|
1. del Burgo, L. S.; Hernández, R. M.; Orive, G.; Pedraz, J. L. J. N. N., Biology; Medicine, Nanotherapeutic approaches for brain cancer management. 2014, 10 (5), e905-e919. 2. Sonali, M. K. V.; Singh, R. P.; Agrawal, P.; Mehata, A. K.; Datta Maroti Pawde, N.; Sonkar, R.; Muthu, M. S. J. N., Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2018, 2 (1), 70. 3. Sonali; Singh, R. P.; Singh, N.; Sharma, G.; Vijayakumar, M. R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B. L. J. D. d., Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv 2016, 23 (4), 1261-1271. 4. Gao, J.-Q.; Lv, Q.; Li, L.-M.; Tang, X.-J.; Li, F.-Z.; Hu, Y.-L.; Han, M. J. B., Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes. 2013, 34 (22), 5628-5639. 5. Pardridge, W. M. J. D. d. t., Blood–brain barrier delivery. 2007, 12 (1-2), 54-61. 6. Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A. K. J. B., Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules 2017, 18 (4), 1197-1209. 7. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. J. J. o. c. r., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015, 200, 138-157. 8. Koo, Y.-E. L.; Reddy, G. R.; Bhojani, M.; Schneider, R.; Philbert, M. A.; Rehemtulla, A.; Ross, B. D.; Kopelman, R. J. A. d. d. r., Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006, 58 (14), 1556-1577. 9. Liu, C.; Shao, N.; Wang, Y.; Cheng, Y. J. A. h. m., Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Advanced Healthcare Materials 2016, 5 (5), 584-592. 10. Kievit, F. M.; Zhang, M. J. A. m., Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011, 23 (36), H217-H247. 11. Gobbo, O. L.; Sjaastad, K.; Radomski, M. W.; Volkov, Y.; Prina-Mello, A. J. T., Magnetic nanoparticles in cancer theranostics. Theranostics 2015, 5 (11), 1249. 12. Sun, C.; Lee, J. S.; Zhang, M. J. A. d. d. r., Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008, 60 (11), 1252-1265. 13. Revia, R. A.; Zhang, M., Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 2016, 19 (3), 157-168. 14. Weissleder, R. a.; Stark, D. D.; Engelstad, B. L.; Bacon, B. R.; Compton, C. C.; White, D. L.; Jacobs, P.; Lewis, J. J. A. J. o. R., Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989, 152 (1), 167-173. 15. Christophi, C.; Winkworth, A.; Muralihdaran, V.; Evans, P., The treatment of malignancy by hyperthermia. Surg Oncol 1998, 7 (1-2), 83-90. 16. Steeves, R. A. J. B. o. t. N. Y. A. o. M., Hyperthermia in cancer therapy: where are we today and where are we going? 1992, 68 (2), 341. 17. Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. J. M. S.; C, E., Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C Mater Biol Appl 2017, 70 (Pt 1), 763-771. 18. Chiang, C. S.; Lin, Y. J.; Lee, R.; Lai, Y. H.; Cheng, H. W.; Hsieh, C. H.; Shyu, W. C.; Chen, S. Y., Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 2018, 13 (8), 746-754. 19. Colombo, M.; Raposo, G.; Thery, C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014, 30, 255-89. 20. Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. J. B. e. B. A.-G. S., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica Et Biophysica Acta-General Subjects 2012, 1820 (7), 940-948. 21. Qin, J.; Xu, Q. J. A. P. P., Functions and application of exosomes. Acta Pol Pharm 2014, 71 (4), 537-43. 22. De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. J. F. i. i., Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 2015, 6, 203. 23. Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T. J. N. m., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001, 7 (3), 297. 24. Skog, J.; Würdinger, T.; Van Rijn, S.; Meijer, D. H.; Gainche, L.; Curry Jr, W. T.; Carter, B. S.; Krichevsky, A. M.; Breakefield, X. O. J. N. c. b., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology 2008, 10 (12), 1470. 25. Ha, D.; Yang, N.; Nadithe, V. J. A. P. S. B., Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B 2016, 6 (4), 287-296. 26. Smyth, T. J.; Redzic, J. S.; Graner, M. W.; Anchordoquy, T. J. J. B. e. B. A.-B., Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta 2014, 1838 (11), 2954-2965. 27. Li, X.; Tsibouklis, J.; Weng, T.; Zhang, B.; Yin, G.; Feng, G.; Cui, Y.; Savina, I. N.; Mikhalovska, L. I.; Sandeman, S. R. J. J. o. d. t., Nano carriers for drug transport across the blood–brain barrier. 2017, 25 (1), 17-28. 28. Kim, M. S.; Haney, M. J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O. J. N. N., Biology; Medicine, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016, 12 (3), 655-664. 29. Qi, H.; Liu, C.; Long, L.; Ren, Y.; Zhang, S.; Chang, X.; Qian, X.; Jia, H.; Zhao, J.; Sun, J. J. A. n., Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 2016, 10 (3), 3323-3333. 30. Boiardi, A.; Eoli, M.; Salmaggi, A.; Lamperti, E.; Botturi, A.; Solari, A.; Di Meco, F.; Broggi, G.; Silvani, A., Local drug delivery in recurrent malignant gliomas. Neurol Sci 2005, 26 Suppl 1 (1), S37-9. 31. Raza, S. M.; Pradilla, G.; Legnani, F. G.; Thai, Q. A.; Olivi, A.; Weingart, J. D.; Brem, H. J. E. o. o. b. t., Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 2005, 5 (4), 477-494. 32. Sawyer, A. J.; Piepmeier, J. M.; Saltzman, W. M. J. T. Y. j. o. b.; medicine, Cancer issue: new methods for direct delivery of chemotherapy for treating brain tumors. 2006, 79 (3-4), 141. 33. Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H., Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 1994, 91 (6), 2076-80. 34. Vavra, M.; Ali, M. J.; Kang, E. W.-Y.; Navalitloha, Y.; Ebert, A.; Allen, C. V.; Groothuis, D. R. J. N.-o., Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro Oncol 2004, 6 (2), 104-112. 35. Lidar, Z.; Mardor, Y.; Jonas, T.; Pfeffer, R.; Faibel, M.; Nass, D.; Hadani, M.; Ram, Z. J. J. o. n., Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 2004, 100 (3), 472-479. 36. Vandergrift, W. A.; Patel, S. J. J. N. f., Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg Focus 2006, 20 (4), E13. 37. Muro, K.; Das, S.; Raizer, J. J. J. T. i. c. r.; treatment, Convection-enhanced and local delivery of targeted cytotoxins in the treatment of malignant gliomas. Technol Cancer Res Treat 2006, 5 (3), 201-213. 38. Perlstein, B.; Ram, Z.; Daniels, D.; Ocherashvilli, A.; Roth, Y.; Margel, S.; Mardor, Y. J. N.-o., Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro Oncol 2008, 10 (2), 153-161. 39. Allard, E.; Passirani, C.; Benoit, J. P., Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009, 30 (12), 2302-18. 40. Naidoo, J.; Panday, H.; Jackson, S.; Grossman, S. A. J. O., Optimizing the delivery of antineoplastic therapies to the central nervous system. Oncology (Williston Park) 2016, 30 (11), 953-62. 41. Raghavan, R.; Brady, M. L.; Rodríguez-Ponce, M. I.; Hartlep, A.; Pedain, C.; Sampson, J. H. J. N. f., Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 2006, 20 (4), E12. 42. Seo, Y.-E.; Bu, T.; Saltzman, W. M. J. C. o. i. b. e., Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Curr Opin Biomed Eng 2017, 4, 1-12. 43. Zhan, W.; Wang, C.-H. J. J. o. C. R., Convection enhanced delivery of chemotherapeutic drugs into brain tumour. Journal of Controlled Release 2018, 271, 74-87. 44. Xi, G.; Robinson, E.; Mania-Farnell, B.; Vanin, E. F.; Shim, K.-W.; Takao, T.; Allender, E. V.; Mayanil, C. S.; Soares, M. B.; Ho, D. J. N. N., Biology; Medicine, Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine 2014, 10 (2), 381-391. 45. Zhan, W.; Wang, C.-H. J. J. o. c. r., Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release 2018, 285, 212-229. 46. Seunguk, O.; Odland, R.; Wilson, S. R.; Kroeger, K. M.; Liu, C.; Lowenstein, P. R.; Castro, M. G.; Hall, W. A.; Ohlfest, J. R. J. J. o. n., Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. 2007, 107 (3), 568-577. 47. Olson, J. J.; Zhang, Z.; Dillehay, D.; Stubbs, J. J. J. o. n.-o., Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J Neurooncol 2008, 89 (2), 159-168. 48. Krauze, M. T.; Saito, R.; Noble, C.; Tamas, M.; Bringas, J.; Park, J. W.; Berger, M. S.; Bankiewicz, K. J. J. o. n., Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 2005, 103 (5), 923-929. 49. Fiandaca, M. S.; Forsayeth, J. R.; Dickinson, P. J.; Bankiewicz, K. S. J. N., Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 2008, 5 (1), 123-127. 50. Gill, T.; Barua, N.; Woolley, M.; Bienemann, A.; Johnson, D.; Murray, G.; Fennelly, C.; Lewis, O.; Irving, C.; Wyatt, M. J. J. o. n. m., In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. J Neurosci Methods 2013, 219 (1), 1-9. 51. Louveau, A.; Smirnov, I.; Keyes, T. J.; Eccles, J. D.; Rouhani, S. J.; Peske, J. D.; Derecki, N. C.; Castle, D.; Mandell, J. W.; Lee, K. S. J. N., Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523 (7560), 337. 52. Aspelund, A.; Antila, S.; Proulx, S. T.; Karlsen, T. V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K., A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine 2015, 212 (7), 991-999. 53. Matyszak, M.; Perry, V. J. N., The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996, 74 (2), 599-608. 54. Serafini, B.; Columba-Cabezas, S.; Di Rosa, F.; Aloisi, F. J. T. A. j. o. p., Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 2000, 157 (6), 1991-2002. 55. Pashenkov, M.; Huang, Y.-M.; Kostulas, V.; Haglund, M.; Söderström, M.; Link, H. J. B., Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 2001, 124 (3), 480-492. 56. Ling, C.; Sandor, M.; Fabry, Z. J. J. o. n., In situ processing and distribution of intracerebrally injected OVA in the CNS. J Neuroimmunol 2003, 141 (1-2), 90-98. 57. Grauer, O. M.; Wesseling, P.; Adema, G. J. J. B. p., Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 2009, 19 (4), 674-693. 58. Dunn‐Pirio, A. M.; Vlahovic, G. J. C., Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2017, 123 (5), 734-750. 59. Hussain, S. F.; Yang, D.; Suki, D.; Aldape, K.; Grimm, E.; Heimberger, A. B. J. N.-o., The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 2006, 8 (3), 261-279. 60. Perrin, G.; Schnuriger, V.; Quiquerez, A.-L.; Saas, P.; Pannetier, C.; de Tribolet, N.; Tiercy, J.-M.; Aubry, J.-P.; Dietrich, P.-Y.; Walker, P. R. J. I. i., Astrocytoma infiltrating lymphocytes include major T cell clonal expansions confined to the CD8 subset. Int Immunol 1999, 11 (8), 1337-1350. 61. Zagzag, D.; Salnikow, K.; Chiriboga, L.; Yee, H.; Lan, L.; Ali, M. A.; Garcia, R.; Demaria, S.; Newcomb, E. W. J. L. i., Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 2005, 85 (3), 328. 62. Walker, P. R.; Calzascia, T.; Dietrich, P. Y. J. I., All in the head: obstacles for immune rejection of brain tumours. Immunology 2002, 107 (1), 28-38. 63. Dănăilă, L.; Ghyka, G.; Ursaciuc, C. J. R. j. o. n.; psychiatrie, p. R. r. d. n. e., Interleukin-2 (IL-2) in the treatment of malignant brain tumors (glioblastomas). 1993, 31 (3-4), 195-206. 64. Pule, M. A.; Savoldo, B.; Myers, G. D.; Rossig, C.; Russell, H. V.; Dotti, G.; Huls, M. H.; Liu, E.; Gee, A. P.; Mei, Z. J. N. m., Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008, 14 (11), 1264. 65. Till, B. G.; Jensen, M. C.; Wang, J.; Qian, X.; Gopal, A. K.; Maloney, D. G.; Lindgren, C. G.; Lin, Y.; Pagel, J. M.; Budde, L. E. J. B., CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012, 119 (17), 3940-3950. 66. Porter, D. L.; Levine, B. L.; Kalos, M.; Bagg, A.; June, C. H. J. N. E. J. o. M., Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. 2011, 365 (8), 725-733. 67. Miao, H.; Choi, B. D.; Suryadevara, C. M.; Sanchez-Perez, L.; Yang, S.; De Leon, G.; Sayour, E. J.; McLendon, R.; Herndon II, J. E.; Healy, P. J. P. o., EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014, 9 (4), e94281. 68. Ribas, A.; Wolchok, J. D. J. S., Cancer immunotherapy using checkpoint blockade. Science 2018, 359 (6382), 1350-1355. 69. Sharpe, A. H.; Pauken, K. E. J. N. R. I., The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 2018, 18 (3), 153. 70. Jacquelot, N.; Roberti, M.; Enot, D.; Rusakiewicz, S.; Ternès, N.; Jegou, S.; Woods, D.; Sodré, A.; Hansen, M.; Meirow, Y. J. N. c., Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun 2017, 8 (1), 592. 71. Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. J. N. c., Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016, 7, 13193. 72. Erel-Akbaba, G.; Carvalho, L. A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P. J.; Chiocca, E. A.; Weissleder, R.; Kantarci, A. G.; Tannous, B. A. J. A. n., Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano 2019, 13 (4), 4028-4040.
|