. Yi, Y.B. He, X.F. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes, Journal of Energy Chemistry. 31(2019). 54-78 45. D. Ghosh, S. Giri, M. Moniruzzaman, T. Basu, M. Mandala, C. K. Das. αMnMoO4 / graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions. 43(2014). 11067-11076. 46. B. Saravanakumar, S.P. Ramachandran, G. Ravi. Transition mixed-metal molybdates (MnMoO4) as an electrode for energy storage applications. Journal of Applied Physics. 6(2019). A1250 47. Y.J. Cao, W.Y. Li , K.B. Xu, Y.X. Zhang , T. Ji , R.J. Zou , J.M. Yang , Z.Y. Qin and J.Q. Hu. MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. Journal of Materials Chemistry A. 2(2014). 20723-20728 48. J.S. Xu, Y.D. Sun, M.G. Lu, L. Wang, J. Zhang, J.H. Qian, X.Y. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chemical Engineering Journal. 334(2018). 1466-1476 49. P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju and M. V. Reddy. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A. 5(2017). 22040-22094. 50. Z.X. Gu and X. J. Zhang. NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. Journal of Materials Chemistry A. 4(2016). 21. 8249-8254 51. X.S. Feng, Y. Huang, M.H. Chen, X.F. Chen, C. Li, S. Zhou, X.G. Gao. Self-assembly of 3D hierarchical MnMoO4/NiWO4 microspheres for high-performance supercapacitor. Journal of Alloys and Compounds. 763(2018). 801-807 52. Y.L. Yuan, W.C. Wang, J. Y, H.C. Tang, Z.Z. Ye, Y.J. Zeng, J.G. Lu. Three-Dimensional NiCo2O4@MnMoO4 Core–Shell Nanoarrays for High-Performance Asymmetric Supercapacitors. Langmuir. 33(2017). 40. 10446–10454 53. Y. Lu, A.F Liu, H.W. Che, J.B. Mu, Z.C. Guo, X.L. Zhang, Y.M. Bai, Z.X. Zhang, G.S. Wang, Z.Z. Pei. Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chemical Engineering Journal. 336(2018). 64-73 54. X. Mu, J. Du, Y.X. Zhang, Z.L. Liang, H. Wang, B.Y. Huang, J.Y. Zhou, X.J. Pan. Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. ACS Applied Materials & Interfaces. 41(2017). 9. 35775–35784 55. C.Y. Cui, J.T. Xu, L. Wang, D. Guo, M.L. Mao, J.M. Ma and T.H. Wang. Growth of NiCo2O4@MnMoO4 Nanocolumn Arrays with Superior Pseudocapacitor Properties. ACS Applied Materials & Interfaces. 8(2016).13. 8568–8575 56. D.F. Cui , Y.F. Li , Y.K. Li , Y.Y. Fan , H.M. Chen , H.Y. Xu and C.Y. Xue. Co3O4@MnMoO4 Nanorod Clusters as an Electrode Material for Superior Supercapacitors. International Journal of Electrochemical Science. 15 (2020) 2776 – 2791 57. Y.R. Zhu, Z.B. Wu, M.J. Jing, X.M. Yang, W.X. Song, X.B. Ji. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. Journal of Power Sources. 273(2015). 584-590 58. Shen, L., Yu, L., Wu, H. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications. 6(2015). 6694 59. S. Liu, S-.C. Jun. Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. Journal of Power Sources. (342)2017. 629-637 60. L-.Y. Lin, J-.L. Liu, T-.M. Liu, J-.H. Hao, K-.M. Ji, R. Sun, W. Zeng, Z-.C. Wang. Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. Journal of Materials Chemistry A. 34(2015). 17652-17658 61. Z. Wu, X. Pu. X. Ji, Y. Zhu, M. Jing, Q. Chen, F. Jiao. High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets. Electrochimica Acta. 174(2015). 238-245 62. T. Yan, R. Li, Lin Z., Ma C., Li Z. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochimica Acta. 176(2015). 1153-1164 63. B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski and W-.Y. Chen. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Reviews in Chemical Engineering. 35(2019). 77–815 64. Md.A. Islam, I.A.W. Tan, A. Benhouria, M. Asif, B.H. Hameed. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chemical Engineering Journal. 270(2015). 187–195 65. Md.A. Islam, A.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety. (2017). 279-285 66. Jr. E. R. Nightingale. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. The journal of physical chemistry. 69(1959). 1381–1387 67. J. Yang, H.L. Wu, M. Zhu, W.J. Ren, Y. Lin, H.B. Chen, F. Pan. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy. 33(2017). 453-461 68. A. Bello, N. Manyala, F. Barzegar, A. A. Khaleed, D. Y. Momodu, J. K. Dangbegnon. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Advances. 6(2016). 1800-1809 69. S. Lei, K. Tang, Q Liu, Z. Fang, Q. Yang, H.G. Zheng. Preparation of manganese molybdate rods and hollow olive-like spheres. Journal of Materials Science. 41(2006). 4737–4743 70. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 19(2016). 165-175 71. J. Xu, Q. Gao, Y. Zhang, et al. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports. 4(2015). 5545 72. W. Sun, S. M. Lipka, C. Swartz, D. Williams, F.Q. Yang. Hemp-derived activated carbons for supercapacitors. Carbon. 103(2016). 181-192 73. M. Sevilla and A. B. Fuertes. Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors. ACS Nano. 8(2014). 5. 5069–5078
|