|
1. Information, N. N. C. f. E. State of the Climate: Monthly Global Climate Report for August 2022. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202208 (accessed September 28, 2022). 2. Hannah, R.; Max, R.; Pablo, R. Energy. https://ourworldindata.org/energy. 3. Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019, 12 (2), 463-491. 4. Rahul, K.; Elby, T.; Maryam, S.; Olena, O.; Sivakumar, R.; Ananth, R.; Sousa, J. M. G.; Ferreira, A. L. C.; João Campos, G.; Jose, G., Hydrogen Storage for Energy Application. 2012. 5. Grove, W. R., XXIV. On voltaic series and the combination of gases by platinum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1839, 14 (86-87), 127-130. 6. Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D., Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 2021, 146, 111180. 7. Schlapbach, L.; Züttel, A., Hydrogen-storage materials for mobile applications. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group 2011, 265-270. 8. Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G., The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today 2007, 120 (3), 246-256. 9. Frischauf, N., 5 - Hydrogen-fueled spacecraft and other space applications of hydrogen. In Compendium of Hydrogen Energy, Ball, M.; Basile, A.; Veziroğlu, T. N., Eds. Woodhead Publishing: Oxford, 2016; pp 87-107. 10. Liu, H., Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese Journal of Catalysis 2014, 35 (10), 1619-1640. 11. Valera-Medina, A.; Amer-Hatem, F.; Azad, A. K.; Dedoussi, I. C.; de Joannon, M.; Fernandes, R. X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; McGowan, J.; Mounaim-Rouselle, C.; OrtizPrado, A.; Ortiz-Valera, A.; Rossetti, I.; Shu, B.; Yehia, M.; Xiao, H.; Costa, M., Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy & Fuels 2021, 35 (9), 6964-7029. 12. Han, Z.; Chen, H.; Li, X.; Jiang, R.; Zhou, S., Novel application of MgH2/MoS2 hydrogen storage materials to thiophene hydrodesulfurization: A combined experimental and theoretical case study. Materials & Design 2018, 158, 213-223. 13. Ishaq, H.; Dincer, I.; Crawford, C., A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy 2022, 47 (62), 26238-26264. 14. Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R., The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 2019, 12 (2), 463-491. 15. Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Senior, B. T.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect Applied Sciences [Online], 2019. 16. UK hydrogen strategy. Chemistry & Industry 2021, 85 (9), 17-17. 17. Wang, S.; Nabavi, S. A.; Clough, P. T., A review on bi/polymetallic catalysts for steam methane reforming. International Journal of Hydrogen Energy 2023, 48 (42), 15879-15893. 18. Shiva Kumar, S.; Himabindu, V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies 2019, 2 (3), 442-454. 19. Semelsberger, T. A., FUELS – HYDROGEN STORAGE | Chemical Carriers. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 504-518. 20. Meramo-Hurtado, S. I.; Puello, P.; Cabarcas, A., Process Analysis of Hydrogen Production via Biomass Gasification under Computer-Aided Safety and Environmental Assessments. ACS Omega 2020, 5 (31), 19667-19681. 21. Safari, F.; Dincer, I., A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management 2020, 205, 112182. 22. Sharma, A.; Arya, S. K., Hydrogen from algal biomass: A review of production process. Biotechnology Reports 2017, 15, 63-69. 23. Ströbel, R.; Garche, J.; Moseley, P. T.; Jörissen, L.; Wolf, G., Hydrogen storage by carbon materials. Journal of Power Sources 2006, 159 (2), 781-801. 24. Rivard, E.; Trudeau, M.; Zaghib, K., Hydrogen storage for mobility: a review. Materials 2019, 12 (12), 1973. 25. Mohan, M.; Sharma, V. K.; Kumar, E. A.; Gayathri, V., Hydrogen storage in carbon materials— A review. Energy Storage 2019, 1 (2), e35. 26. Hydrogen Storage for Light-Duty Fuel Cell Vehicles 2017. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_targets_onboard_hydro_storage_expla nation.pdf (accessed 25 September, 2022). 27. Dewangan, S. K.; Mohan, M.; Kumar, V.; Sharma, A.; Ahn, B., A comprehensive review of the prospects for future hydrogen storage in materials-application and outstanding issues. International Journal of Energy Research 2022, 46 (12), 16150-16177. 28. Sambo, C.; Dudun, A.; Samuel, S. A.; Esenenjor, P.; Muhammed, N. S.; Haq, B., A review on worldwide underground hydrogen storage operating and potential fields. International Journal of Hydrogen Energy 2022, 47 (54), 22840-22880. 29. Eberle, U.; Müller, B.; von Helmolt, R., Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy & Environmental Science 2012, 5 (10), 8780-8798. 30. Brunner Markus Kampitsch, T.; Kircher, O., Cryo-Compressed Hydrogen Storage. In Fuel Cells : Data, Facts and Figures, 2016; pp 162-174. 31. Sadaghiani, M. S.; Mehrpooya, M., Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy 2017, 42 (9), 6033-6050. 32. Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M., Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy 2007, 32 (9), 1121-1140. 33. Langmi, H. W.; Ren, J.; North, B.; Mathe, M.; Bessarabov, D., Hydrogen storage in metalorganic frameworks: a review. Electrochimica Acta 2014, 128, 368-392. 34. Kleperis, J.; Lesnicenoks, P.; Grinberga, L.; Chikvaidze, G.; Klavins, J., Zeolite as Material for Hydrogen Storage in Transport Applications/CEOLITA KA UDENRAZA UZGLABASANAS VIDES IZPETE. Latvian Journal of Physics and Technical Sciences 2013, 50 (3), 59. 35. Tozzini, V.; Pellegrini, V., Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics 2013, 15 (1), 80-89. 36. Dillon, A. C.; Gennett, T.; Alleman, J.; Jones, K.; Parilla, P.; Heben, M., Carbon nanotube materials for hydrogen storage. Proc. 2000 DOE/NREL Hydrogen program review 2000, 8-10. 37. Shiraishi, M.; Takenobu, T.; Yamada, A.; Ata, M.; Kataura, H., Hydrogen storage in singlewalled carbon nanotube bundles and peapods. Chemical physics letters 2002, 358 (3-4), 213-218. 38. Heine, T.; Zhechkov, L.; Seifert, G., Hydrogen storage by physisorption on nanostructured graphite platelets. Physical Chemistry Chemical Physics 2004, 6 (5), 980-984. 39. Bernal, J. D., The structure of graphite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1924, 106 (740), 749-773. 40. Selig, H.; Ebert, L. B., Graphite Intercalation Compounds. In Advances in Inorganic Chemistry and Radiochemistry, Emeléus, H. J.; Sharpe, A. G., Eds. Academic Press: 1980; Vol. 23, pp 281-327. 41. Ecklung, P., Intercalation layered materials. In: NATO ASI-Series B Proceedings of the 10th Course of the Erice Summer School on Intercalation in Layered Materials. 1986. 42. Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R., Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 2010, 48 (3), 630-635. 43. Bénard, P.; Chahine, R., Modeling of adsorption storage of hydrogen on activated carbons. International Journal of Hydrogen Energy 2001, 26 (8), 849-855. 44. Bhatt, M. D.; Kim, H.; Kim, G., Various defects in graphene: a review. RSC Advances 2022, 12 (33), 21520-21547. 45. Wu, X.-J.; Fei, Z.-J.; Liu, W.-G.; Tan, J.; Wang, G.-H.; Xia, D.-Q.; Deng, K.; Chen, X.-K.; Xiao, D.-T.; Wu, S.-W., Adsorption and desorption of hydrogen on/from single-vacancy and double-vacancy graphenes. Nuclear Science and Techniques 2019, 30 (4), 1-9. 46. Ambrusi, R. E.; Luna, C. R.; Juan, A.; Pronsato, M. E., DFT study of Rh-decorated pristine, Bdoped and vacancy defected graphene for hydrogen adsorption. Rsc Advances 2016, 6 (87), 83926- 83941. 47. Sen, D.; Thapa, R.; Chattopadhyay, K., Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first-principles study. International journal of hydrogen energy 2013, 38 (7), 3041-3049. 48. Yang, G. M.; Fan, X. F.; Shi, S.; Huang, H. H.; Zheng, W. T., Stability of Ptn cluster on free/defective graphene: A first-principles study. Applied Surface Science 2017, 392, 936-941. 49. Ahluwalia, R. K.; Peng, J. K.; Hua, T. Q., Sorbent material property requirements for on-board hydrogen storage for automotive fuel cell systems. International Journal of Hydrogen Energy 2015, 40 (19), 6373-6390. 50. Huang, C.-C.; Pu, N.-W.; Wang, C.-A.; Huang, J.-C.; Sung, Y.; Ger, M.-D., Hydrogen storage in graphene decorated with Pd and Pt nano-particles using an electroless deposition technique. Separation and Purification Technology 2011, 82, 210-215. 51. Parambhath, V. B.; Nagar, R.; Ramaprabhu, S., Effect of Nitrogen Doping on Hydrogen Storage Capacity of Palladium Decorated Graphene. Langmuir 2012, 28 (20), 7826-7833. 52. Wang, Y.; Guo, C. X.; Wang, X.; Guan, C.; Yang, H.; Wang, K.; Li, C. M., Hydrogen storage in a Ni–B nanoalloy-doped three-dimensional graphene material. Energy & Environmental Science 2011, 4 (1), 195-200. 53. Aboutalebi, S. H.; Aminorroaya-Yamini, S.; Nevirkovets, I.; Konstantinov, K.; Liu, H. K., Enhanced Hydrogen Storage in Graphene Oxide-MWCNTs Composite at Room Temperature. Advanced Energy Materials 2012, 2 (12), 1439-1446. 54. Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y.-S.; Guo, J.; Urban, J. J., Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nature Communications 2016, 7 (1), 10804. 55. Guo, C. X.; Wang, Y.; Li, C. M., Hierarchical Graphene-Based Material for Over 4.0 Wt % Physisorption Hydrogen Storage Capacity. ACS Sustainable Chemistry & Engineering 2013, 1 (1), 14- 18. 56. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E., C60: Buckminsterfullerene. Nature 1985, 318 (6042), 162-163. 57. Durbin, D. J.; Allan, N. L.; Malardier-Jugroot, C., Molecular hydrogen storage in fullerenes – A dispersion-corrected density functional theory study. International Journal of Hydrogen Energy 2016, 41 (30), 13116-13130. 58. Komatsu, K.; Murata, M.; Murata, Y., Encapsulation of Molecular Hydrogen in Fullerene C60 by Organic Synthesis. Science 2005, 307 (5707), 238-240. 59. Zhao, Y.; Kim, Y.-H.; Dillon, A. C.; Heben, M. J.; Zhang, S. B., Hydrogen Storage in Novel Organometallic Buckyballs. Physical Review Letters 2005, 94 (15), 155504. 60. Yildirim, T.; Íñiguez, J.; Ciraci, S., Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60. Physical Review B 2005, 72 (15), 153403. 61. Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363 (6430), 605-607. 62. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363 (6430), 603-605. 63. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58. 64. Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997, 386 (6623), 377-379. 65. Pinkerton, F. E.; Wicke, B. G.; Olk, C. H.; Tibbetts, G. G.; Meisner, G. P.; Meyer, M. S.; Herbst, J. F., Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials. The Journal of Physical Chemistry B 2000, 104 (40), 9460-9467. 66. Chen, P.; Wu X Fau - Lin, J.; Lin J Fau - Tan, K. L.; Tan, K. L., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. (1095-9203 (Electronic)). 67. Yang, R. T., Hydrogen storage by alkali-doped carbon nanotubes–revisited. Carbon 2000, 38 (4), 623-626. 68. Hirscher, M.; Becher, M.; Haluska, M.; Dettlaff-Weglikowska, U.; Quintel, A.; Duesberg, G. S.; Choi, Y. M.; Downes, P.; Hulman, M.; Roth, S.; Stepanek, I.; Bernier, P., Hydrogen storage in sonicated carbon materials. Applied Physics A 2001, 72 (2), 129-132. 69. Broom, D. P.; Webb, C. J.; Hurst, K. E.; Parilla, P. A.; Gennett, T.; Brown, C. M.; Zacharia, R.; Tylianakis, E.; Klontzas, E.; Froudakis, G. E.; Steriotis, T. A.; Trikalitis, P. N.; Anton, D. L.; Hardy, B.; Tamburello, D.; Corgnale, C.; van Hassel, B. A.; Cossement, D.; Chahine, R.; Hirscher, M., Outlook and challenges for hydrogen storage in nanoporous materials. Applied Physics A 2016, 122 (3), 151. 70. Chambers, A.; Park, C.; Baker, R. T. K.; Rodriguez, N. M., Hydrogen Storage in Graphite Nanofibers. The Journal of Physical Chemistry B 1998, 102 (22), 4253-4256. 71. Lee, H.; Kang, Y.-S.; Kim, S.-H.; Lee, J.-Y., Hydrogen desorption properties of multiwall carbon nanotubes with closed and open structures. Applied Physics Letters 2002, 80 (4), 577-579. 72. Li, X.; Zhu, H.; Ci, L.; Xu, C.; Mao, Z.; Wei, B.; Liang, J.; Wu, D., Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature. Carbon 2001, 39 (13), 2077-2079. 73. Hou, P.-x.; Yang, Q.-h.; Bai, S.; Xu, S.-t.; Liu, M.; Cheng, H.-m., Bulk Storage Capacity of Hydrogen in Purified Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B 2002, 106 (5), 963-966. 74. Gupta, B. K.; Tiwari, R. S.; Srivastava, O. N., Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene. Journal of Alloys and Compounds 2004, 381 (1), 301-308. 75. Fan, Y.-Y.; Liao, B.; Liu, M.; Wei, Y.-L.; Lu, M.-Q.; Cheng, H.-M., Hydrogen uptake in vaporgrown carbon nanofibers. Carbon 1999, 37 (10), 1649-1652. 76. Kunowsky, M.; Marco-Lozar, J. P.; Cazorla-Amorós, D.; Linares-Solano, A., Scale-up activation of carbon fibres for hydrogen storage. International Journal of Hydrogen Energy 2010, 35 (6), 2393- 2402. 77. Suarez-Garcia, F.; Vilaplana-Ortego, E.; Kunowsky, M.; Kimura, M.; Oya, A.; Linares-Solano, A., Activation of polymer blend carbon nanofibres by alkaline hydroxides and their hydrogen storage performances. International Journal of Hydrogen Energy 2009, 34 (22), 9141-9150. 78. Yadav, A.; Faisal, M.; Subramaniam, A.; Verma, N., Nickel nanoparticle-doped and steammodified multiscale structure of carbon micro-nanofibers for hydrogen storage: Effects of metal, surface texture and operating conditions. International Journal of Hydrogen Energy 2017, 42 (9), 6104- 6117. 79. Risplendi, F.; Bernardi, M.; Cicero, G.; Grossman, J. C., Structure-property relations in amorphous carbon for photovoltaics. Applied Physics Letters 2014, 105 (4), 043903. 80. Zhao, T.; Li, G.; Liu, L.; Du, L.; Liu, Y.; Li, T., Hydrogen Storage Behavior of Amorphous Carbon Nanotubes at Low Pressure and Room Temperature. Fullerenes, Nanotubes and Carbon Nanostructures 2011, 19 (8), 677-683. 81. Rzepka, M.; Lamp, P.; de la Casa-Lillo, M. A., Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes. The Journal of Physical Chemistry B 1998, 102 (52), 10894-10898. 82. Zhou, L.; Zhou, Y.; Sun, Y., Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. International Journal of Hydrogen Energy 2006, 31 (2), 259-264. 83. Xu, W. C.; Takahashi, K.; Matsuo, Y.; Hattori, Y.; Kumagai, M.; Ishiyama, S.; Kaneko, K.; Iijima, S., Investigation of hydrogen storage capacity of various carbon materials. International Journal of Hydrogen Energy 2007, 32 (13), 2504-2512. 84. Ananikov, V. P., Nickel: The “Spirited Horse” of Transition Metal Catalysis. ACS Catalysis 2015, 5 (3), 1964-1971. 85. Baca, M.; Cendrowski, K.; Kukulka, W. A.-O.; Bazarko, G.; Moszyński, D. A.-O.; Michalkiewicz, B.; Kalenczuk, R. J.; Zielinska, B. A.-O., A Comparison of Hydrogen Storage in Pt, Pd and Pt/Pd Alloys Loaded Disordered Mesoporous Hollow Carbon Spheres. Nanomaterials (Basel) 8(9), 2079-4991 86. Psofogiannakis, G. M.; Froudakis, G. E., DFT Study of the Hydrogen Spillover Mechanism on Pt-Doped Graphite. The Journal of Physical Chemistry C 2009, 113 (33), 14908-14915. 87. Divya, P.; Ramaprabhu, S., Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism. Physical Chemistry Chemical Physics 2014, 16 (48), 26725- 26729. 88. Omrani, M.; Goriaux, M.; Liu, Y.; Martinet, S.; Jean-Soro, L.; Ruban, V., Platinum group elements study in automobile catalysts and exhaust gas samples. Environmental Pollution 2020, 257, 113477. 89. Aguilhon, J.; Boissière, C.; Durupthy, O.; Thomazeau, C.; Sanchez, C., Nickel nanoparticles with controlled morphologies application in selective hydrogenation catalysis. In Studies in Surface Science and Catalysis, Gaigneaux, E. M.; Devillers, M.; Hermans, S.; Jacobs, P. A.; Martens, J. A.; Ruiz, P., Eds. Elsevier: 2010; Vol. 175, pp 521-524. 90. Khoobiar, S., Particle to Particle Migration of Hydrogen Atoms on Platinum—Alumina Catalysts from Particle to Neighboring Particles. The Journal of Physical Chemistry 1964, 68 (2), 411- 412. 91. Boudart, M.; Vannice, M. A.; Benson, J. E., Adlineation, Portholes and Spillover. Zeitschrift für Physikalische Chemie 1969, 64 (1_4), 171-177. 92. Sihag, A.; Xie, Z.-L.; Thang, H. V.; Kuo, C.-L.; Tseng, F.-G.; Dyer, M. S.; Chen, H.-Y. T., DFT Insights into Comparative Hydrogen Adsorption and Hydrogen Spillover Mechanisms of Pt4/Graphene and Pt4/Anatase (101) Surfaces. The Journal of Physical Chemistry C 2019, 123 (42), 25618-25627. 93. Li, J.; Jin, C.; Qian, R.; Wu, C.; Wang, Y.; Yan, Y.; Chen, Y., Hydrogen absorption-desorption cycle decay mechanism of palladium nanoparticle decorated nitrogen doped graphene. Progress in Natural Science: Materials International 2021, 31 (4), 514-520. 94. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964, 136 (3B), B864. 95. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical review B 1993, 47 (1), 558. 96. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50. 97. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169. 98. Giannozzi, P.; Baroni S Fau - Bonini, N.; Bonini N Fau - Calandra, M.; Calandra M Fau - Car, R.; Car R Fau - Cavazzoni, C.; Cavazzoni C Fau - Ceresoli, D.; Ceresoli D Fau - Chiarotti, G. L.; Chiarotti Gl Fau - Cococcioni, M.; Cococcioni M Fau - Dabo, I.; Dabo I Fau - Dal Corso, A.; Dal Corso A Fau - de Gironcoli, S.; de Gironcoli S Fau - Fabris, S.; Fabris S Fau - Fratesi, G.; Fratesi G Fau - Gebauer, R.; Gebauer R Fau - Gerstmann, U.; Gerstmann U Fau - Gougoussis, C.; Gougoussis C Fau - Kokalj, A.; Kokalj A Fau - Lazzeri, M.; Lazzeri M Fau - Martin-Samos, L.; Martin-Samos L Fau - Marzari, N.; Marzari N Fau - Mauri, F.; Mauri F Fau - Mazzarello, R.; Mazzarello R Fau - Paolini, S.; Paolini S Fau - Pasquarello, A.; Pasquarello A Fau - Paulatto, L.; Paulatto L Fau - Sbraccia, C.; Sbraccia C Fau - Scandolo, S.; Scandolo S Fau - Sclauzero, G.; Sclauzero G Fau - Seitsonen, A. P.; Seitsonen Ap Fau - Smogunov, A.; Smogunov A Fau - Umari, P.; Umari P Fau - Wentzcovitch, R. M.; Wentzcovitch, R. M.,QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. (1361-648X (Electronic)). 99. Sholl, D. S.; Steckel, J. A., Density functional theory: a practical introduction. John Wiley & Sons: 2011. 100. Lee, J. G., Computational materials science: an introduction. CRC press: 2016. 101. Max Born, R. O., Zur Quantentheorie der Molekeln Annalen der Physik 1927, 389, 457-484. 102. Martin, R. M., Electronic structure: basic theory and practical methods. Cambridge university press: 2020. 103. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Physical review 1965, 140 (4A), A1133. 104. Parr, R. G., Density functional theory of atoms and molecules. In Horizons of quantum chemistry, Springer: 1980; pp 5-15. 105. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865. 106. Armiento, R.; Mattsson, A. E., Functional designed to include surface effects in self-consistent density functional theory. Physical Review B 2005, 72 (8), 085108. 107. Wu, Z.; Cohen, R. E., More accurate generalized gradient approximation for solids. Physical Review B 2006, 73 (23), 235116. 108. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. Physical review letters 2008, 100 (13), 136406. 109. Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Physical Review Letters 1982, 49 (23), 1691- 1694. 110. Perdew, J. P.; Levy, M., Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Physical Review Letters 1983, 51 (20), 1884-1887. 111. Bohm, D., Note on a theorem of Bloch concerning possible causes of superconductivity. Physical Review 1949, 75 (3), 502. 112. Starkloff, T.; Joannopoulos, J., Local pseudopotential theory for transition metals. Physical Review B 1977, 16 (12), 5212. 113. Topp, W. C.; Hopfield, J. J., Chemically motivated pseudopotential for sodium. Physical Review B 1973, 7 (4), 1295. 114. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B 1990, 41 (11), 7892. 115. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953- 17979. 116. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics 2010, 132 (15), 154104. 117. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. Journal of computational chemistry 2011, 32 (7), 1456-1465. 118. McCammon, J. A.; Gelin, B. R.; Karplus, M., Dynamics of folded proteins. nature 1977, 267 (5612), 585-590. 119. Maxwell, J. C., V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1860, 19 (124), 19-32. 120. Evans, D. J.; Holian, B. L., The nose–hoover thermostat. The Journal of chemical physics 1985, 83 (8), 4069-4074. 121. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 1985, 31 (3), 1695-1697. 122. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 1984, 81 (1), 511-519. 123. Shuichi, N., Constant Temperature Molecular Dynamics Methods. Progress of Theoretical Physics Supplement 1991, 103, 1-46. 124. Galli, G.; Martin, R. M.; Car, R.; Parrinello, M., Structural and Electronic Properties of Amorphous Carbon. Physical Review Letters 1989, 62 (5), 555-558. 125. Bilek, M.; McKenzie, D.; McCulloch, D.; Goringe, C., Ab initio simulation of structure in amorphous hydrogenated carbon. Physical Review B 2000, 62 (5), 3071. 126. Zheng, B.; Zheng, W.; Zhang, K.; Wen, Q.; Zhu, J.; Meng, S.; He, X.; Han, J., First-principle study of nitrogen incorporation in amorphous carbon. Carbon 2006, 44 (5), 962-968. 127. Henkelman, G.; Arnaldsson, A.; Jónsson, H., A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36 (3), 354-360. 128. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter 2009, 21 (8), 084204. 129. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved grid‐based algorithm for Bader charge allocation. Journal of computational chemistry 2007, 28 (5), 899-908. 130. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of chemical physics 2000, 113 (22), 9901-9904. 131. Henkelman, G.; Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of chemical physics 2000, 113 (22), 9978-9985. 132. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191. 133. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V., Structural Defects in Graphene. ACS Nano 2011, 5 (1), 26-41. 134. Kim, Y.; Ihm, J.; Yoon, E.; Lee, G.-D., Dynamics and stability of divacancy defects in graphene. Physical Review B 2011, 84 (7), 075445. 135. Stone, A. J.; Wales, D. J., Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters 1986, 128 (5), 501-503. 136. Kumar, J.; Ansh; Shrivastava, M., Stone–Wales Defect and Vacancy-Assisted Enhanced Atomic Orbital Interactions Between Graphene and Ambient Gases: A First-Principles Insight. ACS Omega 2020, 5 (48), 31281-31288. 137. Kranthi, N. K.; Mishra, A.; Meersha, A.; Variar, H. B.; Shrivastava, M. In Defect-assisted safe operating area limits and high current failure in graphene fets, 2018 IEEE International Reliability Physics Symposium (IRPS), IEEE: 2018; pp 3E. 1-1-3E. 1-5. 138. Li, M.; Deng, T.; Zheng, B.; Zhang, Y.; Liao, Y.; Zhou, H., Effect of defects on the mechanical and thermal properties of graphene. Nanomaterials 2019, 9 (3), 2079-4991. 139. Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N., Effect of defects on the intrinsic strength and stiffness of graphene. Nature communications 2014, 5 (1), 1-9 %@ 2041-1723. 140. Ma, Y.; Lehtinen, P.; Foster, A. S.; Nieminen, R. M., Magnetic properties of vacancies in graphene and single-walled carbon nanotubes. New Journal of Physics 2004, 6 (1), 68. 141. Lehtinen, P. O.; Foster, A. S.; Ayuela, A.; Krasheninnikov, A.; Nordlund, K.; Nieminen, R. M., Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet. Physical Review Letters 2003, 91 (1), 017202. 142. Lehtinen, P. O.; Foster, A. S.; Ma, Y.; Krasheninnikov, A. V.; Nieminen, R. M., IrradiationInduced Magnetism in Graphite: A Density Functional Study. Physical Review Letters 2004, 93 (18), 187202. 143. Murata, Y.; Calzolari, A.; Heun, S., Tuning Hydrogen Adsorption on Graphene by Gate Voltage. The Journal of Physical Chemistry C 2018, 122 (21), 11591-11597. 144. Wong, D.; Wang, Y.; Jin, W.; Tsai, H.-Z.; Bostwick, A.; Rotenberg, E.; Kawakami, R. K.; Zettl, A.; Mostofi, A. A.; Lischner, J.; Crommie, M. F., Microscopy of hydrogen and hydrogen-vacancy defect structures on graphene devices. Physical Review B 2018, 98 (15), 155436. 145. Kag, D.; Luhadiya, N.; Patil, N. D.; Kundalwal, S. I., Strain and defect engineering of graphene for hydrogen storage via atomistic modelling. International Journal of Hydrogen Energy 2021, 46 (43), 22599-22610. 146. Zhimin, A.; Sean, L., Hydrogenation of Graphene and Hydrogen Diffusion Behavior on Graphene/Graphane Interface. In Graphene Simulation Jian Ru, G., Ed. IntechOpen Rijeka 2011; Vol. Graphene Simulation 147. Sha, X.; Jackson, B., First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surface Science 2002, 496 (3), 318-330. 148. Casolo, S.; Løvvik, O. M.; Martinazzo, R.; Tantardini, G. F., Understanding adsorption of hydrogen atoms on graphene. The Journal of Chemical Physics 2009, 130 (5), 054704. 149. Ferro, Y.; Marinelli, F.; Allouche, A., Density functional theory investigation of H adsorption and H2 recombination on the basal plane and in the bulk of graphite: Connection between slab and cluster model. The Journal of Chemical Physics 2002, 116 (18), 8124-8131. 150. Jeloaica, L.; Sidis, V., DFT investigation of the adsorption of atomic hydrogen on a clustermodel graphite surface. Chemical Physics Letters 1999, 300 (1), 157-162. 151. Casolo, S.; Flage-Larsen, E.; Løvvik, O. M.; Darling, G. R.; Tantardini, G. F., Role of the selfinteraction error in studying chemisorption on graphene from first-principles. Physical Review B 2010, 81 (20), 205412. 152. Balog, R.; Jørgensen, B.; Wells, J.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hornekær, L., Atomic Hydrogen Adsorbate Structures on Graphene. Journal of the American Chemical Society 2009, 131 (25), 8744-8745. 153. Hornekær, L.; Šljivančanin, Ž.; Xu, W.; Otero, R.; Rauls, E.; Stensgaard, I.; Lægsgaard, E.; Hammer, B.; Besenbacher, F., Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface. Physical Review Letters 2006, 96 (15), 156104. 154. Yadav, S.; Zhu, Z.; Singh, C. V., Defect engineering of graphene for effective hydrogen storage. International Journal of Hydrogen Energy 2014, 39 (10), 4981-4995. 155. Jain, V.; Kandasubramanian, B., Functionalized graphene materials for hydrogen storage. Journal of Materials Science 2020, 55 (5), 1865-1903. 156. Momma, K.; Izumi, F., VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography 2008, 41 (3), 653-658. 157. Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Nieminen, R. M., Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chemical Physics Letters 2006, 418 (1), 132-136. 158. Denis, P. A.; Iribarne, F., Comparative study of defect reactivity in graphene. The Journal of Physical Chemistry C 2013, 117 (37), 19048-19055. 159. Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T., Dirac Cones and Minigaps for Graphene on Ir(111). Physical Review Letters 2009, 102 (5), 056808. 160. Chen, J.-J.; Wu, H.-C.; Yu, D.-P.; Liao, Z.-M., Magnetic moments in graphene with vacancies. Nanoscale 2014, 6 (15), 8814-8821. 161. Petucci, J.; LeBlond, C.; Karimi, M.; Vidali, G., Diffusion, adsorption, and desorption of molecular hydrogen on graphene and in graphite. The Journal of chemical physics 2013, 139 (4), 044706. 162. Han, J.; Gao, W.; Zhu, J.; Meng, S.; Zheng, W., Density-functional theory study of the microstructure, electronic structure, and optical properties of amorphous carbon. Physical Review B 2007, 75 (15), 155418. 163. Deringer, V. L.; Csányi, G., Machine learning based interatomic potential for amorphous carbon. Physical Review B 2017, 95 (9), 094203. 164. Bhattarai, B.; Pandey, A.; Drabold, D. A., Evolution of amorphous carbon across densities: An inferential study. Carbon 2018, 131, 168-174. 165. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38. 166. Ranganathan, R.; Rokkam, S.; Desai, T.; Keblinski, P., Generation of amorphous carbon models using liquid quench method: A reactive molecular dynamics study. Carbon 2017, 113, 87-99. 167. Li, L.; Xu, M.; Song, W.; Ovcharenko, A.; Zhang, G.; Jia, D., The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method. Applied Surface Science 2013, 286, 287-297. 168. Wu, H.-Y.; Fan, X.; Kuo, J.-L.; Deng, W.-Q., DFT Study of Hydrogen Storage by Spillover on Graphene with Boron Substitution. The Journal of Physical Chemistry C 2011, 115 (18), 9241-9249. 169. Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H., Mechanistic Study on Hydrogen Spillover onto Graphitic Carbon Materials. The Journal of Physical Chemistry C 2007, 111 (51), 18995-19000. 170. Mitchell, P. C. H.; Ramirez-Cuesta, A. J.; Parker, S. F.; Tomkinson, J.; Thompsett, D., Hydrogen Spillover on Carbon-Supported Metal Catalysts Studied by Inelastic Neutron Scattering. Surface Vibrational States and Hydrogen Riding Modes. The Journal of Physical Chemistry B 2003, 107 (28), 6838-6845. 171. Okazaki-Maeda, K.; Morikawa, Y.; Tanaka, S.; Kohyama, M., Structures of Pt clusters on graphene by first-principles calculations. Surface Science 2010, 604 (2), 144-154. 172. Fampiou, I.; Ramasubramaniam, A., Binding of Pt Nanoclusters to Point Defects in Graphene: Adsorption, Morphology, and Electronic Structure. The Journal of Physical Chemistry C 2012, 116 (11), 6543-6555. 173. Zieliński, M.; Wojcieszak, R.; Monteverdi, S.; Mercy, M.; Bettahar, M. M., Hydrogen storage on nickel catalysts supported on amorphous activated carbon. Catalysis Communications 2005, 6 (12), 777-783. 174. Zubizarreta, L.; Menéndez, J. A.; Pis, J. J.; Arenillas, A., Improving hydrogen storage in Nidoped carbon nanospheres. International Journal of Hydrogen Energy 2009, 34 (7), 3070-3076. 175. Takagi, H.; Hatori, H.; Yamada, Y.; Matsuo, S.; Shiraishi, M., Hydrogen adsorption properties of activated carbons with modified surfaces. Journal of Alloys and Compounds 2004, 385 (1), 257-263. 176. Singh, N.; Sarkar, U., Structure, vibrational, and optical properties of platinum cluster. 2015. 177. Amorim, R.; Batista, K.; Nagurniak, G.; Pereira Orenha, R.; Parreira, R.; Piotrowski, M., CO, NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalton Transactions 2020, 49. |