|
[1] A.-N. Wang, J.-H. Huang, H.-W. Hsiao, G.-P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol., 280 (2015) 43-49. [2] S.-C. Lei, J.-H. Huang, H. Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. Phys., 199 (2017) 185-192. [3] Y.-C. Hung, Effect of metallic graded layers on tribological behavior of TiZrN coatings on AISI D2 steel, National Tsing Hua university, Master thesis, 2019. [4] T.-W. Zheng, Effect of Ti Interlayer on Stress Relief of ZrN/Ti Bilayer Thin Films on Silicon Substrate, National Tsing Hua university, Master thesis, 2018. [5] J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31. [6] I.C. Noyan, J.B. Cohen, Residual stress: measurement by diffraction and interpretation, Springer, 1987. [7] O. Knotek, R. Elsing, G. Krämer, F. Jungblut, On the origin of compressive stress in PVD coatings — an explicative model, Surf. Coat. Technol., 46 (1991) 265-274. [8] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-75 (1995) 273-278. [9] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol., 358 (2019) 487-496. [10] B.-S. Tsai, Effect of functionally graded layers on wear behavior of TiZrN coatings on AISI D2 Steel, National Tsing Hua university, Master thesis, 2019. [11] Y.-W. Lin, P.-C. Chih, J.-H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol., 394 (2020) 125690. [12] G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol., 171 (2003) 83-90. [13] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 264 (2008) 885-892. [14] J.Y. Chen, G.P. Yu, J.H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 stainless steel, Mater. Chem. Phys., 65 (2000) 310-315. [15] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053. [16] J. Vega, H. Scheerer, G. Andersohn, M. Oechsner, Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods, Corrosion Science, 133 (2018) 240-250. [17] S. Han, H.-Y. Chen, Z.-C. Chang, J.-H. Lin, C.-J. Yang, F.-H. Lu, F.-S. Shieu, H.C. Shih, Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon, Thin Solid Films, 436 (2003) 238-243. [18] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204. [19] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350 (2018) 745-754. [20] F.-S. Shieu, L.-H. Cheng, M.-H. Shiao, S.-H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145. [21] S.J. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 139 (1991) 71-78. [22] R. Daniel, K.J. Martinschitz, J. Keckes, C. Mitterer, The origin of stresses in magnetron-sputtered thin films with zone T structures, Acta Materialia, 58 (2010) 2621-2633. [23] I. Sakamoto, S. Maruno, P. Jin, Preparation and microstructure of reactively sputtered Ti1-xZrxN films, Thin Solid Films, 228 (1993) 169-172. [24] A. Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films, Thin Solid Films, 516 (2008) 6421-6431. [25] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films, 518 (2010) 7308-7311. [26] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, Journal of Vacuum Science & Technology A, 28 (2010) 774-778. [27] S. Chinsakolthanakorn, A. Buranawong, N. Witit-anun, S. Chaiyakun, P. Limsuwan, Characterization of Nanostructured TiZrN Thin Films Deposited by Reactive DC Magnetron Co-sputtering, Procedia Engineering, 32 (2012) 571-576. [28] G. Abadias, L.E.Koutsokeras, A.Siozios, P.Patsalas, Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me=Zr,Ta) hard coatings, Thin Solid Films, 538 (2013) 56-70. [29] G. Abadias, V.I. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Materialia, 60 (2012) 5601-5614. [30] G. Abadias, P. Djemia, L. Belliard, Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, Zr or Ta) nitrides, Surf. Coat. Technol., 257 (2014) 129-137. [31] Y.-W. Lin, J.-H. Huang, G.-P. Yu, C.-N. Hsiao, F.-Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci., 354 (2015) 155-160. [32] Y.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films, 618 (2016) 13-20. [33] Y.-W. Lin, C.-W. Lu, G.-P. Yu, J.-H. Huang, Structure and properties of nanocrystalline (TiZr)xN1−x thin films deposited by DC unbalanced magnetron sputtering, J. Nanomater., 2016 (2016) 2982184. [34] D. Gall, S. Kodambaka, M.A. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094. [35] G.G. Stoney, C.A. Parsons, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175. [36] C.A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys., 88 (2000) 5487-5489. [37] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78. [38] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, 1st ed., Elsevier Science, 1997. [39] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol., 262 (2015) 40-47. [40] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218. [41] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27. [42] W.F. Hosford, R.M. Caddell, Metal Forming Mechanics and Metallurgy, 3rd ed., Cambridge, 2007. [43] G.E. Dieter, Mechanical Metallurgy, SI Metric ed., McGraw-Hill, 1986. [44] P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Springer, 1912. [45] L.V. Azaroff, M.J. Buerger, The power method in X-ray crystallography, MaGraw-Hill, New York, USA, 1958. [46] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583. [47] Freund, L.B. Freund, B. Freund, S. Suresh, Thin Film Materials : Stress, Defect Formation and Surface Evolution, 2003. [48] J.J. Wortman, R.A. Evans, Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, J. Appl. Phys., 36 (1965) 153-156. [49] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3 ed., Pearson Education International, 2001. [50] A.M. Garde, E. Aigeltinger, R.E. Reed-Hill, Relationship between deformation twinning and the stress-strain behavior of polycrystalline titanium and zirconium at 77 K, Metallurgical Transactions, 4 (1973) 2461-2468. [51] S.N. Monteiro, R.E. Reed-Hill, An empirical analysis of titanium stress-strain curves, Metallurgical Transactions, 4 (1973) 1011-1015. [52] H.-L. Liu, Measurement of residual stress of TiZrN thin films by combining average X-ray strain (AXS) and nanoindentation method, National Tsing Hua university, Master thesis, 2015. [53] JCPDF pdf #89-5009 [54] JCPDF pdf #89-4902 [55] JCPDF pdf #87-0633 [56] JCPDF pdf #89-5269
|