|
[1] Luo, C.-L., Li, B.-X., Li, Q.-Q., Chen, X.-P., Sun, Y.-X., Bao, H.-J., Dai, D.-K., Shen, Y.-W., Xu, H.-F., and Ni, H., Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice, Neuroscience, 2011, 184 54-63. [2] Mammis, A., McIntosh, T. K., and Maniker, A. H., Erythropoietin as a neuroprotective agent in traumatic brain injury, Surg Neurol., 2009, 71 (5), 527-531. [3] Negah, S. S., Khooei, A., Samini, F., and Gorji, A., Laminin-derived Ile-Lys-Val-ala-Val: a promising bioactive peptide in neural tissue engineering in traumatic brain injury, Cell Tissue Res., 2018, 371 (2), 223-236. [4] Bharadwaj, V. N., Nguyen, D. T., Kodibagkar, V. D., and Stabenfeldt, S. E., Nanoparticle‐Based Therapeutics for Brain Injury, Adv Healthc Mater., 2018, 7 (1), 1700668. [5] Liu, D., Chen, J., Jiang, T., Li, W., Huang, Y., Lu, X., Liu, Z., Zhang, W., Zhou, Z., and Ding, Q., Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate‐Induced Excitotoxicity, Adv Mater., 2018, 30 (14), 1706032. [6] Hausmann, O., Post-traumatic inflammation following spinal cord injury, Spinal cord, 2003, 41 (7), 369. [7] Liu, X. Z., Xu, X. M., Hu, R., Du, C., Zhang, S. X., McDonald, J. W., Dong, H. X., Wu, Y. J., Fan, G. S., and Jacquin, M. F., Neuronal and glial apoptosis after traumatic spinal cord injury, J Neurosci., 1997, 17 (14), 5395-5406. [8] Tower, D. B. and Young, O. M., The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysts, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale, J Neurochem., 1973, 20 (2), 269-278. [9] Chen, Y. and Swanson, R. A., Astrocytes and brain injury, J Cerebr Blood F Met., 2003, 23 (2), 137-149. [10] Karve, I. P., Taylor, J. M., and Crack, P. J., The contribution of astrocytes and microglia to traumatic brain injury, Brit J Pharmacol., 2016, 173 (4), 692-702. [11] Wilhelmsson, U., Li, L., Pekna, M., Berthold, C.-H., Blom, S., Eliasson, C., Renner, O., Bushong, E., Ellisman, M., and Morgan, T. E., Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration, J Neurosci., 2004, 24 (21), 5016-5021. [12] Di Giovanni, S., Movsesyan, V., Ahmed, F., Cernak, I., Schinelli, S., Stoica, B., and Faden, A. I., Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury, P Natl Acad Sci USA., 2005, 102 (23), 8333-8338. [13] Johnson, V. E., Stewart, J. E., Begbie, F. D., Trojanowski, J. Q., Smith, D. H., and Stewart, W., Inflammation and white matter degeneration persist for years after a single traumatic brain injury, Brain, 2013, 136 (1), 28-42. [14] Loane, D. J., Kumar, A., Stoica, B. A., Cabatbat, R., and Faden, A. I., Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation, Journal of Neuropathology & Experimental Neurology, 2014, 73 (1), 14-29. [15] Kigerl, K. A., Gensel, J. C., Ankeny, D. P., Alexander, J. K., Donnelly, D. J., and Popovich, P. G., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord, J Neurosci., 2009, 29 (43), 13435-13444. [16] Galluzzi, L., Vitale, I., Abrams, J., Alnemri, E., Baehrecke, E., Blagosklonny, M., Dawson, T. M., Dawson, V., El-Deiry, W., and Fulda, S., Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012, Cell Death Differ., 2012, 19 (1), 107. [17] Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang, L.-c., Means, T. K., and El Khoury, J., The microglial sensome revealed by direct RNA sequencing, Nat Neurosci., 2013, 16 (12), 1896. [18] Cuartero, M. I., Ballesteros, I., Moraga, A., Nombela, F., Vivancos, J., Hamilton, J. A., Corbí, Á. L., Lizasoain, I., and Moro, M. A., N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone, Stroke, 2013, 44 (12), 3498-3508. [19] Raghupathi, R., Cell death mechanisms following traumatic brain injury, Brain Pathol., 2004, 14 (2), 215-222. [20] Werner, C. and Engelhard, K., Pathophysiology of traumatic brain injury, Brit J Anaesth., 2007, 99 (1), 4-9. [21] Prinz, M. and Priller, J., Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease, Nature Reviews Neuroscience, 2014, 15 (5), 300. [22] Anderson, T. J., Gregoire, J., Pearson, G. J., Barry, A. R., Couture, P., Dawes, M., Francis, G. A., Genest Jr, J., Grover, S., and Gupta, M., 2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult, Canadian Journal of Cardiology, 2016, 32 (11), 1263-1282. [23] Pêgo, A. P., Kubinova, S., Cizkova, D., Vanicky, I., Mar, F. M., Sousa, M. M., and Sykova, E., Regenerative medicine for the treatment of spinal cord injury: more than just promises?, Journal of cellular and molecular medicine, 2012, 16 (11), 2564-2582. [24] Roth, T. L., Nayak, D., Atanasijevic, T., Koretsky, A. P., Latour, L. L., and McGavern, D. B., Transcranial amelioration of inflammation and cell death after brain injury, Nature, 2014, 505 (7482), 223. [25] Bitner, B. R., Marcano, D. C., Berlin, J. M., Fabian, R. H., Cherian, L., Culver, J. C., Dickinson, M. E., Robertson, C. S., Pautler, R. G., and Kent, T. A., Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury, ACS nano, 2012, 6 (9), 8007-8014. [26] Xu, J., Ypma, M., Chiarelli, P. A., Park, J., Ellenbogen, R. G., Stayton, P. S., Mourad, P. D., Lee, D., Convertine, A. J., and Kievit, F. M., Theranostic Oxygen Reactive Polymers for Treatment of Traumatic Brain Injury, Advanced Functional Materials, 2016, 26 (23), 4124-4133. [27] Reddy, M. K., Wu, L., Kou, W., Ghorpade, A., and Labhasetwar, V., Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress, Applied biochemistry and biotechnology, 2008, 151 (2-3), 565. [28] Bachelder, E. M., Beaudette, T. T., Broaders, K. E., Dashe, J., and Fréchet, J. M., Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications, Journal of the American Chemical Society, 2008, 130 (32), 10494-10495. [29] Vasiliauskas, R., Liu, D., Cito, S., Zhang, H., Shahbazi, M.-A., Sikanen, T., Mazutis, L., and Santos, H. l. A., Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery, ACS applied materials & interfaces, 2015, 7 (27), 14822-14832. [30] Dong, X.-x., Wang, Y., and Qin, Z.-h., Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases, Acta Pharmacologica Sinica, 2009, 30 (4), 379. [31] Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P., Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function, Neuron, 1995, 15 (4), 961-973. [32] Stover, J. F. and Unterberg, A. W., Increased cerebrospinal fluid glutamate and taurine concentrations are associated with traumatic brain edema formation in rats, Brain research, 2000, 875 (1-2), 51-55. [33] Grienberger, C. and Konnerth, A., Imaging calcium in neurons, Neuron, 2012, 73 (5), 862-885. [34] Harraz, M. M., Eacker, S. M., Wang, X., Dawson, T. M., and Dawson, V. L., MicroRNA-223 is neuroprotective by targeting glutamate receptors, P Natl Acad Sci USA., 2012, 109 (46), 18962-18967. [35] Atlante, A., Calissano, P., Bobba, A., Giannattasio, S., Marra, E., and Passarella, S., Glutamate neurotoxicity, oxidative stress and mitochondria, FEBS letters, 2001, 497 (1), 1-5. [36] Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., and Shabbir, M. A. B., Aqueous two-phase system (ATPS): an overview and advances in its applications, Biological procedures online, 2016, 18 (1), 18. [37] Song, Y., Sauret, A., and Cheung Shum, H., All-aqueous multiphase microfluidics, Biomicrofluidics, 2013, 7 (6), 061301. [38] Johansson, H.-O., Karlström, G., Tjerneld, F., and Haynes, C. A., Driving forces for phase separation and partitioning in aqueous two-phase systems, Journal of Chromatography B: Biomedical Sciences and Applications, 1998, 711 (1-2), 3-17. [39] Song, Y. and Shum, H. C., Monodisperse w/w/w double emulsion induced by phase separation, Langmuir, 2012, 28 (33), 12054-12059. [40] Yuan, H., Ma, Q., Song, Y., Tang, M. Y., Chan, Y. K., and Shum, H. C., Phase‐Separation‐Induced Formation of Janus Droplets Based on Aqueous Two‐Phase Systems, Macromolecular Chemistry and Physics, 2017, 218 (2), 1600422. [41] Darling, N. J., Sideris, E., Hamada, N., Carmichael, S. T., and Segura, T., Injectable and Spatially Patterned Microporous Annealed Particle (MAP) Hydrogels for Tissue Repair Applications, Advanced Science, 2018, 5 (11), 1801046. [42] Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D., and Segura, T., Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks, Nature materials, 2015, 14 (7), 737. [43] Wei, D. X., Dao, J. W., and Chen, G. Q., A Micro‐Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration, Adv Mater., 2018, 30 (31), 1802273. [44] Dimatteo, R., Darling, N. J., and Segura, T., In situ forming injectable hydrogels for drug delivery and wound repair, Advanced drug delivery reviews, 2018, 127 167-184. [45] Wang, H., Revia, R., Wang, K., Kant, R. J., Mu, Q., Gai, Z., Hong, K., and Zhang, M., Paramagnetic properties of metal‐free boron‐doped graphene quantum dots and their application for safe magnetic resonance imaging, Adv Mater., 2017, 29 (11), 1605416. [46] Cho, H., Seo, Y. K., Yoon, H. H., Kim, S. C., Kim, S. M., Song, K. Y., and Park, J. K., Neural stimulation on human bone marrow‐derived mesenchymal stem cells by extremely low frequency electromagnetic fields, Biotechnology progress, 2012, 28 (5), 1329-1335. [47] Lim, K., Hexiu, J., Kim, J., Seonwoo, H., Cho, W. J., Choung, P.-H., and Chung, J. H., Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells, BioMed research international, 2013, 2013 [48] Nair, M., Guduru, R., Liang, P., Hong, J., Sagar, V., and Khizroev, S., Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers, Nature communications, 2013, 4 1707. [49] Wang, Y. and Kohane, D. S., External triggering and triggered targeting strategies for drug delivery, Nature Reviews Materials, 2017, 2 (6), 17020. [50] Wang, Y., Huang, Y., Song, Y., Zhang, X., Ma, Y., Liang, J., and Chen, Y., Room-temperature ferromagnetism of graphene, Nano letters, 2008, 9 (1), 220-224. [51] Peng, J., Guo, Y., Lv, H., Dou, X., Chen, Q., Zhao, J., Wu, C., Zhu, X., Lin, Y., and Lu, W., Superparamagnetic reduced graphene oxide with large magnetoresistance: A surface modulation strategy, Angewandte Chemie, 2016, 128 (9), 3228-3232. [52] Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.-H., and Butz, T., Induced magnetic ordering by proton irradiation in graphite, Physical Review Letters, 2003, 91 (22), 227201. [53] Romero‐Aburto, R., Narayanan, T. N., Nagaoka, Y., Hasumura, T., Mitcham, T. M., Fukuda, T., Cox, P. J., Bouchard, R. R., Maekawa, T., and Kumar, D. S., Fluorinated graphene oxide; a new multimodal material for biological applications, Adv Mater., 2013, 25 (39), 5632-5637. [54] Matte, H. R., Subrahmanyam, K., and Rao, C., Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects, The Journal of Physical Chemistry C, 2009, 113 (23), 9982-9985. [55] Wu, C.-H., Cao, C., Kim, J. H., Hsu, C.-H., Wanebo, H. J., Bowen, W. D., Xu, J., and Marshall, J., Trojan-horse nanotube on-command intracellular drug delivery, Nano letters, 2012, 12 (11), 5475-5480. [56] Lim, K. T., Seonwoo, H., Choi, K. S., Jin, H., Jang, K. J., Kim, J., Kim, J. W., Kim, S. Y., Choung, P. H., and Chung, J. H., Pulsed‐electromagnetic‐field‐assisted reduced graphene oxide substrates for multidifferentiation of human mesenchymal stem cells, Adv Healthc Mater., 2016, 5 (16), 2069-2079. [57] Dai, R., Hang, Y., Liu, Q., Zhang, S., Wang, L., Pan, Y., and Chen, H., Improved Neural Differentiation of Stem Cells mediated by Magnetic Nanoparticles-based Biophysical Stimulation, Journal of Materials Chemistry B, 2019, [58] Marcus, M., Karni, M., Baranes, K., Levy, I., Alon, N., Margel, S., and Shefi, O., Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations, Journal of nanobiotechnology, 2016, 14 (1), 37. [59] Kim, J. A., Lee, N., Kim, B. H., Rhee, W. J., Yoon, S., Hyeon, T., and Park, T. H., Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles, Biomaterials, 2011, 32 (11), 2871-2877. [60] Reich, D., Tanase, M., Hultgren, A., Bauer, L., Chen, C., and Meyer, G., Biological applications of multifunctional magnetic nanowires, Journal of Applied Physics, 2003, 93 (10), 7275-7280. [61] Salata, O. V., Applications of nanoparticles in biology and medicine, Journal of nanobiotechnology, 2004, 2 (1), 3. [62] Yoo, J., Lee, E., Kim, H. Y., Youn, D.-h., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., and Baek, S., Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy, Nature nanotechnology, 2017, 12 (10), 1006. [63] Bodelon, G., Costas, C., Perez-Juste, J., Pastoriza-Santos, I., and Liz-Marzan, L. M., Gold nanoparticles for regulation of cell function and behavior, Nano Today, 2017, 13 40-60. [64] Meng, L., Jiang, A., Chen, R., Li, C.-z., Wang, L., Qu, Y., Wang, P., Zhao, Y., and Chen, C., Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells, Toxicology, 2013, 313 (1), 49-58. [65] Lasagna-Reeves, C., Gonzalez-Romero, D., Barria, M., Olmedo, I., Clos, A., Ramanujam, V. S., Urayama, A., Vergara, L., Kogan, M., and Soto, C., Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice, Biochemical and biophysical research communications, 2010, 393 (4), 649-655. [66] Ma, S., Thiele, J., Liu, X., Bai, Y., Abell, C., and Huck, W. T., Fabrication of Microgel Particles with Complex Shape via Selective Polymerization of Aqueous Two‐Phase Systems, Small, 2012, 8 (15), 2356-2360. [67] Alvarez-Buylla, A. and Garcıa-Verdugo, J. M., Neurogenesis in adult subventricular zone, J Neurosci., 2002, 22 (3), 629-634.
|