|
1. Cunningham, D., et al., Colorectal cancer. The Lancet, 2010. 375(9719): p. 1030-1047. 2. Fedirko, V., et al., Alcohol drinking and colorectal cancer risk: an overall and dose–response meta-analysis of published studies. Annals of Oncology, 2011. 22(9): p. 1958-1972. 3. Itzkowitz, S.H. and X. Yio, Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2004. 287(1): p. G7-G17. 4. Lozano, R., et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 2012. 380(9859): p. 2095-2128. 5. Merika, E., et al., Colon cancer vaccines: an update. In vivo, 2010. 24(5): p. 607-628. 6. Triantafillidis, J.K., G. Nasioulas, and P.A. Kosmidis, Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer research, 2009. 29(7): p. 2727-2737. 7. Valtin, H., “Drink at least eight glasses of water a day.” Really? Is there scientific evidence for “8 × 8”? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2002. 283(5): p. R993-R1004. 8. Watson, A.J. and P.D. Collins, Colon cancer: a civilization disorder. Digestive diseases, 2011. 29(2): p. 222-228. 9. Johnson, L.A., et al., Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflammatory bowel diseases, 2013. 19(5): p. 891-903. 10. 田中昌彦, et al., ヒト大腸癌の進展に伴う細胞外基質の相互作用の変化 とくに脈管侵襲および壁深達度との関連について. 日本大腸肛門病学会雑誌, 1994. 47(1): p. 48-58. 11. Kawano, S., et al., Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Science, 2015. 106(9): p. 1232-1239. 12. Marin-Hernandez, A., et al., Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. J Cell Physiol, 2017. 232(6): p. 1346-1359. 13. Gómez‐Lechón, M.J., L. Tolosa, and M.T. Donato, Metabolic activation and drug‐induced liver injury: in vitro approaches for the safety risk assessment of new drugs. Journal of Applied Toxicology, 2016. 36(6): p. 752-768. 14. Bernstein, B.W. and J.R. Bamburg, Actin-ATP hydrolysis is a major energy drain for neurons. Journal of Neuroscience, 2003. 23(1): p. 1-6. 15. Christofori, G., New signals from the invasive front. Nature, 2006. 441(7092): p. 444. 16. Ganz, A., et al., Traction forces exerted through N‐cadherin contacts. Biology of the Cell, 2006. 98(12): p. 721-730. 17. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406. 18. Plikus, M.V., et al., Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017. 355(6326): p. 748-752. 19. Polackwich, R.J., et al., Traction force and tension fluctuations in growing axons. Frontiers in cellular neuroscience, 2015. 9: p. 417. 20. Spano, D., et al. Molecular networks that regulate cancer metastasis. in Seminars in cancer biology. 2012. Elsevier. 21. Stetler-Stevenson, W.G., S. Aznavoorian, and L.A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual review of cell biology, 1993. 9(1): p. 541-573. 22. Stivarou, T. and E. Patsavoudi, Extracellular molecules involved in cancer cell invasion. Cancers, 2015. 7(1): p. 238-265. 23. Yu, H., et al., Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. PLoS computational biology, 2007. 3(2): p. e21. 24. Zaman, M.H., et al., Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences, 2006. 103(29): p. 10889-10894. 25. Wirtz, D., K. Konstantopoulos, and P.C. Searson, The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 2011. 11(7): p. 512. 26. Ghosh, D., et al., iTRAQ based quantitative proteomics approach validated the role of calcyclin binding protein (CacyBP) in promoting colorectal cancer metastasis. Molecular & cellular proteomics : MCP, 2013. 12(7): p. 1865-1880. 27. Droppelmann, C.A., et al., A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1, 6-bisphosphatase. Biochemical Journal, 2015. 472(2): p. 225-237. 28. Marín‐Hernández, Á., et al., Hypoglycemia Enhances Epithelial‐Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. Journal of cellular physiology, 2017. 232(6): p. 1346-1359. 29. Lehmann, S., et al., Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells. Current Biology, 2017. 27(3): p. 392-400. 30. Hirakawa, M., et al., Sequential activation of RhoA and FAK/paxillin leads to ATP release and actin reorganization in human endothelium. The Journal of physiology, 2004. 558(Pt 2): p. 479-488. 31. Bae, Y.-S. and S.H. Ryu, ATP-induced focal adhesion kinase activity is negatively modulated by phospholipase D2 in PC12 cells. Experimental & Molecular Medicine, 2001. 33(3): p. 150-155. 32. Sulzmaier, F.J., C. Jean, and D.D. Schlaepfer, FAK in cancer: mechanistic findings and clinical applications. Nature reviews. Cancer, 2014. 14(9): p. 598-610. 33. Bernstein, B.W. and J.R. Bamburg, Actin-ATP Hydrolysis Is a Major Energy Drain for Neurons. The Journal of Neuroscience, 2003. 23(1): p. 1-6. 34. Fang, S. and X. Fang, Advances in glucose metabolism research in colorectal cancer. Biomedical reports, 2016. 5(3): p. 289-295. 35. Hsu, P.P. and D.M. Sabatini, Cancer Cell Metabolism: Warburg and Beyond. Cell, 2008. 134(5): p. 703-707. 36. Droppelmann, C.A., et al., A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase. Biochem J, 2015. 472(2): p. 225-37. 37. Li, Q., et al., Aldolase B Overexpression is Associated with Poor Prognosis and Promotes Tumor Progression by Epithelial-Mesenchymal Transition in Colorectal Adenocarcinoma. Cell Physiol Biochem, 2017. 42(1): p. 397-406. 38. Kishnani, P.S. and Y.-T. Chen, Disorders of Carbohydrate Metabolism, in Emery and Rimoin's Principles and Practice of Medical Genetics. 2013. p. 1-36. 39. Campbell, E., et al., Fructose-Induced Hypertriglyceridemia: A Review, in Nutrition in the Prevention and Treatment of Abdominal Obesity. 2014. p. 197-205. 40. Chang, Y.C., et al., Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends Endocrinol Metab, 2018. 29(8): p. 549-559. 41. Wang, J., et al., The Molecular Nature of the F-actin Binding Activity of Aldolase Revealed with Site-directed Mutants. Journal of Biological Chemistry, 1996. 271(12): p. 6861-6865. 42. Halestrap, A.P. and D. Meredith, The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch, 2004. 447(5): p. 619-28. 43. Dembo, M. and Y.-L. Wang, Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical journal, 1999. 76(4): p. 2307-2316. 44. Fischer, R.S., et al., Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nature protocols, 2012. 7(11): p. 2056. 45. Wu, D. and P. Yotnda, Induction and testing of hypoxia in cell culture. JoVE (Journal of Visualized Experiments), 2011(54): p. e2899. 46. Said, H.M., et al., Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiotherapy and oncology, 2005. 76(2): p. 200-205. 47. Chen, C., et al., Inositol hexaphosphate hydrolysate competitively binds to AKT to inhibit the proliferation of colon carcinoma. Oncol Rep, 2017. 38(5): p. 2901-2910. 48. Ding, Z., et al., Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol, 2010. 136(11): p. 1697-707. 49. Song, L., Y. Guo, and B. Xu, Expressions of Ras Homolog Gene Family, Member A (RhoA) and Cyclooxygenase-2 (COX-2) Proteins in Early Gastric Cancer and Their Role in the Development of Gastric Cancer. Med Sci Monit, 2017. 23: p. 2979-2984. 50. Hariharan, R., et al., Fundamental limitations of [18F] 2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation, 1995. 91(9): p. 2435-2444. 51. TeSlaa, T. and M.A. Teitell, Techniques to monitor glycolysis, in Methods in enzymology. 2014, Elsevier. p. 91-114. 52. Zou, C., Y. Wang, and Z. Shen, 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. Journal of biochemical and biophysical methods, 2005. 64(3): p. 207-215. 53. Hu, Y., et al., Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes, chromosomes & cancer, 2018. 57(3): p. 140-149. 54. Chekulayev, V., et al., Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochemistry and Biophysics Reports, 2015. 4: p. 111-125. 55. Park, H.S., et al., Hypoxia induces glucose uptake and metabolism of adipose‑derived stem cells. Molecular medicine reports, 2016. 14(5): p. 4706-4714. 56. Zhang, J.-Z., A. Behrooz, and F. Ismail-Beigi, Regulation of glucose transport by hypoxia. American Journal of Kidney Diseases, 1999. 34(1): p. 189-202. 57. Ida-Yonemochi, H., et al., Glucose uptake mediated by glucose transporter 1 is essential for early tooth morphogenesis and size determination of murine molars. Developmental biology, 2012. 363(1): p. 52-61. 58. Head, B.P., H.H. Patel, and P.A. Insel, Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochimica et biophysica acta, 2014. 1838(2): p. 532-545. 59. Bryan, T.O., et al., Follow the ATP: Tumor Energy Production: A Perspective. Anti-Cancer Agents in Medicinal Chemistry, 2014. 14(9): p. 1187-1198. 60. Chaube, B. and M.K. Bhat, AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death &Amp; Disease, 2016. 7: p. e2044. 61. Fu, Y., et al., The reverse Warburg effect is likely to be an Achilles' heel of cancer that can be exploited for cancer therapy. Oncotarget, 2017. 8(34): p. 57813-57825. 62. Tung, J.C., et al., Tumor mechanics and metabolic dysfunction. Free radical biology & medicine, 2015. 79: p. 269-280. 63. Zong, S., et al., Identification of hypoxia-regulated angiogenic genes in colorectal cancer. Biochemical and biophysical research communications, 2017. 493(1): p. 461-467. 64. Gan, L., et al., Extracellular matrix protein 1 promotes cell metastasis and glucose metabolism by inducing integrin β4/FAK/SOX2/HIF-1α signaling pathway in gastric cancer. Oncogene, 2018. 37(6): p. 744. 65. Xu, F., et al., Hypoxia and TGF-β1 induced PLOD2 expression improve the migration and invasion of cervical cancer cells by promoting epithelial-to-mesenchymal transition (EMT) and focal adhesion formation. Cancer cell international, 2017. 17(1): p. 54. 66. Hussain, A., et al., A novel PI3K axis selective molecule exhibits potent tumor inhibition in colorectal carcinogenesis. Molecular carcinogenesis, 2016. 55(12): p. 2135-2155. 67. Hu, H., et al., Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell, 2016. 164(3): p. 433-446. 68. Sahai, E. and C.J. Marshall, RHO-GTPases and cancer. Nat Rev Cancer, 2002. 2(2): p. 133-42. 69. Hu, H., et al., Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton. Cell, 2016. 164(3): p. 433-46. 70. Ochsner, M., et al., Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape. PLoS One, 2010. 5(3): p. e9445. 71. Peng, J.M., et al., Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology, 2018. 67(6): p. 2226-2243. 72. Chen, Y.-K., A.H.-C. Huang, and L.-M. Lin, Sphere-forming-like cells (squamospheres) with cancer stem-like cell traits from VX2 rabbit buccal squamous cell carcinoma. International Journal Of Oral Science, 2014. 6: p. 212. 73. Mah, E.J., et al., Collagen Stiffness Modulates MDA-MB231 Cell Metabolism Through Adhesion-Mediated Contractility. SSRN Electronic Journal, 2018. 74. Han, X.-Y., et al., Epithelial-Mesenchymal Transition Associates with Maintenance of Stemness in Spheroid-Derived Stem-Like Colon Cancer Cells. PLOS ONE, 2013. 8(9): p. e73341. 75. Peschetola, V., Determination of traction force exerted by tumor cells during migration on a deformable substrate. 2011, Université de Grenoble. 76. Gkretsi, V. and T. Stylianopoulos, Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Frontiers in oncology, 2018. 8: p. 145-145. 77. Tang, X., et al., A mechanically-induced colon cancer cell population shows increased metastatic potential. Molecular Cancer, 2014. 13(1): p. 131.
|