帳號:guest(3.144.25.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳貝玥
作者(外文):Chen, Pei-Yueh
論文名稱(中文):可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
論文名稱(外文):Injectable Microporous Hydrogels of Adaptable Moon-like Microbeads with Magnetoelectric by Gold Nanobrain for the Repair of Traumatic Brain Injury
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):李亦淇
黃玠誠
張建文
口試委員(外文):Lee, I-Chi
Huang, Chieh-Cheng
Chang, Chien-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012511
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:66
中文關鍵詞:水膠微球雙乳化微流道腦創傷
外文關鍵詞:hydrogelmicrospheresmicrofluidicdouble emulsiontraumatic brain injury
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
腦創傷(TBI)會使病人的生理以及心理上產生劇烈的改變以及生活上的困難,也會增加社會成本。腦創傷惡化的主要原因為星狀膠質細胞大量聚集導致的傷疤會阻擋新生細胞的進入修復以及嚴重的免疫反應,造成新生血管以及新生細胞的生成困難。以上兩個原因使組織難以修復而產生一個空洞。本實驗使用PEGDA以及dextran兩種材料,利用針筒注射幫浦將材料注入微流道系統製作了一種大小分布均勻的水-水相雙層可注射式微球,微球的大小約為150 μm。在製作微球的過程中,將兩種藥物–普羅布考(probucol)以及神經生長因子(NGF)包覆在微球中。普羅布考可以降低環境中的氧化物含量進而降低免疫反應,保護神經細胞。神經生長因子可以促進神經細胞的生長以及修復。除此之外,本實驗利用γ-PGA將微球中的PEGDA相改質為帶-10.73負電荷的材料,同時也結合了利用cysteamine改質成17.3帶正電荷的金奈米粒子,金奈米粒子的大小介於300-400奈米。將帶負電的微球及帶正電的金奈米粒子的混和物注射到傷口處時,正負相吸的性質能使材料維持在傷口處不輕易流動,亦能填滿整個空洞,給予一個穩定且持續的治療。而當外加高週波磁場時,奈米粒子會產生電荷變化,刺激神經細胞的生長及分化。除了包覆藥物的功能,微球提供了一個支架讓細胞攀附,使細胞能進入腦創傷所造成的空洞進行修復。
細胞實驗中,本研究展示了材料以及藥物對於細胞沒有任何毒性,而包覆在微球的神經生長因子及高週波的應用可以促進神經細胞的分化。組織切片的結果亦顯示給予一支架、藥物及高週波可以降低腦創傷傷口的惡化及幫助修復,阻擋新生細胞進入的星狀膠質細胞的量和未治療的組別相比降低了5.6 % 的表現量,免疫反應亦減少了8.3 % 的表現,而新生細胞在受傷區及側腦室下區(SVZ zone)則分別增加了12.8 % 及1.6 % ,受傷區的成熟神經細胞也比未治療組多了6.5 % 的表現量,證明除了能促細胞的分化及生長,治療亦能減少成熟神經細胞的凋亡。動物行為實驗也展現治療組老鼠四肢的運用能力及靈活度都比未治療組的高。由此可知,本文所製作的微球能包覆及釋放不同的藥物,且外部磁場能使結合的奈米金粒子產生電荷改變進而促進神經細胞的分化及生長,提供了腦創傷一種非常有效的治療方式。
Brain injury usually causes physical and emotional problems for patients, resulting in great social cost. The main reasons of deterioration of Traumatic Brain Injury (TBI) are impeding of new born cells by astrocytes scar and immune response, which increases the difficulty of angiogenesis and neuronal growth, leading to a cavity devoid of normal tissue. In this study, microfluidic was adopted to fabricate flowable microspheres made of PEGDA and dextran, the size of microspheres is 150 μm. By encapsulating the microspheres with drug, immune response can be relieved, because of the lower level of reactive oxygen species (ROS) caused by probocul, in favor of the repair of neuron cells, which will be prompted by the application of NGF loaded in microspheres. In addition, γ-PGA was adopted to modified the zeta potential of PEGDA phase into -10.73 and cysteamine was also used to modify the zeta potential of gold nano-brain(GNB), which range from 300-400 nm, into 17.3. By combining microspheres with Au nanoparticles, the growth of neuron cells can be further stimulated by applying an external magnetic field, which leads to changes of electrical charges to trigger the differentiation of neuron cells. The microspheres also offer mechanical support for prompt cell migration and transports bio-molecular cues to manage cell adhesion and growth. The injectable moon-like beads also allows the incorporation of living cells and ultimately assembles in the complexly shaped cavity where it is injected, repairing the traumatic brain injury.
The in vitro experiment represents that materials and drugs show no harm to cells, instead, NGF encapsulated in microspheres as well as the application of HFMF can stimulate neuron cells to differentiate. The result of immunohistochemistry also reveal that the provide of scaffold, drugs and HFMF can significantly reduce deterioration of wound and help repairing it. In Pb-NGF@MPs + GNB-HFMF group, the amount of astrocytes, which stop the new born cells from entering the injury site, shows 5.6 % lower than the untreated group, the immune response was also reduced 8.3 % comparing to untreated group, the number of new born cells at injury site and SVZ zone increase 12.8 % and 1.6 %, respectively, the amount of mature neuron cells shows 6.5 % higher than untreated group, indicating that the treatment can not only stimulate the growth and differentiation but can also reduce the apoptosis of mature neuron cells. Animal behavior experiment also demonstrate that treated mice show better movement of limbs as well as finger dexterity. Microspheres fabricated in this study can encapsulate and release different drugs, also, the combination of GNB and application of HFMF can induce charge changes, which help the growth and differentiation of cells, providing an extremely effective cure for TBI.
中文摘要----------------------------------------------------------I
Abstract--------------------------------------------------------III
致謝--------------------------------------------------------------V
Chapter 1 Introduction--------------------------------------------1
Chapter 2 Literature review and theory----------------------------3
2.1 Introduction of traumatic brain injury------------------------3
2.1.1 Astrocytes in traumatic brain injury------------------------5
2.1.2 Microglia in traumatic brain injury-------------------------6
2.2 Hydrogel for tissue engineering-------------------------------8
2.2.1 Phase separation--------------------------------------------12
2.2.2 Injectable microspheres-------------------------------------13
2.3 Magneto-electric stimulation----------------------------------16
2.3.1 Electro-magnetized graphene oxide---------------------------17
2.3.2 Electro-magnetized iron oxide-------------------------------19
2.3.3 Electro-magnetized gold nanoparticles-----------------------21
Chapter 3 Experimental section------------------------------------24
3.1 Materials-----------------------------------------------------24
3.2 Apparatus-----------------------------------------------------27
3.3 Method--------------------------------------------------------29
3.3.1 Fabrication of microfluidic chip----------------------------29
3.3.2 Fabrication of microspheres by microfluidic chip------------30
3.3.3 Elastic modulus measurement---------------------------------30
3.3.4 Release study-----------------------------------------------31
3.3.5 Synthesis of gold nanoparticles-----------------------------31
3.3.6 Modification of the zeta potential of materials-------------32
3.3.7 Cell culture------------------------------------------------32
3.3.8 Cell viability----------------------------------------------33
3.3.9 Co-culture of cells and microspheres------------------------33
3.3.10 In vivo experiment-----------------------------------------34
3.3.11 Animal behavior--------------------------------------------35
Chapter 4 Results and Discussions---------------------------------37
4.1 Characterization of microspheres------------------------------37
4.2 Synthesis and characterization of GNB-------------------------40
4.3 Characterization of microspheres mixed with GNB---------------41
4.4 Release test of microspheres----------------------------------42
4.5 Cytotoxicity of materials-------------------------------------43
4.6 Co-culture of materials and cells-----------------------------44
4.7 In vivo therapy and analysis----------------------------------47
4.8 Animal behavior-----------------------------------------------56
Chapter 5 Conclusions---------------------------------------------59
Reference---------------------------------------------------------60
[1] Luo, C.-L., Li, B.-X., Li, Q.-Q., Chen, X.-P., Sun, Y.-X., Bao, H.-J., Dai, D.-K., Shen, Y.-W., Xu, H.-F., and Ni, H., Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice, Neuroscience, 2011, 184 54-63.
[2] Mammis, A., McIntosh, T. K., and Maniker, A. H., Erythropoietin as a neuroprotective agent in traumatic brain injury, Surg Neurol., 2009, 71 (5), 527-531.
[3] Negah, S. S., Khooei, A., Samini, F., and Gorji, A., Laminin-derived Ile-Lys-Val-ala-Val: a promising bioactive peptide in neural tissue engineering in traumatic brain injury, Cell Tissue Res., 2018, 371 (2), 223-236.
[4] Bharadwaj, V. N., Nguyen, D. T., Kodibagkar, V. D., and Stabenfeldt, S. E., Nanoparticle‐Based Therapeutics for Brain Injury, Adv Healthc Mater., 2018, 7 (1), 1700668.
[5] Liu, D., Chen, J., Jiang, T., Li, W., Huang, Y., Lu, X., Liu, Z., Zhang, W., Zhou, Z., and Ding, Q., Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate‐Induced Excitotoxicity, Adv Mater., 2018, 30 (14), 1706032.
[6] Hausmann, O., Post-traumatic inflammation following spinal cord injury, Spinal cord, 2003, 41 (7), 369.
[7] Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., Dong, H. X., Wu, Y. J., Fan, G. S., and Jacquin, M. F., Neuronal and glial apoptosis after traumatic spinal cord injury, J Neurosci., 1997, 17 (14), 5395-5406.
[8] Tower, D. B. and Young, O. M., The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysts, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale, J Neurochem., 1973, 20 (2), 269-278.
[9] Chen, Y. and Swanson, R. A., Astrocytes and brain injury, J Cerebr Blood F Met., 2003, 23 (2), 137-149.
[10] Karve, I. P., Taylor, J. M., and Crack, P. J., The contribution of astrocytes and microglia to traumatic brain injury, Brit J Pharmacol., 2016, 173 (4), 692-702.
[11] Wilhelmsson, U., Li, L., Pekna, M., Berthold, C.-H., Blom, S., Eliasson, C., Renner, O., Bushong, E., Ellisman, M., and Morgan, T. E., Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration, J Neurosci., 2004, 24 (21), 5016-5021.
[12] Di Giovanni, S., Movsesyan, V., Ahmed, F., Cernak, I., Schinelli, S., Stoica, B., and Faden, A. I., Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury, P Natl Acad Sci USA., 2005, 102 (23), 8333-8338.
[13] Johnson, V. E., Stewart, J. E., Begbie, F. D., Trojanowski, J. Q., Smith, D. H., and Stewart, W., Inflammation and white matter degeneration persist for years after a single traumatic brain injury, Brain, 2013, 136 (1), 28-42.
[14] Loane, D. J., Kumar, A., Stoica, B. A., Cabatbat, R., and Faden, A. I., Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation, Journal of Neuropathology & Experimental Neurology, 2014, 73 (1), 14-29.
[15] Kigerl, K. A., Gensel, J. C., Ankeny, D. P., Alexander, J. K., Donnelly, D. J., and Popovich, P. G., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord, J Neurosci., 2009, 29 (43), 13435-13444.
[16] Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., Dawson, T. M., Dawson, V., El-Deiry, W., and Fulda, S., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 2012, 19 (1), 107.
[17] Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L.-c., Means, T. K., and El Khoury, J., The microglial sensome revealed by direct RNA sequencing, Nat Neurosci., 2013, 16 (12), 1896.
[18] Cuartero, M. I., Ballesteros, I., Moraga, A., Nombela, F., Vivancos, J., Hamilton, J. A., Corbí, Á. L., Lizasoain, I., and Moro, M. A., N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone, Stroke, 2013, 44 (12), 3498-3508.
[19] Raghupathi, R., Cell death mechanisms following traumatic brain injury, Brain Pathol., 2004, 14 (2), 215-222.
[20] Werner, C. and Engelhard, K., Pathophysiology of traumatic brain injury, Brit J Anaesth., 2007, 99 (1), 4-9.
[21] Prinz, M. and Priller, J., Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease, Nature Reviews Neuroscience, 2014, 15 (5), 300.
[22] Anderson, T. J., Gregoire, J., Pearson, G. J., Barry, A. R., Couture, P., Dawes, M., Francis, G. A., Genest Jr, J., Grover, S., and Gupta, M., 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult, Canadian Journal of Cardiology, 2016, 32 (11), 1263-1282.
[23] Pêgo, A. P., Kubinova, S., Cizkova, D., Vanicky, I., Mar, F. M., Sousa, M. M., and Sykova, E., Regenerative medicine for the treatment of spinal cord injury: more than just promises?, Journal of cellular and molecular medicine, 2012, 16 (11), 2564-2582.
[24] Roth, T. L., Nayak, D., Atanasijevic, T., Koretsky, A. P., Latour, L. L., and McGavern, D. B., Transcranial amelioration of inflammation and cell death after brain injury, Nature, 2014, 505 (7482), 223.
[25] Bitner, B. R., Marcano, D. C., Berlin, J. M., Fabian, R. H., Cherian, L., Culver, J. C., Dickinson, M. E., Robertson, C. S., Pautler, R. G., and Kent, T. A., Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury, ACS nano, 2012, 6 (9), 8007-8014.
[26] Xu, J., Ypma, M., Chiarelli, P. A., Park, J., Ellenbogen, R. G., Stayton, P. S., Mourad, P. D., Lee, D., Convertine, A. J., and Kievit, F. M., Theranostic Oxygen Reactive Polymers for Treatment of Traumatic Brain Injury, Advanced Functional Materials, 2016, 26 (23), 4124-4133.
[27] Reddy, M. K., Wu, L., Kou, W., Ghorpade, A., and Labhasetwar, V., Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress, Applied biochemistry and biotechnology, 2008, 151 (2-3), 565.
[28] Bachelder, E. M., Beaudette, T. T., Broaders, K. E., Dashe, J., and Fréchet, J. M., Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications, Journal of the American Chemical Society, 2008, 130 (32), 10494-10495.
[29] Vasiliauskas, R., Liu, D., Cito, S., Zhang, H., Shahbazi, M.-A., Sikanen, T., Mazutis, L., and Santos, H. l. A., Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery, ACS applied materials & interfaces, 2015, 7 (27), 14822-14832.
[30] Dong, X.-x., Wang, Y., and Qin, Z.-h., Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases, Acta Pharmacologica Sinica, 2009, 30 (4), 379.
[31] Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron, 1995, 15 (4), 961-973.
[32] Stover, J. F. and Unterberg, A. W., Increased cerebrospinal fluid glutamate and taurine concentrations are associated with traumatic brain edema formation in rats, Brain research, 2000, 875 (1-2), 51-55.
[33] Grienberger, C. and Konnerth, A., Imaging calcium in neurons, Neuron, 2012, 73 (5), 862-885.
[34] Harraz, M. M., Eacker, S. M., Wang, X., Dawson, T. M., and Dawson, V. L., MicroRNA-223 is neuroprotective by targeting glutamate receptors, P Natl Acad Sci USA., 2012, 109 (46), 18962-18967.
[35] Atlante, A., Calissano, P., Bobba, A., Giannattasio, S., Marra, E., and Passarella, S., Glutamate neurotoxicity, oxidative stress and mitochondria, FEBS letters, 2001, 497 (1), 1-5.
[36] Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., and Shabbir, M. A. B., Aqueous two-phase system (ATPS): an overview and advances in its applications, Biological procedures online, 2016, 18 (1), 18.
[37] Song, Y., Sauret, A., and Cheung Shum, H., All-aqueous multiphase microfluidics, Biomicrofluidics, 2013, 7 (6), 061301.
[38] Johansson, H.-O., Karlström, G., Tjerneld, F., and Haynes, C. A., Driving forces for phase separation and partitioning in aqueous two-phase systems, Journal of Chromatography B: Biomedical Sciences and Applications, 1998, 711 (1-2), 3-17.
[39] Song, Y. and Shum, H. C., Monodisperse w/w/w double emulsion induced by phase separation, Langmuir, 2012, 28 (33), 12054-12059.
[40] Yuan, H., Ma, Q., Song, Y., Tang, M. Y., Chan, Y. K., and Shum, H. C., Phase‐Separation‐Induced Formation of Janus Droplets Based on Aqueous Two‐Phase Systems, Macromolecular Chemistry and Physics, 2017, 218 (2), 1600422.
[41] Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T., and Segura, T., Injectable and Spatially Patterned Microporous Annealed Particle (MAP) Hydrogels for Tissue Repair Applications, Advanced Science, 2018, 5 (11), 1801046.
[42] Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., and Segura, T., Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks, Nature materials, 2015, 14 (7), 737.
[43] Wei, D. X., Dao, J. W., and Chen, G. Q., A Micro‐Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration, Adv Mater., 2018, 30 (31), 1802273.
[44] Dimatteo, R., Darling, N. J., and Segura, T., In situ forming injectable hydrogels for drug delivery and wound repair, Advanced drug delivery reviews, 2018, 127 167-184.
[45] Wang, H., Revia, R., Wang, K., Kant, R. J., Mu, Q., Gai, Z., Hong, K., and Zhang, M., Paramagnetic properties of metal‐free boron‐doped graphene quantum dots and their application for safe magnetic resonance imaging, Adv Mater., 2017, 29 (11), 1605416.
[46] Cho, H., Seo, Y. K., Yoon, H. H., Kim, S. C., Kim, S. M., Song, K. Y., and Park, J. K., Neural stimulation on human bone marrow‐derived mesenchymal stem cells by extremely low frequency electromagnetic fields, Biotechnology progress, 2012, 28 (5), 1329-1335.
[47] Lim, K., Hexiu, J., Kim, J., Seonwoo, H., Cho, W. J., Choung, P.-H., and Chung, J. H., Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells, BioMed research international, 2013, 2013
[48] Nair, M., Guduru, R., Liang, P., Hong, J., Sagar, V., and Khizroev, S., Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers, Nature communications, 2013, 4 1707.
[49] Wang, Y. and Kohane, D. S., External triggering and triggered targeting strategies for drug delivery, Nature Reviews Materials, 2017, 2 (6), 17020.
[50] Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Liang, J., and Chen, Y., Room-temperature ferromagnetism of graphene, Nano letters, 2008, 9 (1), 220-224.
[51] Peng, J., Guo, Y., Lv, H., Dou, X., Chen, Q., Zhao, J., Wu, C., Zhu, X., Lin, Y., and Lu, W., Superparamagnetic reduced graphene oxide with large magnetoresistance: A surface modulation strategy, Angewandte Chemie, 2016, 128 (9), 3228-3232.
[52] Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.-H., and Butz, T., Induced magnetic ordering by proton irradiation in graphite, Physical Review Letters, 2003, 91 (22), 227201.
[53] Romero‐Aburto, R., Narayanan, T. N., Nagaoka, Y., Hasumura, T., Mitcham, T. M., Fukuda, T., Cox, P. J., Bouchard, R. R., Maekawa, T., and Kumar, D. S., Fluorinated graphene oxide; a new multimodal material for biological applications, Adv Mater., 2013, 25 (39), 5632-5637.
[54] Matte, H. R., Subrahmanyam, K., and Rao, C., Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects, The Journal of Physical Chemistry C, 2009, 113 (23), 9982-9985.
[55] Wu, C.-H., Cao, C., Kim, J. H., Hsu, C.-H., Wanebo, H. J., Bowen, W. D., Xu, J., and Marshall, J., Trojan-horse nanotube on-command intracellular drug delivery, Nano letters, 2012, 12 (11), 5475-5480.
[56] Lim, K. T., Seonwoo, H., Choi, K. S., Jin, H., Jang, K. J., Kim, J., Kim, J. W., Kim, S. Y., Choung, P. H., and Chung, J. H., Pulsed‐electromagnetic‐field‐assisted reduced graphene oxide substrates for multidifferentiation of human mesenchymal stem cells, Adv Healthc Mater., 2016, 5 (16), 2069-2079.
[57] Dai, R., Hang, Y., Liu, Q., Zhang, S., Wang, L., Pan, Y., and Chen, H., Improved Neural Differentiation of Stem Cells mediated by Magnetic Nanoparticles-based Biophysical Stimulation, Journal of Materials Chemistry B, 2019,
[58] Marcus, M., Karni, M., Baranes, K., Levy, I., Alon, N., Margel, S., and Shefi, O., Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations, Journal of nanobiotechnology, 2016, 14 (1), 37.
[59] Kim, J. A., Lee, N., Kim, B. H., Rhee, W. J., Yoon, S., Hyeon, T., and Park, T. H., Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles, Biomaterials, 2011, 32 (11), 2871-2877.
[60] Reich, D., Tanase, M., Hultgren, A., Bauer, L., Chen, C., and Meyer, G., Biological applications of multifunctional magnetic nanowires, Journal of Applied Physics, 2003, 93 (10), 7275-7280.
[61] Salata, O. V., Applications of nanoparticles in biology and medicine, Journal of nanobiotechnology, 2004, 2 (1), 3.
[62] Yoo, J., Lee, E., Kim, H. Y., Youn, D.-h., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., and Baek, S., Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy, Nature nanotechnology, 2017, 12 (10), 1006.
[63] Bodelon, G., Costas, C., Perez-Juste, J., Pastoriza-Santos, I., and Liz-Marzan, L. M., Gold nanoparticles for regulation of cell function and behavior, Nano Today, 2017, 13 40-60.
[64] Meng, L., Jiang, A., Chen, R., Li, C.-z., Wang, L., Qu, Y., Wang, P., Zhao, Y., and Chen, C., Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells, Toxicology, 2013, 313 (1), 49-58.
[65] Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M., Olmedo, I., Clos, A., Ramanujam, V. S., Urayama, A., Vergara, L., Kogan, M., and Soto, C., Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice, Biochemical and biophysical research communications, 2010, 393 (4), 649-655.
[66] Ma, S., Thiele, J., Liu, X., Bai, Y., Abell, C., and Huck, W. T., Fabrication of Microgel Particles with Complex Shape via Selective Polymerization of Aqueous Two‐Phase Systems, Small, 2012, 8 (15), 2356-2360.
[67] Alvarez-Buylla, A. and Garcıa-Verdugo, J. M., Neurogenesis in adult subventricular zone, J Neurosci., 2002, 22 (3), 629-634.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *