帳號:guest(3.145.70.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭立雯
作者(外文):Kuo, Li-Wen
論文名稱(中文):外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
論文名稱(外文):Magneto-Penetrated Delivery of Theranostics to Brain Cancer by Exosome-Camouflaged Nanohybrids through Convection-Enhanced Delivery
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):王子威
姜文軒
黃振煌
口試委員(外文):Wang, Tzu-Wei
Chiang, Wen-Hsuan
Huang, Jen-Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012521
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:77
中文關鍵詞:多孔性氧化鐵奈米粒子免疫佐劑磁熱治療對流增強遞送外泌體
外文關鍵詞:mesoporous iron oxide nanoparticlesmagneto-thermal therapyconvection-enhanced deliverytumor penetrationimmunotherapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今治療腦瘤的方法大致分為以下幾種,包括手術切除、放射治療與化學療法等方式,但往往會受到許多限制,而治療後的效果也不如其他癌症類型顯著。隨著藥物遞送系統的發展,許多研究均合成奈米藥物載體,透過標靶及控制釋放的特性,提高藥物在腫瘤的累積及治療效果。在腦瘤的治療上,由於血腦障壁的阻隔,大多數的藥物都無法完全穿透至腦腫瘤區,因此開發出一種同時兼具治療與穿透能類的藥物載體是必須的。
本研究中,我們合成出外泌體(Exosomes)修飾的多孔性奈米氧化鐵奈米粒子,利用其多孔洞的結構,載負含有免疫調節功能的免疫佐劑 Resiquimod (R-848) 的次級載體-樹狀聚合物。根據TEM與SEM的分析,成功製備出粒徑約150奈米,表面含有膜狀結構的多孔性材料,經過蛋白質分析鑑定確認此膜狀結構來自外泌體。在細胞試驗中,經過表面修飾後的載體與為修飾前相比,載體在濃度300 μg/ 時的細胞毒性降低約40%,表現出良好的生物相容性,在與細胞一同培養4 小時後,載體可完全進入細胞內。然而,隨著高週波磁場照射的時間增長,細胞的存活率隨之下降至60% 左右,即表現出磁熱治療的可行性。為了減少動物試驗的誤差與實驗動物數量,我們透過3D細胞微球實驗來模擬載體在腫瘤微環境的穿透度與治療效果,經長時間觀察可以發現到載體本身對癌細胞有良好的攝取能力,且在照射磁場後,展現出良好的癌細胞殺傷能力。
另外,我們透過對流增強遞送系統 ( Convection-enhanced delivery, CED) 的方式輸送藥物至腦腫瘤區域,直接穿越血腦障壁的阻擋,提高藥物於腫瘤位置的濃度以達到更佳的治療效果。在動物試驗上,透過CED的輔助,奈米粒子在腦腫瘤區具有良好的分布,且並未發生明顯的逆流現象。小鼠在施加外部高週波磁場後,獲得良好的熱治療效果並誘發免疫反應發生,治療組別在腫瘤區域的T細胞明顯增加,在搭配免疫調節劑後以增強免疫治療的效果,腫瘤生長明顯受到抑制,並成功延長小鼠的中位存活期,由原本的31天增加至43 天。
因此,外泌體修飾的多孔性複合型奈米粒子可視為具有潛力的多功能藥物輸送平台,除載體本身具有磁性性質可達到熱治療的效果,搭載R-848免疫佐劑增強腫瘤區域的免疫應答,達到有效的癌症抑制,對於腦癌治療來說,此種療法可作為一良好的選擇。
Despite the advancement of medical technology in recent years, brain cancer is still considered difficult to treat. In this study, we developed a mesoporous iron oxide nanoparticle functionalize the exosomes membrane. To enhance the penetration and drug loading capacity, we use the dendrimer as a secondary drug carrier to deliver the immune modulator (R848). Through convection-enhanced delivery (CED), we could across the BBB directly and make sure that the drug was maintained at the therapeutic dose. Moreover, we applied the high-frequency magnetic field (HFMF) to trigger magneto-thermal therapy and also stimulate the immune response. The immune modulator (R848) may enhance the immune system to achieve the more effective immunotherapy. The results indicated that Fe3O4-Den-Exo present low toxicity and high cellular uptake efficiency. The cell viability increased 40% after the iron oxide nanoparticles modified with exosomes, and decreased to 60 % when applied with HFMF. This method inhibited the tumor growth and extended the mice median survival from 31 to 43 days. It was successful to combined the hyperthermia and immune therapy for brain cancer treatment in this study.
中文摘要 ------I
Abstract ------III
List of scheme ------VII
List of table ------VIII
List of figure ------IX
Chapter 1 Introduction ------ 1
Chapter 2 Literature review and theory ------3
2.1. Nowadays brain cancer ------3
2.2. The magnetic nanoparticles property and cancer applications ---4
2.3. Exosomes ------7
2.3.1. Introduction of exosomes ------7
2.3.2. Exosomes in cancer treatment ------9
2.4. Convection-enhanced delivery system ------12
2.4.1. Introduction of Convection-enhanced delivery ------13
2.4.2. Convection-enhanced delivery for the treatment of brain cancer ------15
2.4.3. Catheter design ------18
2.5. Immunotherapy of brain cancer ------21
2.5.1. Interaction between the immune system and brain cancer ----21
2.5.2. Immunotherapy of brain cancer ------23
Chapter 3 Experimental section ------28
3.1 Materials ------28
3.2 Apparatus ------31
3.3 Method ------33
3.1.1 Synthesis of mesoporous iron oxide nanoparticles ------33
3.3.2 Synthesis of G2-PBA dendrimers and Fe3O4-Den ------33
3.3.3 Modification of transferrin ------34
3.3.4 Modification of Exosome ------34
3.3.5 Cell culture ------35
3.3.6 Cellular uptake ------35
3.3.7 Flow Cytometry ------36
3.3.8 Cell viability assay ------37
3.3.9 Penetration of the nanoparticles in ALTS1C1 spheroids ------37
3.3.10 In vivo experiments ------39
3.3.11 SDS-PAGE experiments ------40
3.3.12 Western Blot ------42
Chapter 4 Results and Discussions ------43
4.1 Synthesis and characterization of Fe3O4-Den-Exos ------43
4.2 Cell uptake and cytotoxicity of Fe3O4-Den-Exos ------50
4.3 Flow cytometry of Fe3O4-Den-Exos ------54
4.4 Penetration of Fe3O4-Den-Exos into tumor spheroids ------55
4.5 In vivo animal experiment ------61
4.5.1 In vivo animal experiment for biodistribution ------61
4.5.2 The effect of the immune system by hyperthermia treatment ---64
4.5.3 In vivo therapy ------66
Chapter 5 Conclusions ------70
Reference ------71
1. del Burgo, L. S.; Hernández, R. M.; Orive, G.; Pedraz, J. L. J. N. N., Biology; Medicine, Nanotherapeutic approaches for brain cancer management. 2014, 10 (5), e905-e919.
2. Sonali, M. K. V.; Singh, R. P.; Agrawal, P.; Mehata, A. K.; Datta Maroti Pawde, N.; Sonkar, R.; Muthu, M. S. J. N., Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics 2018, 2 (1), 70.
3. Sonali; Singh, R. P.; Singh, N.; Sharma, G.; Vijayakumar, M. R.; Koch, B.; Singh, S.; Singh, U.; Dash, D.; Pandey, B. L. J. D. d., Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv 2016, 23 (4), 1261-1271.
4. Gao, J.-Q.; Lv, Q.; Li, L.-M.; Tang, X.-J.; Li, F.-Z.; Hu, Y.-L.; Han, M. J. B., Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes. 2013, 34 (22), 5628-5639.
5. Pardridge, W. M. J. D. d. t., Blood–brain barrier delivery. 2007, 12 (1-2), 54-61.
6. Luong, D.; Sau, S.; Kesharwani, P.; Iyer, A. K. J. B., Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromolecules 2017, 18 (4), 1197-1209.
7. Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. J. J. o. c. r., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015, 200, 138-157.
8. Koo, Y.-E. L.; Reddy, G. R.; Bhojani, M.; Schneider, R.; Philbert, M. A.; Rehemtulla, A.; Ross, B. D.; Kopelman, R. J. A. d. d. r., Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006, 58 (14), 1556-1577.
9. Liu, C.; Shao, N.; Wang, Y.; Cheng, Y. J. A. h. m., Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Advanced Healthcare Materials 2016, 5 (5), 584-592.
10. Kievit, F. M.; Zhang, M. J. A. m., Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011, 23 (36), H217-H247.
11. Gobbo, O. L.; Sjaastad, K.; Radomski, M. W.; Volkov, Y.; Prina-Mello, A. J. T., Magnetic nanoparticles in cancer theranostics. Theranostics 2015, 5 (11), 1249.
12. Sun, C.; Lee, J. S.; Zhang, M. J. A. d. d. r., Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008, 60 (11), 1252-1265.
13. Revia, R. A.; Zhang, M., Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 2016, 19 (3), 157-168.
14. Weissleder, R. a.; Stark, D. D.; Engelstad, B. L.; Bacon, B. R.; Compton, C. C.; White, D. L.; Jacobs, P.; Lewis, J. J. A. J. o. R., Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989, 152 (1), 167-173.
15. Christophi, C.; Winkworth, A.; Muralihdaran, V.; Evans, P., The treatment of malignancy by hyperthermia. Surg Oncol 1998, 7 (1-2), 83-90.
16. Steeves, R. A. J. B. o. t. N. Y. A. o. M., Hyperthermia in cancer therapy: where are we today and where are we going? 1992, 68 (2), 341.
17. Huang, Y.; Mao, K.; Zhang, B.; Zhao, Y. J. M. S.; C, E., Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C Mater Biol Appl 2017, 70 (Pt 1), 763-771.
18. Chiang, C. S.; Lin, Y. J.; Lee, R.; Lai, Y. H.; Cheng, H. W.; Hsieh, C. H.; Shyu, W. C.; Chen, S. Y., Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat Nanotechnol 2018, 13 (8), 746-754.
19. Colombo, M.; Raposo, G.; Thery, C., Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014, 30, 255-89.
20. Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. J. B. e. B. A.-G. S., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica Et Biophysica Acta-General Subjects 2012, 1820 (7), 940-948.
21. Qin, J.; Xu, Q. J. A. P. P., Functions and application of exosomes. Acta Pol Pharm 2014, 71 (4), 537-43.
22. De Toro, J.; Herschlik, L.; Waldner, C.; Mongini, C. J. F. i. i., Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 2015, 6, 203.
23. Wolfers, J.; Lozier, A.; Raposo, G.; Regnault, A.; Théry, C.; Masurier, C.; Flament, C.; Pouzieux, S.; Faure, F.; Tursz, T. J. N. m., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001, 7 (3), 297.
24. Skog, J.; Würdinger, T.; Van Rijn, S.; Meijer, D. H.; Gainche, L.; Curry Jr, W. T.; Carter, B. S.; Krichevsky, A. M.; Breakefield, X. O. J. N. c. b., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology 2008, 10 (12), 1470.
25. Ha, D.; Yang, N.; Nadithe, V. J. A. P. S. B., Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B 2016, 6 (4), 287-296.
26. Smyth, T. J.; Redzic, J. S.; Graner, M. W.; Anchordoquy, T. J. J. B. e. B. A.-B., Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta 2014, 1838 (11), 2954-2965.
27. Li, X.; Tsibouklis, J.; Weng, T.; Zhang, B.; Yin, G.; Feng, G.; Cui, Y.; Savina, I. N.; Mikhalovska, L. I.; Sandeman, S. R. J. J. o. d. t., Nano carriers for drug transport across the blood–brain barrier. 2017, 25 (1), 17-28.
28. Kim, M. S.; Haney, M. J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N. L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O. J. N. N., Biology; Medicine, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 2016, 12 (3), 655-664.
29. Qi, H.; Liu, C.; Long, L.; Ren, Y.; Zhang, S.; Chang, X.; Qian, X.; Jia, H.; Zhao, J.; Sun, J. J. A. n., Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano 2016, 10 (3), 3323-3333.
30. Boiardi, A.; Eoli, M.; Salmaggi, A.; Lamperti, E.; Botturi, A.; Solari, A.; Di Meco, F.; Broggi, G.; Silvani, A., Local drug delivery in recurrent malignant gliomas. Neurol Sci 2005, 26 Suppl 1 (1), S37-9.
31. Raza, S. M.; Pradilla, G.; Legnani, F. G.; Thai, Q. A.; Olivi, A.; Weingart, J. D.; Brem, H. J. E. o. o. b. t., Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 2005, 5 (4), 477-494.
32. Sawyer, A. J.; Piepmeier, J. M.; Saltzman, W. M. J. T. Y. j. o. b.; medicine, Cancer issue: new methods for direct delivery of chemotherapy for treating brain tumors. 2006, 79 (3-4), 141.
33. Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H., Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 1994, 91 (6), 2076-80.
34. Vavra, M.; Ali, M. J.; Kang, E. W.-Y.; Navalitloha, Y.; Ebert, A.; Allen, C. V.; Groothuis, D. R. J. N.-o., Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro Oncol 2004, 6 (2), 104-112.
35. Lidar, Z.; Mardor, Y.; Jonas, T.; Pfeffer, R.; Faibel, M.; Nass, D.; Hadani, M.; Ram, Z. J. J. o. n., Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 2004, 100 (3), 472-479.
36. Vandergrift, W. A.; Patel, S. J. J. N. f., Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg Focus 2006, 20 (4), E13.
37. Muro, K.; Das, S.; Raizer, J. J. J. T. i. c. r.; treatment, Convection-enhanced and local delivery of targeted cytotoxins in the treatment of malignant gliomas. Technol Cancer Res Treat 2006, 5 (3), 201-213.
38. Perlstein, B.; Ram, Z.; Daniels, D.; Ocherashvilli, A.; Roth, Y.; Margel, S.; Mardor, Y. J. N.-o., Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring. Neuro Oncol 2008, 10 (2), 153-161.
39. Allard, E.; Passirani, C.; Benoit, J. P., Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 2009, 30 (12), 2302-18.
40. Naidoo, J.; Panday, H.; Jackson, S.; Grossman, S. A. J. O., Optimizing the delivery of antineoplastic therapies to the central nervous system. Oncology (Williston Park) 2016, 30 (11), 953-62.
41. Raghavan, R.; Brady, M. L.; Rodríguez-Ponce, M. I.; Hartlep, A.; Pedain, C.; Sampson, J. H. J. N. f., Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 2006, 20 (4), E12.
42. Seo, Y.-E.; Bu, T.; Saltzman, W. M. J. C. o. i. b. e., Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Curr Opin Biomed Eng 2017, 4, 1-12.
43. Zhan, W.; Wang, C.-H. J. J. o. C. R., Convection enhanced delivery of chemotherapeutic drugs into brain tumour. Journal of Controlled Release 2018, 271, 74-87.
44. Xi, G.; Robinson, E.; Mania-Farnell, B.; Vanin, E. F.; Shim, K.-W.; Takao, T.; Allender, E. V.; Mayanil, C. S.; Soares, M. B.; Ho, D. J. N. N., Biology; Medicine, Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomedicine 2014, 10 (2), 381-391.
45. Zhan, W.; Wang, C.-H. J. J. o. c. r., Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J Control Release 2018, 285, 212-229.
46. Seunguk, O.; Odland, R.; Wilson, S. R.; Kroeger, K. M.; Liu, C.; Lowenstein, P. R.; Castro, M. G.; Hall, W. A.; Ohlfest, J. R. J. J. o. n., Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. 2007, 107 (3), 568-577.
47. Olson, J. J.; Zhang, Z.; Dillehay, D.; Stubbs, J. J. J. o. n.-o., Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J Neurooncol 2008, 89 (2), 159-168.
48. Krauze, M. T.; Saito, R.; Noble, C.; Tamas, M.; Bringas, J.; Park, J. W.; Berger, M. S.; Bankiewicz, K. J. J. o. n., Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 2005, 103 (5), 923-929.
49. Fiandaca, M. S.; Forsayeth, J. R.; Dickinson, P. J.; Bankiewicz, K. S. J. N., Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 2008, 5 (1), 123-127.
50. Gill, T.; Barua, N.; Woolley, M.; Bienemann, A.; Johnson, D.; Murray, G.; Fennelly, C.; Lewis, O.; Irving, C.; Wyatt, M. J. J. o. n. m., In vitro and in vivo testing of a novel recessed-step catheter for reflux-free convection-enhanced drug delivery to the brain. J Neurosci Methods 2013, 219 (1), 1-9.
51. Louveau, A.; Smirnov, I.; Keyes, T. J.; Eccles, J. D.; Rouhani, S. J.; Peske, J. D.; Derecki, N. C.; Castle, D.; Mandell, J. W.; Lee, K. S. J. N., Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 523 (7560), 337.
52. Aspelund, A.; Antila, S.; Proulx, S. T.; Karlsen, T. V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K., A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. Journal of Experimental Medicine 2015, 212 (7), 991-999.
53. Matyszak, M.; Perry, V. J. N., The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996, 74 (2), 599-608.
54. Serafini, B.; Columba-Cabezas, S.; Di Rosa, F.; Aloisi, F. J. T. A. j. o. p., Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 2000, 157 (6), 1991-2002.
55. Pashenkov, M.; Huang, Y.-M.; Kostulas, V.; Haglund, M.; Söderström, M.; Link, H. J. B., Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 2001, 124 (3), 480-492.
56. Ling, C.; Sandor, M.; Fabry, Z. J. J. o. n., In situ processing and distribution of intracerebrally injected OVA in the CNS. J Neuroimmunol 2003, 141 (1-2), 90-98.
57. Grauer, O. M.; Wesseling, P.; Adema, G. J. J. B. p., Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 2009, 19 (4), 674-693.
58. Dunn‐Pirio, A. M.; Vlahovic, G. J. C., Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2017, 123 (5), 734-750.
59. Hussain, S. F.; Yang, D.; Suki, D.; Aldape, K.; Grimm, E.; Heimberger, A. B. J. N.-o., The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 2006, 8 (3), 261-279.
60. Perrin, G.; Schnuriger, V.; Quiquerez, A.-L.; Saas, P.; Pannetier, C.; de Tribolet, N.; Tiercy, J.-M.; Aubry, J.-P.; Dietrich, P.-Y.; Walker, P. R. J. I. i., Astrocytoma infiltrating lymphocytes include major T cell clonal expansions confined to the CD8 subset. Int Immunol 1999, 11 (8), 1337-1350.
61. Zagzag, D.; Salnikow, K.; Chiriboga, L.; Yee, H.; Lan, L.; Ali, M. A.; Garcia, R.; Demaria, S.; Newcomb, E. W. J. L. i., Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 2005, 85 (3), 328.
62. Walker, P. R.; Calzascia, T.; Dietrich, P. Y. J. I., All in the head: obstacles for immune rejection of brain tumours. Immunology 2002, 107 (1), 28-38.
63. Dănăilă, L.; Ghyka, G.; Ursaciuc, C. J. R. j. o. n.; psychiatrie, p. R. r. d. n. e., Interleukin-2 (IL-2) in the treatment of malignant brain tumors (glioblastomas). 1993, 31 (3-4), 195-206.
64. Pule, M. A.; Savoldo, B.; Myers, G. D.; Rossig, C.; Russell, H. V.; Dotti, G.; Huls, M. H.; Liu, E.; Gee, A. P.; Mei, Z. J. N. m., Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008, 14 (11), 1264.
65. Till, B. G.; Jensen, M. C.; Wang, J.; Qian, X.; Gopal, A. K.; Maloney, D. G.; Lindgren, C. G.; Lin, Y.; Pagel, J. M.; Budde, L. E. J. B., CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012, 119 (17), 3940-3950.
66. Porter, D. L.; Levine, B. L.; Kalos, M.; Bagg, A.; June, C. H. J. N. E. J. o. M., Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. 2011, 365 (8), 725-733.
67. Miao, H.; Choi, B. D.; Suryadevara, C. M.; Sanchez-Perez, L.; Yang, S.; De Leon, G.; Sayour, E. J.; McLendon, R.; Herndon II, J. E.; Healy, P. J. P. o., EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014, 9 (4), e94281.
68. Ribas, A.; Wolchok, J. D. J. S., Cancer immunotherapy using checkpoint blockade. Science 2018, 359 (6382), 1350-1355.
69. Sharpe, A. H.; Pauken, K. E. J. N. R. I., The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 2018, 18 (3), 153.
70. Jacquelot, N.; Roberti, M.; Enot, D.; Rusakiewicz, S.; Ternès, N.; Jegou, S.; Woods, D.; Sodré, A.; Hansen, M.; Meirow, Y. J. N. c., Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun 2017, 8 (1), 592.
71. Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. J. N. c., Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016, 7, 13193.
72. Erel-Akbaba, G.; Carvalho, L. A.; Tian, T.; Zinter, M.; Akbaba, H.; Obeid, P. J.; Chiocca, E. A.; Weissleder, R.; Kantarci, A. G.; Tannous, B. A. J. A. n., Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy. ACS Nano 2019, 13 (4), 4028-4040.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. M1巨噬細胞膜包覆氧化鐵奈米粒子的微針貼片用於增強癌症免疫治療
2. 具有磁電效應之二氧化鈦奈米複合材料結合光動力及光熱治療用於膠質母細胞瘤的免疫療法
3. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
4. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
5. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
6. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
7. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
8. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
9. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
10. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
11. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
12. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
13. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
14. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
15. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
 
* *