帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):余宛儒
作者(外文):Yu, Wan-Ju
論文名稱(中文):以鉬錳氧化物-鉬錳硫化物奈米片為正極與多孔性菱角殼生物炭為負極應用於對稱與非對稱超級電容
論文名稱(外文):Molybdenum manganese oxide and molybdenum manganese sulfide composite nanosheets as positive electrode and porous water chestnut biochar as negative electrode applied on symmetric and asymmetric supercapacitors
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey-An
口試委員(中文):王竹方
陳慶隆
口試委員(外文):Wang, Chu-Fang
Chen, Ching-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012527
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:98
中文關鍵詞:非對稱超級電容生物炭二元金屬氧化物二元金屬硫化物鉬錳氧化物鉬錳硫化物
外文關鍵詞:Asymmetric supercapacitorBiocharTransition Metal Chalcogenides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
因應人類社會對能源的龐大需求,石化燃料的快速消耗與空汙等問題日漸加劇,如何開發環保且永續的儲能裝置亦成為重要議題。而超級電容器作為一種幾乎免維護的儲能設備,具有極長的循環壽命且高功率密度,但受限於較低的能量密度。為此,科學家正在尋找可以突破這極限的方法,而近年來發展出混合式超級電容器,結合兩種材料以拓展電位窗增加能源密度。本研究使用相對無毒且地殼含量豐富的錳和鉬合成了鉬錳氧化物-硫化物複合材料。鉬錳硫化物尚未被學界廣泛研究,本實驗透過電化學分析了解其電容潛力,在5mVs-1時比電容值高達3664 F g-1。鉬錳硫化物透過過渡金屬未填充電子的d軌域,其中多重氧化態的轉換儲存電子;又因硫具有更廣闊的價電子殼層,因此提升電化學活性,進一步提升贋電容值。然而此材料由於活性太強,電容維持率不高。我們以鉬錳氧化物複合此材料,而奈米片狀陣列狀可分散晶體,避免堆積,並使電解質更易到達電極表面進行反應。此材料在1A g-1時比電容值可達2167 F g-1,在高電流密度(10 A g-1)下仍有良好的電容維持率83%。另一方面,透過循環經濟概念,解決農業廢棄物的問題。取環境難以自然降解之菱角殼作為負極材料;通過高溫爐的兩步碳化、活化程序,不需繁瑣的步驟與化學藥品,便合成具有2054 m2 g-1高比表面積之多孔碳材料,而此材料富含的中孔結構輔助微孔,使離子更易儲存在孔洞之中,增加電容應用效果。在5 mVs-1時比電容值可達174 Fg-1。將此兩種材料所組成的混合式超級電極157.31 Wh kg-1時功率密度為584 W kg-1。同時也以有機電解液組成對稱超級電容,在能量密度為110.8 Wh kg-1,功率密度為665 kg-1;在功率密度提升至11700 W kg-1時,能量密度也可維持在48.8 Wh kg-1,此電極材料不僅製作過程環保也具有強大儲能潛能。
In response to the huge energy demand of human society, the issue of environmental protection and green energy has also attracted the attention of scientists. In the development of green energy, how to develop environmentally friendly energy storage devices has also become important issue. Supercapacitor, as an almost maintenance-free energy storage device with extremely long cycle life, was limited to relatively low energy density. Therefore, scientists are looking for a material that can break through this threshold. In recent years, scholars have combined batteries and supercapacitors into hybrid supercapacitors to take advantage of both.
In this study, the core-shell structure of MnMoS4/MnMoO4 transition metal bimetallic sulfide and bimetallic oxide was synthesized using manganese and molybdenum, which are relatively non-toxic and rich in crustal content. Since the transition metal has an unfilled d orbital, which has many valence states; it will greatly increase the pseudocapacitance. The core-shell nanosheet structure separates the metal particles, avoids accumulation, and makes the electrolyte more easily reach the electrode surface to react, thus creating a high specific capacitance value of 3664 F g-1.
On the other hand, using the environmentally friendly agricultural waste - water chestnut as the raw material of the cathode material, the environmentally friendly porous carbon material with a high specific surface area (2054 m2 g-1) is synthesized through one activation process of tube furnace.
Furthermore, an asymmetric supercapacitor is also assembled, exhibiting an energy density of 157.31 Wh kg-1 at a power density of 584 W kg-1.
目錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 前言 1
1.1 簡介 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 電化學分析 3
2.1.1 電極動力學[3][4] 4
2.1.2 極化、過電位[3][4] 5
2.1.3 電化學系統之可逆反應[3] 6
2.2 超級電容器 7
2.2.1 儲能機制及種類 11
2.2.2 電雙層理論(Electric double layer theory) 12
2.2.3 電雙層電容器(Electric double layer capacitor) 14
2.2.4 贋電容電容器(pseudocapacitor) 15
2.2.5 混合式電容器(Battery-Supercapacitor Hybrid Devices, BSHs) 17
2.2.6 電極設計 18
2.3 過渡金屬氧化物(Transition Metal Oxide) 20
2.3.1 過渡金屬三元化合物(Transition Metal Ternary compounds) 21
2.3.2 過渡金屬硫化物(Transition Metal Chalcogenides) 23
2.4 菱角殼生物炭 26
2.4.1 生物炭組成與裂解過程 26
2.4.2 生物炭化學活化 27
第三章 研究方法 30
3.1 藥品 30
3.2 實驗設備 31
3.3 實驗流程 32
3.3.1 核殼狀錳鉬氧化物與硫化物的合成 32
3.3.2 菱角殼多孔生物炭的合成 34
3.3.3 非對稱超級電容的組成 35
3.4 檢測儀器與作用原理 37
3.4.1 高解析熱場發射掃描式電子顯微鏡(High Resolution Thermal Field Emission Scanning Electron Microscope , HRFEG-SEM) 37
3.4.2 穿透式電子顯微鏡(Transmission electron microscope, TEM) 38
3.4.3 X-射線繞射分析儀(X-ray diffraction, XRD ) 39
3.4.4 拉曼光譜儀(Raman spectroscopy) 40
3.4.5 比表面積與孔隙度分析儀 (Specific Surface Area and Porosimetry Analyzer, BET) 41
3.4.6 電化學分析(Electrochemical analysis) 44
第四章 結果與討論 49
4.1 鉬錳氧化物與硫化物之結構分析 49
4.2 鉬錳氧化物與硫化物之電化學分析 55
4.3 菱角殼生物炭之結構分析 63
4.4 菱角殼生物炭之電化學分析 74
4.5 非對稱超級電容 77
4.6 對稱超級電容 81
第五章 結論 89
第六章 未來展望 90
6.1 鉬錳氧化物與硫化物 90
6.2 菱角殼多孔生物炭 90
參考文獻 91
1. M. Winter and R. J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors?
Chemical Reviews. 104 (2004). 10. 4245-4270
2. V.S. Bagot͡skiĭ. (2006). Fundamentals of Electrochemistry. Wiley-Interscience.
3. 吳永富(2018)。電化學工程應用。台灣。五南出版社。
4. 胡啟章(2011)。電化學原理與方法。二版。台灣。五南出版社。
5. Crouch, R. Stanley, Skoog, A. Douglas. (2006). Principles of instrumental analysis. Cengage Learning.
6. P. Zanello. (2003). Inorganic Electrochemistry: Theory, Practice and Application. The Royal Society of Chemistry.
7. R. Kötz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta. 45 (2000). 15-16. 2483-2498
8. Simon P., Gogotsi Y. Materials for electrochemical capacitors. Nature Materials. 7 (2008). 845–854
9. 洪健雄(2018)。Description of ACS-serie。台灣。中鋼碳素。
10. G. Wang, L. Zhang and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews. 41 (2012). 797-828
11. A. Burke. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources. 91 (2000). 37-50
12. 林勲佑(2005)。資源再利用粉性活性碳吸附氣相氯化汞之研究。中山大學環境工程研究所博士論文,高雄市。
13. H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li and Y. Ding, Prog. Progress in electrical energy storage system: A critical review. Journal of Nature and Science. 19 (2009). 291
14. A. González, E. Goikolea, J. A. Barrena, R. Mysyk. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58 (2016). 1189-1206
15. A. Pandolfo, A. Hollenkamp. Carbon properties and their role in supercapacitors. Journal of Power Sources. 157 (2006).1 .11-27
16. M. Endo, T. Takeda, Y. Kim, K. Koshiba, K. Ishii. High power electric double layer capacitor (EDLC׳s); from operating principle to pore size control in advanced activated carbons. Carbon. 13 (2001). 117-128
17. S.H. Yoon, J.W. Lee, T.W Hyeon and S. M. Oh. Electric Double‐Layer Capacitor Performance of a New Mesoporous Carbon. Journal of The Electrochemical Society. 147(2000). 7
18. J. P. Zheng, J. Huang and T. R. Jow, The Limitations of Energy Density for Electrochemical Capacitors. Journal of The Electrochemical Society. 144(1997). 2026.
19. Y. M. Vol'fkovich and T. M. Serdyuk, Russ. Journal of The Electrochemical Society. 38(2002). 935
20. P. Sharma, T. Bhatti. A review on electrochemical double-layer capacitors. Energy Conversion and Management. 51(2010). 12. 2901-2912
21. O. Barbieri, M. Hahn, A. Herzog, R. Kötz. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon. 43(2005). 6. 1303-1310
22. Y. Kim, Y. Horie, S. Ozaki, Y. Matsuzawa, H. Suezaki, C. Kim, et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon. 42(2004). 8-9. 1491-1500
23. P.Y. Chang, Bindumadhavan K, R.A. Doong. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery. Nanomaterials. 5(2015). 2348-2358
24. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin. Electrochemical energy storage in ordered porous carbon materials. Carbon. 43(2005). 6. 1293-1302
25. B. E. Conway. (1999). Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer. USA
26. K. Jost, G. Dion, Y. Gogotsi. Textile energy storage in perspective. Journal of Materials Chemistry A. 2(2014). 10776
27. L. L. Zhang and X. S. Zhao. Carbon-based materials as supercapacitor electrodes. Journal of the American Chemical Society. 38(2009) 2520-2531
28. W. H. Zuo, R. Z. Li, C. Zhou, Y. Y. Li, J. L. Xia, J. P. Liu. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.Advanced Science. 4(2017). 1600539
29. A. I. Belyakov. (2008) Asymmetric electrochemical supercapacitors with aqueous electrolytes. In: ESSCAP׳08, 3, Roma
30. M. Y. Ho, P. S. Khiew, D. Isa, T. K. Tan, W. S. Chiu, C. H. Chia. A Review of metal oxide composite electrode materials for electrochemical capacitors. Nano. 09(2014). 06. 1430002
31. Zoran Stevic. (2016). Supercapacitor Design and Applications. BoD - Books on Demand. Germany.
32. C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, and P. Simon. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society. 130 (2018). 2730-2731
33. Y Kim, Y Horie, Ozaki S, Matsuzawa Y, Suezaki H, Kim C, et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 2004. 42(8–9). 1491-500
34. G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochimica Acta. 50(2005). 5. 1197-1206
35. 羅聖全。研發奈米科技的基本工具之一電子顯微鏡介紹-SEM。清華大學。
36. 羅聖全。研發奈米科技的基本工具之一電子顯微鏡介紹-TEM。清華大學。
37. 伍秀菁,汪若文,林美吟。儀器總覽-表面分析儀器。新竹。行政院國家科學委員會精密儀器發展中心。2003.(TEM)
38. DeWitt, Kelsey M. (2015). X-Ray Powder Diffraction Method Development and Validation for the Identification of Counterfeit Pharmaceuticals.
39. 丁志華。科普講堂-讓我們一起探索什麼是石墨烯。國家奈米元件實驗室/奈米元件組。
40. Z. H. Ni, Y. Y. Wang, T. Yu and Z. X. Shen. Raman spectroscopy and imaging of graphene. Nano Research. 1(2008). 273291
41. Z. H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng and Z. X. Shen . Uniaxial Strain on Graphene: Raman Spectroscopy Study and Band-Gap Opening. ACS Nano.3(2009).2 . 483
42. K.S.W. Sing and R. T. Williams. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology. 22(2004).10 . 773-782
43. 朱兆強、杜衛民、郭威、朱文娟,過渡金屬三元化合物的製備及其應用於超級電容器的研究進展,應用化學Chinese Journal of Applied Chemistry。33(2016)。3。
44. Y.M. Li, X. Han, T.F. Yi, Y.B. He, X.F. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes, Journal of Energy Chemistry. 31(2019). 54-78
45. D. Ghosh, S. Giri, M. Moniruzzaman, T. Basu, M. Mandala, C. K. Das. αMnMoO4 / graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions. 43(2014). 11067-11076.
46. B. Saravanakumar, S.P. Ramachandran, G. Ravi. Transition mixed-metal molybdates (MnMoO4) as an electrode for energy storage applications. Journal of Applied Physics. 6(2019). A1250
47. Y.J. Cao, W.Y. Li , K.B. Xu, Y.X. Zhang , T. Ji , R.J. Zou , J.M. Yang , Z.Y. Qin and J.Q. Hu. MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties. Journal of Materials Chemistry A. 2(2014). 20723-20728
48. J.S. Xu, Y.D. Sun, M.G. Lu, L. Wang, J. Zhang, J.H. Qian, X.Y. Liu, Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Chemical Engineering Journal. 334(2018). 1466-1476
49. P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju and M. V. Reddy. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A. 5(2017). 22040-22094.
50. Z.X. Gu and X. J. Zhang. NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors. Journal of Materials Chemistry A. 4(2016). 21. 8249-8254
51. X.S. Feng, Y. Huang, M.H. Chen, X.F. Chen, C. Li, S. Zhou, X.G. Gao. Self-assembly of 3D hierarchical MnMoO4/NiWO4 microspheres for high-performance supercapacitor. Journal of Alloys and Compounds. 763(2018). 801-807
52. Y.L. Yuan, W.C. Wang, J. Y, H.C. Tang, Z.Z. Ye, Y.J. Zeng, J.G. Lu. Three-Dimensional NiCo2O4@MnMoO4 Core–Shell Nanoarrays for High-Performance Asymmetric Supercapacitors. Langmuir. 33(2017). 40. 10446–10454
53. Y. Lu, A.F Liu, H.W. Che, J.B. Mu, Z.C. Guo, X.L. Zhang, Y.M. Bai, Z.X. Zhang, G.S. Wang, Z.Z. Pei. Three-dimensional interconnected MnCo2O4 nanosheets@MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chemical Engineering Journal. 336(2018). 64-73
54. X. Mu, J. Du, Y.X. Zhang, Z.L. Liang, H. Wang, B.Y. Huang, J.Y. Zhou, X.J. Pan. Construction of Hierarchical CNT/rGO-Supported MnMoO4 Nanosheets on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. ACS Applied Materials & Interfaces. 41(2017). 9. 35775–35784
55. C.Y. Cui, J.T. Xu, L. Wang, D. Guo, M.L. Mao, J.M. Ma and T.H. Wang. Growth of NiCo2O4@MnMoO4 Nanocolumn Arrays with Superior Pseudocapacitor Properties. ACS Applied Materials & Interfaces. 8(2016).13. 8568–8575
56. D.F. Cui , Y.F. Li , Y.K. Li , Y.Y. Fan , H.M. Chen , H.Y. Xu and C.Y. Xue. Co3O4@MnMoO4 Nanorod Clusters as an Electrode Material for Superior Supercapacitors. International Journal of Electrochemical Science. 15 (2020) 2776 – 2791
57. Y.R. Zhu, Z.B. Wu, M.J. Jing, X.M. Yang, W.X. Song, X.B. Ji. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. Journal of Power Sources. 273(2015). 584-590
58. Shen, L., Yu, L., Wu, H. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications. 6(2015). 6694
59. S. Liu, S-.C. Jun. Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. Journal of Power Sources. (342)2017. 629-637
60. L-.Y. Lin, J-.L. Liu, T-.M. Liu, J-.H. Hao, K-.M. Ji, R. Sun, W. Zeng, Z-.C. Wang. Growth-controlled NiCo2S4 nanosheet arrays with self-decorated nanoneedles for high-performance pseudocapacitors. Journal of Materials Chemistry A. 34(2015). 17652-17658
61. Z. Wu, X. Pu. X. Ji, Y. Zhu, M. Jing, Q. Chen, F. Jiao. High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets. Electrochimica Acta. 174(2015). 238-245
62. T. Yan, R. Li, Lin Z., Ma C., Li Z. Three-dimensional electrode of Ni/Co layered double hydroxides@NiCo2S4@graphene@Ni foam for supercapacitors with outstanding electrochemical performance. Electrochimica Acta. 176(2015). 1153-1164
63. B. Sajjadi, T. Zubatiuk, D. Leszczynska, J. Leszczynski and W-.Y. Chen. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Reviews in Chemical Engineering. 35(2019). 77–815
64. Md.A. Islam, I.A.W. Tan, A. Benhouria, M. Asif, B.H. Hameed. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chemical Engineering Journal. 270(2015). 187–195
65. Md.A. Islam, A.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology and Environmental Safety. (2017). 279-285
66. Jr. E. R. Nightingale. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. The journal of physical chemistry. 69(1959). 1381–1387
67. J. Yang, H.L. Wu, M. Zhu, W.J. Ren, Y. Lin, H.B. Chen, F. Pan. Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy. 33(2017). 453-461
68. A. Bello, N. Manyala, F. Barzegar, A. A. Khaleed, D. Y. Momodu, J. K. Dangbegnon. Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Advances. 6(2016). 1800-1809
69. S. Lei, K. Tang, Q Liu, Z. Fang, Q. Yang, H.G. Zheng. Preparation of manganese molybdate rods and hollow olive-like spheres. Journal of Materials Science. 41(2006). 4737–4743
70. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 19(2016). 165-175
71. J. Xu, Q. Gao, Y. Zhang, et al. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports. 4(2015). 5545
72. W. Sun, S. M. Lipka, C. Swartz, D. Williams, F.Q. Yang. Hemp-derived activated carbons for supercapacitors. Carbon. 103(2016). 181-192
73. M. Sevilla and A. B. Fuertes. Direct Synthesis of Highly Porous Interconnected Carbon Nanosheets and Their Application as High-Performance Supercapacitors. ACS Nano. 8(2014). 5. 5069–5078
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *