帳號:guest(18.226.200.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉文歆
作者(外文):Ye, Wen-Xin
論文名稱(中文):馬凡氏綜合症患者之心臟心肌運動和異常主動脈血流的交互作用
論文名稱(外文):Interaction of Cardiac Myocardial Motion and Abnormal Aortic Flow in Marfan Syndrome
指導教授(中文):彭旭霞
指導教授(外文):Peng, Hsu-Hsia
口試委員(中文):彭馨蕾
劉益瑞
口試委員(外文):Peng, Shin-Lei
Liu, Yi-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:106012466
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:馬凡氏綜合症心肌運動主動脈血流
外文關鍵詞:Marfan syndromeMyocardial motionAortic flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
馬凡氏綜合症是一種遺傳性結締組織疾病,為常染色體顯性遺傳,患病特徵為四肢、手指、腳趾細長不勻稱,身高明顯超出常人,伴有心血管系統異常,特別是合併的心臟瓣膜異常和主動脈瘤。該病同時可能影響其他器官,包括肺、眼、硬脊膜、硬顎等。馬凡氏綜合症患者可以根據臨床表現骨骼、眼、心血管三個主要特徵的改變三個主要特徵和家族史即可診斷。但馬凡氏綜合症在臨床早期的症狀相對不明顯,有報告指出馬凡氏綜合症被檢出年齡段正逐年遞增,而被檢出時往往已經發生了主動脈剝離的情況,即馬凡氏綜合症最嚴重的併發症。且目前關於馬凡氏綜合症的研究大多數局限在對患者主動脈功能的研究,雖然近幾年來,越來越多的研究將焦點放在患者的心肌功能,但我們仍然無法得知兩者之間是否存在交互作用。因此為了避免馬凡氏綜合症患者錯過早期調養時段而直接產生晚期病變至關重要。我們的目的是早期評估患者主動脈血流參數與心肌功能的病變風險並觀察對馬凡氏綜合症的影響。
我們招募了36名健康受試者和17名馬凡氏綜合症患者進行檢查。掃描動態短軸影像,用於評估心臟體積、質量和功能。組織相位圖以評估左心室整體的心肌運動。獲得的四維血流磁振造影用於分析主動脈血流。我們將健康受試者及馬凡氏綜合症患者以年齡分組進行討論,並對心肌運動和主動脈血流進行相關性分析。
馬凡氏綜合症患者在升主動脈有較低的血流平均速度,搏動指數和較高的逆流,硬化指數,壓力差。在左心室基底有著較低的收縮縱向峰值速度,舒張縱向峰值速度,舒張徑向峰值速度和較長的舒張縱向到達峰值速度的時間。病人的主動脈血流平均速度與左心室收縮縱向峰值速度,舒張縱向峰值速度,舒張徑向峰值速度有正向相關性,逆流與左心室舒張縱向到達峰值速度的時間有正向相關性。搏動指數與左心室舒張縱向峰值速度,舒張徑向峰值速度有正向相關性。此外,硬化係數,壓力差都與左心室舒張縱向峰值速度,舒張徑向峰值速度有負向相關性。
本研究中的參數與相關性分析有助於在馬凡氏綜合症患者早期評估主動脈及心肌功能時給予病人適當的風險警告及預防病情的演進。
Marfan syndrome is an autosomal dominant hereditary connective tissue disease. The disease is characterized by unevenness of the limbs, fingers, and toes, and the height is significantly higher than that of ordinary people, accompanied by abnormal cardiovascular system, especially combined heart valve abnormalities and aortic aneurysms. The disease may also affect other organs, including the lungs, eyes, dura mater, hard palate and so on. Patients with Marfan syndrome can be diagnosed according to the three main signs of clinical manifestations of bone, eye, and cardiovascular changes or family history. However, the symptoms of Marfan syndrome in the early stage of the disease are relatively insignificant. It has been reported that the age at which Marfan syndrome is detected is increasing year by year, and the aortic dissection which is the most serious complication often occurs when it is detected. And most of the current research on Marfan syndrome is limited to the study of aortic function in patients. Although in recent years, more and more research has focused on the myocardial function of patients, but we still don't know if there is any interaction between them. Therefore, in order to avoid patients with Marfan syndrome miss the early nursery time instead of direct production of advanced lesions is essential. Our aim was to early evaluate the risk of lesions in patients with aortic blood flow parameters and myocardial function and to observe the effect on Marfan syndrome.
We recruited 36 normal volunteers and 17 patients with Marfan syndrome for examination. Scan dynamic short-axis images for heart volume, quality, and myocardial function. Tissue phase mapping were used to assess myocardial motion throughout the left ventricle. The obtained four-dimensional flow magnetic resonance imaging was used to analyze aortic blood flow. We discuss normal volunteers and Marfan syndrome in groups by age and correlate myocardial motion and aortic blood flow.
Patients with Marfan syndrome have lower mean velocity, distensibility and higher regurgitation fraction, β index, and pressure difference (PD) in the ascending aorta. In left ventricular base area, patients has a lower systolic longitudinal peak velocity, diastolic longitudinal peak velocity, diastolic radial peak velocity, and longer diastolic longitudinal time to peak velocity. The patient's aortic mean velocity was positively correlated with the left ventricular systolic longitudinal peak velocity, diastolic longitudinal peak velocity, diastolic radial peak velocity, and the regurgitation fraction was positively correlated with the left ventricular diastolic longitudinal time to peak velocity.
The pulsation index is positively correlated with the left ventricular diastolic longitudinal peak velocity and the diastolic radial peak velocity. In addition, the β index and PD are negatively correlated with the left ventricular diastolic longitudinal peak velocity and the diastolic radial peak velocity.
The parameters and correlation analysis in this study are helpful to give patients a risk warning and prevent the progression of the disease in the early evaluation of aortic and myocardial function in patients with Marfan syndrome.
ABSTRACT i
CONTENTS v
TABLES vii
FIGURES ix
Chapter 1 Introduction 1
1.1 Marfan syndrome (MFS) 1
1.1.1 Pathophysiology 1
1.1.2 Aortic Complications 2
1.2 Diagnosis of Marfan syndrome 4
1.2.1 Diagnostic criteria 4
1.2.2 Ultrasound 6
1.2.3 Cardiovascular Magnetic Resonance 9
1.3 Treatment in MFS 13
1.4 Motivation 15
1.5 Orientation of Dissertation 15
Chapter 2 Theory 17
2.1 Phase-Contrast MRI 17
2.2 Tissue Phase Mapping 18
2.3 4D Flow MRI 18
Chapter 3 Materials and Methods 22
3.1 Study Cohort 22
3.2 MRI Acquisition 22
3.2.1 Steady State Free Precession Imaging 22
3.2.2 Tissue Phase Mapping 23
3.2.3 4D flow MRI 23
3.3 Data Analysis: Myocardial Motion 25
3.3.1 Myocardial Peak Velocity and Time to Peak 27
3.3.2 Myocardial Twist 29
3.4 Data Analysis: Aortic Flow 30
3.4.1 Aortic root diameter 30
3.4.2 Flow Parameter 31
3.4.3 β Index 32
3.4.4 Pressure Difference 32
3.5 Statistical Analysis 33
Chapter 4 Results 34
4.1 Demographics of study cohorts 34
4.2 Cardiac volumetric index 36
4.3 Myocaridal Motion 38
4.3.1 Segmental TPM parameters 38
4.3.2 Regional TPM parameters 45
4.3.3 Myocaridal Twist 50
4.4 Aortic Flow 52
4.4.1 4D flow parameters 52
4.4.2 Pressure Difference 56
4.5 Correlation analysis 59
4.5.1 Correlation analysis: Aortic root diameter and all the other parameters 59
4.5.2 Correlation analysis: Age and all the other parameters 62
4.5.3 Correlation analysis: LVEF and all the other parameters 65
4.5.4 Correlation analysis: Mean velocity and Myocaridal systolic Motion 68
4.5.5 Correlation analysis: Aortic flow and Myocardial diastolic Motion 68
4.5.6 Correlation analysis: Distensibility and Myocardial diastolic Motion 70
4.5.7 Correlation analysis: β index and Myocardial diastolic Motion 71
4.5.8 Correlation analysis: Pressure Difference and Myocardial Motion 72
Chapter 5 Discussion 83
5.1 Demographics of study cohorts 83
5.2 Myocardial Motion 83
5.2.1 TPM parameters 83
5.2.2 Myocardial Twist 84
5.3 Aortic flow 85
5.3.1 4D Flow parameters 85
5.3.2 Pressure Difference 86
5.4 Correlation analysis 86
5.4.1 Correlation analysis: Aortic root diameter and all the other parameters 86
5.4.2 Correlation analysis: Age and all the other parameters 86
5.4.3 Correlation analysis: LVEF and all the other parameters 87
5.4.4 Correlation analysis: Mean velocity and Myocardial Motion 87
5.4.5 Correlation analysis: Retrograde and Myocardial Motion 88
5.4.6 Correlation analysis: Distensibility, β index and Myocardial Motion 89
5.4.7 Correlation analysis: Pressure Difference and Myocardial Motion 89
5.5 Multivariable regression analysis 89
5.6 ROC curve 90
5.7 Limitations 91
5.8 Future work 91
Chapter 6 Conclusion 92
Chapter 7 References 93
Chapter 8 Appendix 98
8.1. Abbreviation list 98
8.2. Plane 2 hemodynamic parameters 100
8.3. Q & A 101


1. Keane MG, Pyeritz RE. Medical management of Marfan syndrome. Circulation. 2008;117(21):2802-13.
2. Pyeritz RE, McKusick VA. The Marfan syndrome: diagnosis and management. N Engl J Med. 1979;300(14):772-7.
3. Marfan A. Un cas de deformation congenitale des quatres membres plus prononcee aux extremities characterisee par lallongement des os avec un certain degre d amincissement Bull Mem Soc Med Hop Paris. 1896;13:220.
4. Le E. Arachnodactyly complicated by dislocated lens and death from rupture of dissecting aneurysm of aorta. J Am Med Association. 1943;123(2):88-9.
5. Schorr S, Braun K, Wildman J. Congenital aneurysmal dilatation of the ascending aorta associated with arachnodactyly; an angiocardiographic study. Am Heart J. 1951;42(4):610-6.
6. Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet. 2000;37(1):9-25.
7. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117-21.
8. Ng CM, Cheng A, Myers LA, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114(11):1586-92.
9. Dormand H, Mohiaddin RH. Cardiovascular magnetic resonance in Marfan syndrome. J Cardiovasc Magn Reson. 2013;15:33.
10. Alpendurada F, Mohiaddin R. 1039 Prevalence of cardiovascular manifestations in patients with Marfan syndrome: a cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic Resonance. 2008;10(1):1-2.
11. Detaint D, Faivre L, Collod-Beroud G, et al. Cardiovascular manifestations in men and women carrying a FBN1 mutation. Eur Heart J. 2010;31(18):2223-9.
12. Beighton P, de Paepe A, Danks D, et al. International Nosology of Heritable Disorders of Connective Tissue, Berlin, 1986. Am J Med Genet. 1988;29(3):581-94.
13. Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337-9.
14. De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet. 1996;62(4):417-26.
15. Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476-85.
16. Groth KA, Hove H, Kyhl K, et al. Prevalence, incidence, and age at diagnosis in Marfan Syndrome. Orphanet J Rare Dis. 2015;10:153.
17. Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation. 1995;91(3):734-40.
18. Roman MJ, Rosen SE, Kramer-Fox R, Devereux RB. Prognostic significance of the pattern of aortic root dilation in the Marfan syndrome. J Am Coll Cardiol. 1993;22(5):1470-6.
19. Canadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol. 2010;7(5):256-65.
20. Dietz HC, Loeys B, Carta L, Ramirez F. Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet. 2005;139C(1):4-9.
21. Tae HJ, Petrashevskaya N, Marshall S, Krawczyk M, Talan M. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes. Am J Physiol Heart Circ Physiol. 2016;310(2):H290-9.
22. Kiotsekoglou A, Saha SK, Moggridge JC, et al. Effect of aortic stiffness on left ventricular long-axis systolic function in adults with Marfan syndrome. Hellenic J Cardiol. 2010;51(6):501-11.
23. Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med. 2006;166(13):1350-6.
24. Kim SY, Wolfe DS, Taub CC. Cardiovascular outcomes of pregnancy in Marfan's syndrome patients: A literature review. Congenit Heart Dis. 2018;13(2):203-9.
25. Winther S, Williams LK, Keir M, et al. Cardiovascular Magnetic Resonance Provides Evidence of Abnormal Myocardial Strain and Primary Cardiomyopathy in Marfan syndrome. J Comput Assist Tomogr. 2019.
26. Oshinski JN, Parks WJ, Markou CP, et al. Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J Am Coll Cardiol. 1996;28(7):1818-26.
27. Geiger J, Markl M, Herzer L, et al. Aortic flow patterns in patients with Marfan syndrome assessed by flow-sensitive four-dimensional MRI. J Magn Reson Imaging. 2012;35(3):594-600.
28. Wang HH, Chiu HH, Tseng WY, Peng HH. Does altered aortic flow in marfan syndrome relate to aortic root dilatation? J Magn Reson Imaging. 2016;44(2):500-8.
29. Silverman DI, Gray J, Roman MJ, et al. Family history of severe cardiovascular disease in Marfan syndrome is associated with increased aortic diameter and decreased survival. J Am Coll Cardiol. 1995;26(4):1062-7.
30. Singh SD, Xu XY, Wood NB, et al. Aortic flow patterns before and after personalised external aortic root support implantation in Marfan patients. J Biomech. 2016;49(1):100-11.
31. Beller CJ, Labrosse MR, Thubrikar MJ, Robicsek F. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation. 2004;109(6):763-9.
32. Beller CJ, Labrosse MR, Thubrikar MJ, Robicsek F. Finite element modeling of the thoracic aorta: including aortic root motion to evaluate the risk of aortic dissection. J Med Eng Technol. 2008;32(2):167-70.
33. Singh SD, Xu XY, Pepper JR, Izgi C, Treasure T, Mohiaddin RH. Effects of aortic root motion on wall stress in the Marfan aorta before and after personalised aortic root support (PEARS) surgery. J Biomech. 2016;49(10):2076-84.
34. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging. 2012;36(5):1015-36.
35. Hennig J, Schneider B, Peschl S, Markl M, Krause T, Laubenberger J. Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. J Magn Reson Imaging. 1998;8(4):868-77.
36. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.
37. von Knobelsdorff-Brenkenhoff F, Rudolph A, Wassmuth R, et al. Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ Cardiovasc Imaging. 2009;2(5):397-404, 2 p following
38. Mas-Stachurska A, Siegert AM, Batlle M, et al. Cardiovascular Benefits of Moderate Exercise Training in Marfan Syndrome: Insights From an Animal Model. J Am Heart Assoc. 2017;6(9).
39. Bock J, Frydrychowicz A, Lorenz R, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med. 2011;66(4):1079-88.
40. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303-11; discussion 12-3.
41. Devereux RB, de Simone G, Arnett DK, et al. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >/=15 years of age. Am J Cardiol. 2012;110(8):1189-94.
42. Cook JR, Carta L, Benard L, et al. Abnormal muscle mechanosignaling triggers cardiomyopathy in mice with Marfan syndrome. J Clin Invest. 2014;124(3):1329-39.
43. Campens L, Renard M, Trachet B, et al. Intrinsic cardiomyopathy in Marfan syndrome: results from in-vivo and ex-vivo studies of the Fbn1C1039G/+ model and longitudinal findings in humans. Pediatr Res. 2015;78(3):256-63.
44. Ashikaga H, Criscione JC, Omens JH, Covell JW, Ingels NB, Jr. Transmural left ventricular mechanics underlying torsional recoil during relaxation. Am J Physiol Heart Circ Physiol. 2004;286(2):H640-7.
45. Jahren SE, Winkler BM, Heinisch PP, Wirz J, Carrel T, Obrist D. Aortic root stiffness affects the kinematics of bioprosthetic aortic valves. Interact Cardiovasc Thorac Surg. 2017;24(2):173-80.
46. Hundley WG, Kitzman DW, Morgan TM, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38(3):796-802.
47. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670-9.
48. Karagodin I, Aba-Omer O, Sparapani R, Strande JL. Aortic stiffening precedes onset of heart failure with preserved ejection fraction in patients with asymptomatic diastolic dysfunction. BMC Cardiovasc Disord. 2017;17(1):62.
49. Barker AJ, van Ooij P, Bandi K, et al. Viscous energy loss in the presence of abnormal aortic flow. Magn Reson Med. 2014;72(3):620-8.
50. Yi SX. [heart failure with preserved ejection fraction is a special type of heart failure]. Zhonghua Xin Xue Guan Bing Za Zhi. 2017;45(6):482-4.
51. von Knobelsdorff-Brenkenhoff F, Hennig P, Menza M, et al. Myocardial dysfunction in patients with aortic stenosis and hypertensive heart disease assessed by MR tissue phase mapping. J Magn Reson Imaging. 2016;44(1):168-77.
52. Harrison MR, Clifton GD, Berk MR, DeMaria AN. Effect of blood pressure and afterload on Doppler echocardiographic measurements of left ventricular systolic function in normal subjects. Am J Cardiol. 1989;64(14):905-8.
53. Bouzeghrane F, Reinhardt DP, Reudelhuber TL, Thibault G. Enhanced expression of fibrillin-1, a constituent of the myocardial extracellular matrix in fibrosis. Am J Physiol Heart Circ Physiol. 2005;289(3):H982-91.
54. Shores J, Berger KR, Murphy EA, Pyeritz RE. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan's syndrome. N Engl J Med. 1994;330(19):1335-41.
55. Wilson DG, Bellamy MF, Ramsey MW, et al. Endothelial function in Marfan syndrome: selective impairment of flow-mediated vasodilation. Circulation. 1999;99(7):909-15.
56. Nataatmadja M, West J, West M. Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation. 2006;114(1 Suppl):I371-7.
57. Mariko B, Ghandour Z, Raveaud S, et al. Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells. Am J Physiol Cell Physiol. 2010;299(5):C977-87.
58. Jung B, Foll D, Bottler P, Petersen S, Hennig J, Markl M. Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. J Magn Reson Imaging. 2006;24(5):1033-9.
59. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543-67.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *