帳號:guest(18.188.107.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阿米塔·西哈格
作者(外文):Sihag, Amita
論文名稱(中文):碳負載金屬催化劑上氫吸附的第一性原理研究
論文名稱(外文):First Principles Investigations of Hydrogen Adsorption on Carbon-Supported Metal Catalysts
指導教授(中文):陳馨怡
Dyer, Matthew
指導教授(外文):Chen, Hsin-Yi Tiffany
Dyer, Matthew
口試委員(中文):郭金龙
安德鲁·洛格斯代尔
拉什米塔·拉瓦尔
乔治·达林
杨家民
口試委員(外文):Kuo, Chin-Lung
Logsdail, Andrew
Raval, Rasmita
Darling, George
Yang, Chia-Min
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011860
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:185
中文關鍵詞:密度泛函理论储氢氢气溢出碳基材料
外文關鍵詞:Density functional theoryHydrogen storageHydrogen spillovercarbon-based material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Hydrogen is well established as a renewable and clean alternative to conventional fossil fuels and is a potential solution to the global energy crisis. With the ever-rising demand for hydrogen in numerous industries worldwide, there is a clear need for more efficient hydrogen storage
methods. In this dissertation, ab-initio density functional theory calculations were performed to extensively investigate both well-ordered and amorphous carbon-based materials for hydrogen adsorption and further metal decoration for possible enhancement in their performance. It was observed that although pristine graphene does not favour spontaneous dissociation and adsorption of hydrogen atoms due to a stable sp2 hybridized structure, local distortions due to defects can cause a change in hybridization to dissociate and adsorb hydrogen spontaneously on certain two-fold coordinated carbon sites. Similarly, the presence of different bonding environments in amorphous carbon structures play an active role in hydrogen adsorption. Hydrogen interacts stronger with two-fold coordinated carbon atoms as compared to three- and four-fold coordinated carbon. High migration barriers for hydrogen atoms on
carbon supports make them unlikely to spontaneously spread over the surfaces. To achieve further enhancement, the interaction of metal clusters (Pt and Ni) with these surfaces were considered. It was observed that hydrogen adsorption strength on the carbon atoms of graphene
and amorphous carbon increases due to the presence of metal clusters. In addition, the metal support interaction is found to increase with the presence of vacancy defects in the vicinity, which leads to lower energy barriers for hydrogen migration from the metal cluster to the surface. Hydrogen adsorption in a dissociative form on all these surfaces shows a higher saturation limit in the case of Pt clusters as compared to Ni. Overall, metal clusters adsorbed on the carbon supports was proven beneficial for hydrogen adsorption and is crucial to designing efficient materials for H-storage.
Abstract 8
1Introduction 9
1.1 Hydrogen and its applications 9
1.2 Hydrogen: overview of generation and storage 11
1.3 Carbon-based materials for hydrogen adsorption 15
1.4 Efficient use of metal catalyst and spillover phenomenon 21
1.5 Motivation 23
2Methods 25
2.1 Introduction 25
2.2 The many-body problem 26
2.3 Born-Oppenheimer Approximation 27
2.4 Density Functional Theory 28
2.5 The Pseudopotential method 33
2.5.1 Projector Augmented Wave (PAW) method 34
2.6 DFT-D3 Dispersion correction 37
2.7 Ab-initio Molecular dynamics (AIMD) 39
2.8 Bader charge 42
2.9 Nudged Elastic band (NEB) method 45
3Hydrogen dissociation, adsorption, and migration on pristine and defective graphene surfaces
48
3.1 Introduction 48
3.2 Computational details 50
3.3 Result and discussions 52
3.3.1 Pristine and defective (Single and di-vacancy) graphene surfaces 52
3.3.2 Atomic hydrogen adsorption on single and di-vacancy graphene 54
3.3.3 Molecular and dissociative hydrogen adsorption on single and di-vacancy graphene 58
3.3.4 Multiple hydrogen adsorption on single vacancy graphene 63
3.3.5 Hydrogen migration on single and di-vacancy graphene 64
3.4 Conclusions 65
4Hydrogen dissociation and adsorption on amorphous carbon surfaces 67
4.1 Introduction 67
4.2 Computational details 68
4.3 Results and discussions 70
4.3.1 Amorphous carbon structure 70
4.3.2 H2 adsorption on the amorphous carbon surface 72
4.3.3 Single H atom adsorption on the amorphous carbon surface 76
4.3.4 Multiple H2 dissociative adsorptions on the amorphous carbon surface 82
4.4 Conclusions 85
5Hydrogen dissociation, adsorption, and spillover on Pt4 and Ni4 adsorbed on graphene
surfaces 87
5.1 Introduction 87
5.2 Computational details 88
5.3 Results and discussion 90
5.3.1 Pt4 and Ni4 adsorption on the graphene surface 90
5.3.2 Multiple H2 dissociative adsorptions on isolated atoms and clusters 94
5.3.3 Hydrogen adsorption on Pt4/graphene and Ni4/graphene surfaces 100
5.3.4 H spillover phenomenon 103
5.4 Conclusions 109
6Hydrogen dissociation, adsorption, and spillover on Pt4 adsorbed defective graphene surfaces
111
6.1 Introduction 111
6.2 Computational details 112
6.3 Results and discussion 113
6.3.1 Pt4 adsorption on single and di-vacancy graphene 113
6.3.2 Atomic hydrogen adsorption on Pt4/defective graphene 116
6.3.3 Atomic hydrogen adsorption on graphene surface of Pt4/defective graphene 117
6.3.4 Hydrogen spillover 119
6.4 Conclusion 127
7Hydrogen dissociation, adsorption, and spillover on Pt and Ni adsorbed amorphous carbon
surfaces 129
7.1 Introduction 129
7.2 Computational details 130
7.3 Results and discussion 131
7.3.1 Nin and Ptn adsorption on the amorphous carbon surface 131
7.3.2 Hydrogen adsorption on Ni and Pt for Nin/a-C and Ptn/a-C surfaces 135
7.3.3 Hydrogen adsorption on amorphous carbon for Ni4/a-C and Pt4/a-C surfaces 139
7.3.4 H spillover phenomenon 140
7.4 Conclusion 144
8Concluding remarks and outlook 146
8.1 Conclusion 146
8.2 Scope for future work 149
9Bibliography 151
10Appendix 160
11List of publications 184
12Acknowledgements 185
1. Information, N. N. C. f. E. State of the Climate: Monthly Global Climate Report for August 2022.
https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202208 (accessed September
28, 2022).
2. Hannah, R.; Max, R.; Pablo, R. Energy. https://ourworldindata.org/energy.
3. Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.;
Ward, K. R., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental
Science 2019, 12 (2), 463-491.
4. Rahul, K.; Elby, T.; Maryam, S.; Olena, O.; Sivakumar, R.; Ananth, R.; Sousa, J. M. G.; Ferreira,
A. L. C.; João Campos, G.; Jose, G., Hydrogen Storage for Energy Application. 2012.
5. Grove, W. R., XXIV. On voltaic series and the combination of gases by platinum. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1839, 14 (86-87), 127-130.
6. Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D., Hydrogen energy systems:
A critical review of technologies, applications, trends and challenges. Renewable and Sustainable
Energy Reviews 2021, 146, 111180.
7. Schlapbach, L.; Züttel, A., Hydrogen-storage materials for mobile applications. Materials for
sustainable energy: a collection of peer-reviewed research and review articles from nature publishing
group 2011, 265-270.
8. Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G., The U.S. Department of Energy's
National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle
requirements. Catalysis Today 2007, 120 (3), 246-256.
9. Frischauf, N., 5 - Hydrogen-fueled spacecraft and other space applications of hydrogen. In
Compendium of Hydrogen Energy, Ball, M.; Basile, A.; Veziroğlu, T. N., Eds. Woodhead Publishing:
Oxford, 2016; pp 87-107.
10. Liu, H., Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese
Journal of Catalysis 2014, 35 (10), 1619-1640.
11. Valera-Medina, A.; Amer-Hatem, F.; Azad, A. K.; Dedoussi, I. C.; de Joannon, M.; Fernandes,
R. X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; McGowan, J.; Mounaim-Rouselle, C.; OrtizPrado, A.; Ortiz-Valera, A.; Rossetti, I.; Shu, B.; Yehia, M.; Xiao, H.; Costa, M., Review on Ammonia
as a Potential Fuel: From Synthesis to Economics. Energy & Fuels 2021, 35 (9), 6964-7029.
12. Han, Z.; Chen, H.; Li, X.; Jiang, R.; Zhou, S., Novel application of MgH2/MoS2 hydrogen storage
materials to thiophene hydrodesulfurization: A combined experimental and theoretical case study.
Materials & Design 2018, 158, 213-223.
13. Ishaq, H.; Dincer, I.; Crawford, C., A review on hydrogen production and utilization: Challenges
and opportunities. International Journal of Hydrogen Energy 2022, 47 (62), 26238-26264.
14. Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward,
K. R., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science
2019, 12 (2), 463-491.
15. Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T.; Ashuri, T.; Krohn, J.
Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect Applied Sciences [Online], 2019.
16. UK hydrogen strategy. Chemistry & Industry 2021, 85 (9), 17-17.
17. Wang, S.; Nabavi, S. A.; Clough, P. T., A review on bi/polymetallic catalysts for steam methane
reforming. International Journal of Hydrogen Energy 2023, 48 (42), 15879-15893.
18. Shiva Kumar, S.; Himabindu, V., Hydrogen production by PEM water electrolysis – A review.
Materials Science for Energy Technologies 2019, 2 (3), 442-454.
19. Semelsberger, T. A., FUELS – HYDROGEN STORAGE | Chemical Carriers. In Encyclopedia of
Electrochemical Power Sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 504-518.
20. Meramo-Hurtado, S. I.; Puello, P.; Cabarcas, A., Process Analysis of Hydrogen Production via
Biomass Gasification under Computer-Aided Safety and Environmental Assessments. ACS Omega
2020, 5 (31), 19667-19681.
21. Safari, F.; Dincer, I., A review and comparative evaluation of thermochemical water splitting
cycles for hydrogen production. Energy Conversion and Management 2020, 205, 112182.
22. Sharma, A.; Arya, S. K., Hydrogen from algal biomass: A review of production process.
Biotechnology Reports 2017, 15, 63-69.
23. Ströbel, R.; Garche, J.; Moseley, P. T.; Jörissen, L.; Wolf, G., Hydrogen storage by carbon
materials. Journal of Power Sources 2006, 159 (2), 781-801.
24. Rivard, E.; Trudeau, M.; Zaghib, K., Hydrogen storage for mobility: a review. Materials 2019,
12 (12), 1973.
25. Mohan, M.; Sharma, V. K.; Kumar, E. A.; Gayathri, V., Hydrogen storage in carbon materials—
A review. Energy Storage 2019, 1 (2), e35.
26. Hydrogen Storage for Light-Duty Fuel Cell Vehicles 2017.
https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro_storage_expla
nation.pdf (accessed 25 September, 2022).
27. Dewangan, S. K.; Mohan, M.; Kumar, V.; Sharma, A.; Ahn, B., A comprehensive review of the
prospects for future hydrogen storage in materials-application and outstanding issues. International
Journal of Energy Research 2022, 46 (12), 16150-16177.
28. Sambo, C.; Dudun, A.; Samuel, S. A.; Esenenjor, P.; Muhammed, N. S.; Haq, B., A review on
worldwide underground hydrogen storage operating and potential fields. International Journal of
Hydrogen Energy 2022, 47 (54), 22840-22880.
29. Eberle, U.; Müller, B.; von Helmolt, R., Fuel cell electric vehicles and hydrogen infrastructure:
status 2012. Energy & Environmental Science 2012, 5 (10), 8780-8798.
30. Brunner Markus Kampitsch, T.; Kircher, O., Cryo-Compressed Hydrogen Storage. In Fuel Cells :
Data, Facts and Figures, 2016; pp 162-174.
31. Sadaghiani, M. S.; Mehrpooya, M., Introducing and energy analysis of a novel cryogenic
hydrogen liquefaction process configuration. International Journal of Hydrogen Energy 2017, 42 (9),
6033-6050.
32. Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M., Metal hydride materials for solid hydrogen
storage: A review. International Journal of Hydrogen Energy 2007, 32 (9), 1121-1140.
33. Langmi, H. W.; Ren, J.; North, B.; Mathe, M.; Bessarabov, D., Hydrogen storage in metalorganic frameworks: a review. Electrochimica Acta 2014, 128, 368-392.
34. Kleperis, J.; Lesnicenoks, P.; Grinberga, L.; Chikvaidze, G.; Klavins, J., Zeolite as Material for
Hydrogen Storage in Transport Applications/CEOLITA KA UDENRAZA UZGLABASANAS VIDES IZPETE.
Latvian Journal of Physics and Technical Sciences 2013, 50 (3), 59.
35. Tozzini, V.; Pellegrini, V., Prospects for hydrogen storage in graphene. Physical Chemistry
Chemical Physics 2013, 15 (1), 80-89.
36. Dillon, A. C.; Gennett, T.; Alleman, J.; Jones, K.; Parilla, P.; Heben, M., Carbon nanotube
materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review 2000, 8-10.
37. Shiraishi, M.; Takenobu, T.; Yamada, A.; Ata, M.; Kataura, H., Hydrogen storage in singlewalled carbon nanotube bundles and peapods. Chemical physics letters 2002, 358 (3-4), 213-218.
38. Heine, T.; Zhechkov, L.; Seifert, G., Hydrogen storage by physisorption on nanostructured
graphite platelets. Physical Chemistry Chemical Physics 2004, 6 (5), 980-984.
39. Bernal, J. D., The structure of graphite. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character 1924, 106 (740), 749-773.
40. Selig, H.; Ebert, L. B., Graphite Intercalation Compounds. In Advances in Inorganic Chemistry
and Radiochemistry, Emeléus, H. J.; Sharpe, A. G., Eds. Academic Press: 1980; Vol. 23, pp 281-327.
41. Ecklung, P., Intercalation layered materials. In: NATO ASI-Series B Proceedings of the 10th
Course of the Erice Summer School on Intercalation in Layered Materials. 1986.
42. Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R., Synthesis of graphene-like
nanosheets and their hydrogen adsorption capacity. Carbon 2010, 48 (3), 630-635.
43. Bénard, P.; Chahine, R., Modeling of adsorption storage of hydrogen on activated carbons.
International Journal of Hydrogen Energy 2001, 26 (8), 849-855.
44. Bhatt, M. D.; Kim, H.; Kim, G., Various defects in graphene: a review. RSC Advances 2022, 12
(33), 21520-21547.
45. Wu, X.-J.; Fei, Z.-J.; Liu, W.-G.; Tan, J.; Wang, G.-H.; Xia, D.-Q.; Deng, K.; Chen, X.-K.; Xiao,
D.-T.; Wu, S.-W., Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy
graphenes. Nuclear Science and Techniques 2019, 30 (4), 1-9.
46. Ambrusi, R. E.; Luna, C. R.; Juan, A.; Pronsato, M. E., DFT study of Rh-decorated pristine, Bdoped and vacancy defected graphene for hydrogen adsorption. Rsc Advances 2016, 6 (87), 83926-
83941.
47. Sen, D.; Thapa, R.; Chattopadhyay, K., Small Pd cluster adsorbed double vacancy defect
graphene sheet for hydrogen storage: A first-principles study. International journal of hydrogen energy
2013, 38 (7), 3041-3049.
48. Yang, G. M.; Fan, X. F.; Shi, S.; Huang, H. H.; Zheng, W. T., Stability of Ptn cluster on
free/defective graphene: A first-principles study. Applied Surface Science 2017, 392, 936-941.
49. Ahluwalia, R. K.; Peng, J. K.; Hua, T. Q., Sorbent material property requirements for on-board
hydrogen storage for automotive fuel cell systems. International Journal of Hydrogen Energy 2015, 40
(19), 6373-6390.
50. Huang, C.-C.; Pu, N.-W.; Wang, C.-A.; Huang, J.-C.; Sung, Y.; Ger, M.-D., Hydrogen storage in
graphene decorated with Pd and Pt nano-particles using an electroless deposition technique.
Separation and Purification Technology 2011, 82, 210-215.
51. Parambhath, V. B.; Nagar, R.; Ramaprabhu, S., Effect of Nitrogen Doping on Hydrogen Storage
Capacity of Palladium Decorated Graphene. Langmuir 2012, 28 (20), 7826-7833.
52. Wang, Y.; Guo, C. X.; Wang, X.; Guan, C.; Yang, H.; Wang, K.; Li, C. M., Hydrogen storage in
a Ni–B nanoalloy-doped three-dimensional graphene material. Energy & Environmental Science 2011,
4 (1), 195-200.
53. Aboutalebi, S. H.; Aminorroaya-Yamini, S.; Nevirkovets, I.; Konstantinov, K.; Liu, H. K.,
Enhanced Hydrogen Storage in Graphene Oxide-MWCNTs Composite at Room Temperature.
Advanced Energy Materials 2012, 2 (12), 1439-1446.
54. Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y.-S.; Guo, J.; Urban, J. J., Graphene oxide/metal
nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nature
Communications 2016, 7 (1), 10804.
55. Guo, C. X.; Wang, Y.; Li, C. M., Hierarchical Graphene-Based Material for Over 4.0 Wt %
Physisorption Hydrogen Storage Capacity. ACS Sustainable Chemistry & Engineering 2013, 1 (1), 14-
18.
56. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene.
Nature 1985, 318 (6042), 162-163.
57. Durbin, D. J.; Allan, N. L.; Malardier-Jugroot, C., Molecular hydrogen storage in fullerenes – A
dispersion-corrected density functional theory study. International Journal of Hydrogen Energy 2016,
41 (30), 13116-13130.
58. Komatsu, K.; Murata, M.; Murata, Y., Encapsulation of Molecular Hydrogen in Fullerene C60
by Organic Synthesis. Science 2005, 307 (5707), 238-240.
59. Zhao, Y.; Kim, Y.-H.; Dillon, A. C.; Heben, M. J.; Zhang, S. B., Hydrogen Storage in Novel
Organometallic Buckyballs. Physical Review Letters 2005, 94 (15), 155504.
60. Yildirim, T.; Íñiguez, J.; Ciraci, S., Molecular and dissociative adsorption of multiple hydrogen
molecules on transition metal decorated C60. Physical Review B 2005, 72 (15), 153403.
61. Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R.,
Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363 (6430),
605-607.
62. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363
(6430), 603-605.
63. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58.
64. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage
of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379.
65. Pinkerton, F. E.; Wicke, B. G.; Olk, C. H.; Tibbetts, G. G.; Meisner, G. P.; Meyer, M. S.; Herbst,
J. F., Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials.
The Journal of Physical Chemistry B 2000, 104 (40), 9460-9467.
66. Chen, P.; Wu X Fau - Lin, J.; Lin J Fau - Tan, K. L.; Tan, K. L., High H2 uptake by alkali-doped
carbon nanotubes under ambient pressure and moderate temperatures. (1095-9203 (Electronic)).
67. Yang, R. T., Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon 2000, 38
(4), 623-626.
68. Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G.
S.; Choi, Y. M.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P., Hydrogen storage in
sonicated carbon materials. Applied Physics A 2001, 72 (2), 129-132.
69. Broom, D. P.; Webb, C. J.; Hurst, K. E.; Parilla, P. A.; Gennett, T.; Brown, C. M.; Zacharia, R.;
Tylianakis, E.; Klontzas, E.; Froudakis, G. E.; Steriotis, T. A.; Trikalitis, P. N.; Anton, D. L.; Hardy, B.;
Tamburello, D.; Corgnale, C.; van Hassel, B. A.; Cossement, D.; Chahine, R.; Hirscher, M., Outlook
and challenges for hydrogen storage in nanoporous materials. Applied Physics A 2016, 122 (3), 151.
70. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M., Hydrogen Storage in Graphite
Nanofibers. The Journal of Physical Chemistry B 1998, 102 (22), 4253-4256.
71. Lee, H.; Kang, Y.-S.; Kim, S.-H.; Lee, J.-Y., Hydrogen desorption properties of multiwall carbon
nanotubes with closed and open structures. Applied Physics Letters 2002, 80 (4), 577-579.
72. Li, X.; Zhu, H.; Ci, L.; Xu, C.; Mao, Z.; Wei, B.; Liang, J.; Wu, D., Hydrogen uptake by graphitized
multi-walled carbon nanotubes under moderate pressure and at room temperature. Carbon 2001, 39
(13), 2077-2079.
73. Hou, P.-x.; Yang, Q.-h.; Bai, S.; Xu, S.-t.; Liu, M.; Cheng, H.-m., Bulk Storage Capacity of
Hydrogen in Purified Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B 2002, 106
(5), 963-966.
74. Gupta, B. K.; Tiwari, R. S.; Srivastava, O. N., Studies on synthesis and hydrogenation behaviour
of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene.
Journal of Alloys and Compounds 2004, 381 (1), 301-308.
75. Fan, Y.-Y.; Liao, B.; Liu, M.; Wei, Y.-L.; Lu, M.-Q.; Cheng, H.-M., Hydrogen uptake in vaporgrown carbon nanofibers. Carbon 1999, 37 (10), 1649-1652.
76. Kunowsky, M.; Marco-Lozar, J. P.; Cazorla-Amorós, D.; Linares-Solano, A., Scale-up activation
of carbon fibres for hydrogen storage. International Journal of Hydrogen Energy 2010, 35 (6), 2393-
2402.
77. Suarez-Garcia, F.; Vilaplana-Ortego, E.; Kunowsky, M.; Kimura, M.; Oya, A.; Linares-Solano,
A., Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage
performances. International Journal of Hydrogen Energy 2009, 34 (22), 9141-9150.
78. Yadav, A.; Faisal, M.; Subramaniam, A.; Verma, N., Nickel nanoparticle-doped and steammodified multiscale structure of carbon micro-nanofibers for hydrogen storage: Effects of metal,
surface texture and operating conditions. International Journal of Hydrogen Energy 2017, 42 (9), 6104-
6117.
79. Risplendi, F.; Bernardi, M.; Cicero, G.; Grossman, J. C., Structure-property relations in
amorphous carbon for photovoltaics. Applied Physics Letters 2014, 105 (4), 043903.
80. Zhao, T.; Li, G.; Liu, L.; Du, L.; Liu, Y.; Li, T., Hydrogen Storage Behavior of Amorphous Carbon
Nanotubes at Low Pressure and Room Temperature. Fullerenes, Nanotubes and Carbon
Nanostructures 2011, 19 (8), 677-683.
81. Rzepka, M.; Lamp, P.; de la Casa-Lillo, M. A., Physisorption of Hydrogen on Microporous
Carbon and Carbon Nanotubes. The Journal of Physical Chemistry B 1998, 102 (52), 10894-10898.
82. Zhou, L.; Zhou, Y.; Sun, Y., Studies on the mechanism and capacity of hydrogen uptake by
physisorption-based materials. International Journal of Hydrogen Energy 2006, 31 (2), 259-264.
83. Xu, W. C.; Takahashi, K.; Matsuo, Y.; Hattori, Y.; Kumagai, M.; Ishiyama, S.; Kaneko, K.;
Iijima, S., Investigation of hydrogen storage capacity of various carbon materials. International Journal
of Hydrogen Energy 2007, 32 (13), 2504-2512.
84. Ananikov, V. P., Nickel: The “Spirited Horse” of Transition Metal Catalysis. ACS Catalysis 2015,
5 (3), 1964-1971.
85. Baca, M.; Cendrowski, K.; Kukulka, W. A.-O.; Bazarko, G.; Moszyński, D. A.-O.; Michalkiewicz,
B.; Kalenczuk, R. J.; Zielinska, B. A.-O., A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys
Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials (Basel) 8(9), 2079-4991
86. Psofogiannakis, G. M.; Froudakis, G. E., DFT Study of the Hydrogen Spillover Mechanism on
Pt-Doped Graphite. The Journal of Physical Chemistry C 2009, 113 (33), 14908-14915.
87. Divya, P.; Ramaprabhu, S., Hydrogen storage in platinum decorated hydrogen exfoliated
graphene sheets by spillover mechanism. Physical Chemistry Chemical Physics 2014, 16 (48), 26725-
26729.
88. Omrani, M.; Goriaux, M.; Liu, Y.; Martinet, S.; Jean-Soro, L.; Ruban, V., Platinum group
elements study in automobile catalysts and exhaust gas samples. Environmental Pollution 2020, 257,
113477.
89. Aguilhon, J.; Boissière, C.; Durupthy, O.; Thomazeau, C.; Sanchez, C., Nickel nanoparticles
with controlled morphologies application in selective hydrogenation catalysis. In Studies in Surface
Science and Catalysis, Gaigneaux, E. M.; Devillers, M.; Hermans, S.; Jacobs, P. A.; Martens, J. A.; Ruiz,
P., Eds. Elsevier: 2010; Vol. 175, pp 521-524.
90. Khoobiar, S., Particle to Particle Migration of Hydrogen Atoms on Platinum—Alumina
Catalysts from Particle to Neighboring Particles. The Journal of Physical Chemistry 1964, 68 (2), 411-
412.
91. Boudart, M.; Vannice, M. A.; Benson, J. E., Adlineation, Portholes and Spillover. Zeitschrift für
Physikalische Chemie 1969, 64 (1_4), 171-177.
92. Sihag, A.; Xie, Z.-L.; Thang, H. V.; Kuo, C.-L.; Tseng, F.-G.; Dyer, M. S.; Chen, H.-Y. T., DFT
Insights into Comparative Hydrogen Adsorption and Hydrogen Spillover Mechanisms of Pt4/Graphene
and Pt4/Anatase (101) Surfaces. The Journal of Physical Chemistry C 2019, 123 (42), 25618-25627.
93. Li, J.; Jin, C.; Qian, R.; Wu, C.; Wang, Y.; Yan, Y.; Chen, Y., Hydrogen absorption-desorption
cycle decay mechanism of palladium nanoparticle decorated nitrogen doped graphene. Progress in
Natural Science: Materials International 2021, 31 (4), 514-520.
94. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964, 136 (3B), B864.
95. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical review B 1993,
47 (1), 558.
96. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
97. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
98. Giannozzi, P.; Baroni S Fau - Bonini, N.; Bonini N Fau - Calandra, M.; Calandra M Fau - Car, R.;
Car R Fau - Cavazzoni, C.; Cavazzoni C Fau - Ceresoli, D.; Ceresoli D Fau - Chiarotti, G. L.; Chiarotti Gl
Fau - Cococcioni, M.; Cococcioni M Fau - Dabo, I.; Dabo I Fau - Dal Corso, A.; Dal Corso A Fau - de
Gironcoli, S.; de Gironcoli S Fau - Fabris, S.; Fabris S Fau - Fratesi, G.; Fratesi G Fau - Gebauer, R.;
Gebauer R Fau - Gerstmann, U.; Gerstmann U Fau - Gougoussis, C.; Gougoussis C Fau - Kokalj, A.;
Kokalj A Fau - Lazzeri, M.; Lazzeri M Fau - Martin-Samos, L.; Martin-Samos L Fau - Marzari, N.; Marzari
N Fau - Mauri, F.; Mauri F Fau - Mazzarello, R.; Mazzarello R Fau - Paolini, S.; Paolini S Fau -
Pasquarello, A.; Pasquarello A Fau - Paulatto, L.; Paulatto L Fau - Sbraccia, C.; Sbraccia C Fau -
Scandolo, S.; Scandolo S Fau - Sclauzero, G.; Sclauzero G Fau - Seitsonen, A. P.; Seitsonen Ap Fau -
Smogunov, A.; Smogunov A Fau - Umari, P.; Umari P Fau - Wentzcovitch, R. M.; Wentzcovitch, R. M.,QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of
materials. (1361-648X (Electronic)).
99. Sholl, D. S.; Steckel, J. A., Density functional theory: a practical introduction. John Wiley & Sons:
2011.
100. Lee, J. G., Computational materials science: an introduction. CRC press: 2016.
101. Max Born, R. O., Zur Quantentheorie der Molekeln Annalen der Physik 1927, 389, 457-484.
102. Martin, R. M., Electronic structure: basic theory and practical methods. Cambridge university
press: 2020.
103. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects.
Physical review 1965, 140 (4A), A1133.
104. Parr, R. G., Density functional theory of atoms and molecules. In Horizons of quantum
chemistry, Springer: 1980; pp 5-15.
105. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple.
Physical review letters 1996, 77 (18), 3865.
106. Armiento, R.; Mattsson, A. E., Functional designed to include surface effects in self-consistent
density functional theory. Physical Review B 2005, 72 (8), 085108.
107. Wu, Z.; Cohen, R. E., More accurate generalized gradient approximation for solids. Physical
Review B 2006, 73 (23), 235116.
108. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.;
Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces.
Physical review letters 2008, 100 (13), 136406.
109. Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Density-Functional Theory for Fractional
Particle Number: Derivative Discontinuities of the Energy. Physical Review Letters 1982, 49 (23), 1691-
1694.
110. Perdew, J. P.; Levy, M., Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps
and Derivative Discontinuities. Physical Review Letters 1983, 51 (20), 1884-1887.
111. Bohm, D., Note on a theorem of Bloch concerning possible causes of superconductivity.
Physical Review 1949, 75 (3), 502.
112. Starkloff, T.; Joannopoulos, J., Local pseudopotential theory for transition metals. Physical
Review B 1977, 16 (12), 5212.
113. Topp, W. C.; Hopfield, J. J., Chemically motivated pseudopotential for sodium. Physical Review
B 1973, 7 (4), 1295.
114. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.
Physical review B 1990, 41 (11), 7892.
115. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-
17979.
116. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio
parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The
Journal of chemical physics 2010, 132 (15), 154104.
117. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected
density functional theory. Journal of computational chemistry 2011, 32 (7), 1456-1465.
118. McCammon, J. A.; Gelin, B. R.; Karplus, M., Dynamics of folded proteins. nature 1977, 267
(5612), 585-590.
119. Maxwell, J. C., V. Illustrations of the dynamical theory of gases.—Part I. On the motions and
collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 1860, 19 (124), 19-32.
120. Evans, D. J.; Holian, B. L., The nose–hoover thermostat. The Journal of chemical physics 1985,
83 (8), 4069-4074.
121. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A
1985, 31 (3), 1695-1697.
122. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods.
The Journal of Chemical Physics 1984, 81 (1), 511-519.
123. Shuichi, N., Constant Temperature Molecular Dynamics Methods. Progress of Theoretical
Physics Supplement 1991, 103, 1-46.
124. Galli, G.; Martin, R. M.; Car, R.; Parrinello, M., Structural and Electronic Properties of
Amorphous Carbon. Physical Review Letters 1989, 62 (5), 555-558.
125. Bilek, M.; McKenzie, D.; McCulloch, D.; Goringe, C., Ab initio simulation of structure in
amorphous hydrogenated carbon. Physical Review B 2000, 62 (5), 3071.
126. Zheng, B.; Zheng, W.; Zhang, K.; Wen, Q.; Zhu, J.; Meng, S.; He, X.; Han, J., First-principle
study of nitrogen incorporation in amorphous carbon. Carbon 2006, 44 (5), 962-968.
127. Henkelman, G.; Arnaldsson, A.; Jónsson, H., A fast and robust algorithm for Bader
decomposition of charge density. Computational Materials Science 2006, 36 (3), 354-360.
128. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice
bias. Journal of Physics: Condensed Matter 2009, 21 (8), 084204.
129. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved grid‐based algorithm for Bader
charge allocation. Journal of computational chemistry 2007, 28 (5), 899-908.
130. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method
for finding saddle points and minimum energy paths. The Journal of chemical physics 2000, 113 (22),
9901-9904.
131. Henkelman, G.; Jónsson, H., Improved tangent estimate in the nudged elastic band method
for finding minimum energy paths and saddle points. The Journal of chemical physics 2000, 113 (22),
9978-9985.
132. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
133. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V., Structural Defects in Graphene. ACS Nano
2011, 5 (1), 26-41.
134. Kim, Y.; Ihm, J.; Yoon, E.; Lee, G.-D., Dynamics and stability of divacancy defects in graphene.
Physical Review B 2011, 84 (7), 075445.
135. Stone, A. J.; Wales, D. J., Theoretical studies of icosahedral C60 and some related species.
Chemical Physics Letters 1986, 128 (5), 501-503.
136. Kumar, J.; Ansh; Shrivastava, M., Stone–Wales Defect and Vacancy-Assisted Enhanced Atomic
Orbital Interactions Between Graphene and Ambient Gases: A First-Principles Insight. ACS Omega
2020, 5 (48), 31281-31288.
137. Kranthi, N. K.; Mishra, A.; Meersha, A.; Variar, H. B.; Shrivastava, M. In Defect-assisted safe
operating area limits and high current failure in graphene fets, 2018 IEEE International Reliability
Physics Symposium (IRPS), IEEE: 2018; pp 3E. 1-1-3E. 1-5.
138. Li, M.; Deng, T.; Zheng, B.; Zhang, Y.; Liao, Y.; Zhou, H., Effect of defects on the mechanical
and thermal properties of graphene. Nanomaterials 2019, 9 (3), 2079-4991.
139. Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu,
C. R.; Hone, J.; Koratkar, N., Effect of defects on the intrinsic strength and stiffness of graphene. Nature
communications 2014, 5 (1), 1-9 %@ 2041-1723.
140. Ma, Y.; Lehtinen, P.; Foster, A. S.; Nieminen, R. M., Magnetic properties of vacancies in
graphene and single-walled carbon nanotubes. New Journal of Physics 2004, 6 (1), 68.
141. Lehtinen, P. O.; Foster, A. S.; Ayuela, A.; Krasheninnikov, A.; Nordlund, K.; Nieminen, R. M.,
Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet. Physical Review Letters 2003, 91
(1), 017202.
142. Lehtinen, P. O.; Foster, A. S.; Ma, Y.; Krasheninnikov, A. V.; Nieminen, R. M., IrradiationInduced Magnetism in Graphite: A Density Functional Study. Physical Review Letters 2004, 93 (18),
187202.
143. Murata, Y.; Calzolari, A.; Heun, S., Tuning Hydrogen Adsorption on Graphene by Gate Voltage.
The Journal of Physical Chemistry C 2018, 122 (21), 11591-11597.
144. Wong, D.; Wang, Y.; Jin, W.; Tsai, H.-Z.; Bostwick, A.; Rotenberg, E.; Kawakami, R. K.; Zettl,
A.; Mostofi, A. A.; Lischner, J.; Crommie, M. F., Microscopy of hydrogen and hydrogen-vacancy defect
structures on graphene devices. Physical Review B 2018, 98 (15), 155436.
145. Kag, D.; Luhadiya, N.; Patil, N. D.; Kundalwal, S. I., Strain and defect engineering of graphene
for hydrogen storage via atomistic modelling. International Journal of Hydrogen Energy 2021, 46 (43),
22599-22610.
146. Zhimin, A.; Sean, L., Hydrogenation of Graphene and Hydrogen Diffusion Behavior on
Graphene/Graphane Interface. In Graphene Simulation
Jian Ru, G., Ed. IntechOpen
Rijeka
2011; Vol. Graphene Simulation
147. Sha, X.; Jackson, B., First-principles study of the structural and energetic properties of H atoms
on a graphite (0001) surface. Surface Science 2002, 496 (3), 318-330.
148. Casolo, S.; Løvvik, O. M.; Martinazzo, R.; Tantardini, G. F., Understanding adsorption of
hydrogen atoms on graphene. The Journal of Chemical Physics 2009, 130 (5), 054704.
149. Ferro, Y.; Marinelli, F.; Allouche, A., Density functional theory investigation of H adsorption
and H2 recombination on the basal plane and in the bulk of graphite: Connection between slab and
cluster model. The Journal of Chemical Physics 2002, 116 (18), 8124-8131.
150. Jeloaica, L.; Sidis, V., DFT investigation of the adsorption of atomic hydrogen on a clustermodel graphite surface. Chemical Physics Letters 1999, 300 (1), 157-162.
151. Casolo, S.; Flage-Larsen, E.; Løvvik, O. M.; Darling, G. R.; Tantardini, G. F., Role of the selfinteraction error in studying chemisorption on graphene from first-principles. Physical Review B 2010,
81 (20), 205412.
152. Balog, R.; Jørgensen, B.; Wells, J.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hornekær,
L., Atomic Hydrogen Adsorbate Structures on Graphene. Journal of the American Chemical Society
2009, 131 (25), 8744-8745.
153. Hornekær, L.; Šljivančanin, Ž.; Xu, W.; Otero, R.; Rauls, E.; Stensgaard, I.; Lægsgaard, E.;
Hammer, B.; Besenbacher, F., Metastable Structures and Recombination Pathways for Atomic
Hydrogen on the Graphite (0001) Surface. Physical Review Letters 2006, 96 (15), 156104.
154. Yadav, S.; Zhu, Z.; Singh, C. V., Defect engineering of graphene for effective hydrogen storage.
International Journal of Hydrogen Energy 2014, 39 (10), 4981-4995.
155. Jain, V.; Kandasubramanian, B., Functionalized graphene materials for hydrogen storage.
Journal of Materials Science 2020, 55 (5), 1865-1903.
156. Momma, K.; Izumi, F., VESTA: a three-dimensional visualization system for electronic and
structural analysis. Journal of Applied Crystallography 2008, 41 (3), 653-658.
157. Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Nieminen, R. M., Bending the rules:
Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chemical Physics
Letters 2006, 418 (1), 132-136.
158. Denis, P. A.; Iribarne, F., Comparative study of defect reactivity in graphene. The Journal of
Physical Chemistry C 2013, 117 (37), 19048-19055.
159. Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely,
T., Dirac Cones and Minigaps for Graphene on Ir(111). Physical Review Letters 2009, 102 (5), 056808.
160. Chen, J.-J.; Wu, H.-C.; Yu, D.-P.; Liao, Z.-M., Magnetic moments in graphene with vacancies.
Nanoscale 2014, 6 (15), 8814-8821.
161. Petucci, J.; LeBlond, C.; Karimi, M.; Vidali, G., Diffusion, adsorption, and desorption of
molecular hydrogen on graphene and in graphite. The Journal of chemical physics 2013, 139 (4),
044706.
162. Han, J.; Gao, W.; Zhu, J.; Meng, S.; Zheng, W., Density-functional theory study of the
microstructure, electronic structure, and optical properties of amorphous carbon. Physical Review B
2007, 75 (15), 155418.
163. Deringer, V. L.; Csányi, G., Machine learning based interatomic potential for amorphous
carbon. Physical Review B 2017, 95 (9), 094203.
164. Bhattarai, B.; Pandey, A.; Drabold, D. A., Evolution of amorphous carbon across densities: An
inferential study. Carbon 2018, 131, 168-174.
165. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular
Graphics 1996, 14 (1), 33-38.
166. Ranganathan, R.; Rokkam, S.; Desai, T.; Keblinski, P., Generation of amorphous carbon models
using liquid quench method: A reactive molecular dynamics study. Carbon 2017, 113, 87-99.
167. Li, L.; Xu, M.; Song, W.; Ovcharenko, A.; Zhang, G.; Jia, D., The effect of empirical potential
functions on modeling of amorphous carbon using molecular dynamics method. Applied Surface
Science 2013, 286, 287-297.
168. Wu, H.-Y.; Fan, X.; Kuo, J.-L.; Deng, W.-Q., DFT Study of Hydrogen Storage by Spillover on
Graphene with Boron Substitution. The Journal of Physical Chemistry C 2011, 115 (18), 9241-9249.
169. Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H., Mechanistic Study on Hydrogen Spillover onto
Graphitic Carbon Materials. The Journal of Physical Chemistry C 2007, 111 (51), 18995-19000.
170. Mitchell, P. C. H.; Ramirez-Cuesta, A. J.; Parker, S. F.; Tomkinson, J.; Thompsett, D., Hydrogen
Spillover on Carbon-Supported Metal Catalysts Studied by Inelastic Neutron Scattering. Surface
Vibrational States and Hydrogen Riding Modes. The Journal of Physical Chemistry B 2003, 107 (28),
6838-6845.
171. Okazaki-Maeda, K.; Morikawa, Y.; Tanaka, S.; Kohyama, M., Structures of Pt clusters on
graphene by first-principles calculations. Surface Science 2010, 604 (2), 144-154.
172. Fampiou, I.; Ramasubramaniam, A., Binding of Pt Nanoclusters to Point Defects in Graphene:
Adsorption, Morphology, and Electronic Structure. The Journal of Physical Chemistry C 2012, 116 (11),
6543-6555.
173. Zieliński, M.; Wojcieszak, R.; Monteverdi, S.; Mercy, M.; Bettahar, M. M., Hydrogen storage
on nickel catalysts supported on amorphous activated carbon. Catalysis Communications 2005, 6 (12),
777-783.
174. Zubizarreta, L.; Menéndez, J. A.; Pis, J. J.; Arenillas, A., Improving hydrogen storage in Nidoped carbon nanospheres. International Journal of Hydrogen Energy 2009, 34 (7), 3070-3076.
175. Takagi, H.; Hatori, H.; Yamada, Y.; Matsuo, S.; Shiraishi, M., Hydrogen adsorption properties
of activated carbons with modified surfaces. Journal of Alloys and Compounds 2004, 385 (1), 257-263.
176. Singh, N.; Sarkar, U., Structure, vibrational, and optical properties of platinum cluster. 2015.
177. Amorim, R.; Batista, K.; Nagurniak, G.; Pereira Orenha, R.; Parreira, R.; Piotrowski, M., CO,
NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalton Transactions 2020, 49.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *