帳號:guest(18.191.87.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):仇以德
作者(外文):Chiu, Yi-De.
論文名稱(中文):金屬介層之設計對氮化鈦鋯雙層鍍層應力釋放之影響
論文名稱(外文):Effect of Metal Interlayer Design on Stress Relief in TiZrN Bi-layered Coatings
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):呂福興
林明澤
口試委員(外文):Lu, Fu-Hsing
Lin, Ming-Tzer
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011702
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:60
中文關鍵詞:金屬介層應力釋放雙層鍍層塑性變形儲存能釋放有效變形厚度
外文關鍵詞:Metal interlayerStress reliefBi-layered coatingsPlastic deformationStored energy reliefEffective deformation thickness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:209
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的在於探討金屬介層之設計對於雙層硬膜應力釋放的影響。我們提出以能量觀點的物理模式去探究金屬介層如何釋放硬膜中的應力。此模式的概念是金屬介層所作之塑變功,等於在鍍層內和藉由基材曲率緩解而釋放的儲存能。在模式中我們提出有效變形厚度用來評估特定種類介層之設計對於鍍層能量釋放的效果。本研究選擇具有鈦,鈦鋯和鈦鋯/鈦介層的氮化鈦鋯鍍層作為模型系統,並使用非平衡磁控濺鍍沉積鍍層在矽基板上。整個試片的應力和氮化鈦鋯鍍層內的應力分別由曲率法和結合奈米壓痕的平均X光應變法來量測。實驗結果顯示介層的塑性變形並不會在其整個厚度發生,只會在靠近氮化鈦鋯/介層的介面附近有變形。也就是說介層的有效變形厚度不會隨著介層厚度增加而增加,因而增加金屬介層厚度並不能有效地提高鍍層的應力釋放量。此外,由於高強度係數(k)的金屬塑性變形較困難,使用高強度係數且相同厚度的金屬介層,將會降低鍍層內的能量釋放。然而使用適當的介層厚度,高強度係數介層可以作為傳遞應力到矽基材之渠道。因此,使用適當鈦鋯/鈦比例厚度組合的介層,就可以將鍍層內的應力通過鈦鋯傳遞到鈦,可顯著增加鈦的有效變形厚度,因而降低更多鍍層內的能量。
The purpose of the study was to investigate the effect of metal interlayer design on the stress relief of bilayer hard coatings. We proposed an energy-based physical model to explore the stress relief in hard coating by metal interlayer. The model was based on the concept that the stored energy relief from the coating (ΔGf) and the relaxation of substrate curvature (ΔGSi) was equal to the plastic work undertaken by the metal interlayer. A parameter named effective deformation thickness (EDT) was used to evaluate the energy relief with a specific type of interlayer for different interlayer design. TiZrN coatings with Ti, TiZr and TiZr/Ti interlayers were selected as the model system. The specimens with 200 and 400 nm interlayers were deposited on Si substrate using unbalanced magnetron sputtering. The overall stress of the specimen and layer stress of TiZrN were measured by wafer curvature method and average X-ray strain combined with nanoindentation methods, respectively. The experimental results showed that increasing the metal interlayer thickness may not be an effective way on increasing stress relief efficiency in the coating. Since plastic deformation of the interlayer cannot occur in the entire thickness but only in part of the interlayer near the TiZrN/interlayer interface, defined as EDT, the EDT does not substantially increase with the interlayer thickness. In addition, plastic deformation of metal interlayer with high strength coefficient (k) is more difficult to occur by the stress transferred from the coating. Therefore, ΔGf may decrease by using high-k interlayer with the same thickness. However, the high-k interlayer can act as a channel to convey the stress to the Si substrate, if proper interlayer thickness is used. By using TiZr/Ti composite interlayer with proper thickness combination, significant amount of stress can be transmitted through TiZr to Ti, thereby increasing the EDT in Ti, and hence larger ΔGf can be attained compared with that using Ti interlayer with the same thickness.
致謝 i
摘要 ii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 The Origin of Stress in Thin Film 3
2.2 Effect of Metal Interlayer on the Stress Relief of Thin Films 3
2.3 Characteristics of TiZrN 6
2.3.1 Structure of TiZrN 6
2.3.2 Properties of TiZrN 6
2.4 Nondestructive Residual Stress Measurement in Thin Films 7
2.4.1 Wafer Curvature Method (WCM) 7
2.4.2 Grazing Incidence XRD cos2αsin2ψ Method 8
2.4.3 Average X-ray Strain (AXS) Method 11
2.5 The Stored Elastic Energy in Hard Coatings 11
Chapter 3 Theoretical Basis 13
3.1 Relief of Stored Elastic Energy in Coating and Si 13
3.2 Yield Strength and Plastic Work of a Metal Interlayer under Equi-biaxial Stress State 14
Chapter 4 Experimental details 18
4.1 Substrate Preparation and Sample Deposition 18
4.2 Characterization for Compositions and Structure 23
4.2.1 Compositions 23
4.2.2 Crystal Structure 23
4.2.3 Cross-sectional and Surface Morphology 24
4.2.4 Surface Roughness 24
4.3 Characterization for Properties 24
4.3.1 Hardness and Young’s Modulus 25
4.3.2 Residual Stress 25
4.3.2.1 Laser Curvature Measurement 25
4.3.2.2 XRD cos2αsin2ψ Method 26
Chapter 5 Results 28
5.1 Chemical Compositions and Structure 31
5.1.1 Chemical Compositions 31
5.1.2 Crystal Structure 31
5.1.3 Microstructure 34
5.1.4 Roughness 34
5.2 Properties 37
5.2.1 Hardness and Young’s Modulus 37
5.2.2 Residual Stress 37
Chapter 6 Discussion 42
6.1 Energy Relief and Stress Relief 42
6.2 Effect of Interlayer Thickness on Energy Relief 45
6.3 Effect of Strength Coefficient (k) of Interlayer on Energy Relief 46
6.4 Effect of Composite Interlayer (TiZr/Ti) on Energy Relief 48
6.5 Effective Deformation Thickness of Coating (EDTf) and Si (EDTSi) 50
Chapter 7 Conclusions 53
Reference 54
Appendix A AXS Linear Regression Fitting 60
[1] A.-N. Wang, J.-H. Huang, H.-W. Hsiao, G.-P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol., 280 (2015) 43-49.
[2] S.-C. Lei, J.-H. Huang, H. Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. Phys., 199 (2017) 185-192.
[3] Y.-C. Hung, Effect of metallic graded layers on tribological behavior of TiZrN coatings on AISI D2 steel, National Tsing Hua university, Master thesis, 2019.
[4] T.-W. Zheng, Effect of Ti Interlayer on Stress Relief of ZrN/Ti Bilayer Thin Films on Silicon Substrate, National Tsing Hua university, Master thesis, 2018.
[5] J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films, Thin Solid Films, 171 (1989) 5-31.
[6] I.C. Noyan, J.B. Cohen, Residual stress: measurement by diffraction and interpretation, Springer, 1987.
[7] O. Knotek, R. Elsing, G. Krämer, F. Jungblut, On the origin of compressive stress in PVD coatings — an explicative model, Surf. Coat. Technol., 46 (1991) 265-274.
[8] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-75 (1995) 273-278.
[9] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol., 358 (2019) 487-496.
[10] B.-S. Tsai, Effect of functionally graded layers on wear behavior of TiZrN coatings on AISI D2 Steel, National Tsing Hua university, Master thesis, 2019.
[11] Y.-W. Lin, P.-C. Chih, J.-H. Huang, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, Surf. Coat. Technol., 394 (2020) 125690.
[12] G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol., 171 (2003) 83-90.
[13] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 264 (2008) 885-892.
[14] J.Y. Chen, G.P. Yu, J.H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 stainless steel, Mater. Chem. Phys., 65 (2000) 310-315.
[15] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053.
[16] J. Vega, H. Scheerer, G. Andersohn, M. Oechsner, Experimental studies of the effect of Ti interlayers on the corrosion resistance of TiN PVD coatings by using electrochemical methods, Corrosion Science, 133 (2018) 240-250.
[17] S. Han, H.-Y. Chen, Z.-C. Chang, J.-H. Lin, C.-J. Yang, F.-H. Lu, F.-S. Shieu, H.C. Shih, Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon, Thin Solid Films, 436 (2003) 238-243.
[18] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204.
[19] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350 (2018) 745-754.
[20] F.-S. Shieu, L.-H. Cheng, M.-H. Shiao, S.-H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145.
[21] S.J. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 139 (1991) 71-78.
[22] R. Daniel, K.J. Martinschitz, J. Keckes, C. Mitterer, The origin of stresses in magnetron-sputtered thin films with zone T structures, Acta Materialia, 58 (2010) 2621-2633.
[23] I. Sakamoto, S. Maruno, P. Jin, Preparation and microstructure of reactively sputtered Ti1-xZrxN films, Thin Solid Films, 228 (1993) 169-172.
[24] A. Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, L. Hultman, Thermal stability, microstructure and mechanical properties of Ti1-xZrxN thin films, Thin Solid Films, 516 (2008) 6421-6431.
[25] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films, 518 (2010) 7308-7311.
[26] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, Journal of Vacuum Science & Technology A, 28 (2010) 774-778.
[27] S. Chinsakolthanakorn, A. Buranawong, N. Witit-anun, S. Chaiyakun, P. Limsuwan, Characterization of Nanostructured TiZrN Thin Films Deposited by Reactive DC Magnetron Co-sputtering, Procedia Engineering, 32 (2012) 571-576.
[28] G. Abadias, L.E.Koutsokeras, A.Siozios, P.Patsalas, Stress, phase stability and oxidation resistance of ternary Ti–Me–N (Me=Zr,Ta) hard coatings, Thin Solid Films, 538 (2013) 56-70.
[29] G. Abadias, V.I. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Materialia, 60 (2012) 5601-5614.
[30] G. Abadias, P. Djemia, L. Belliard, Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, Zr or Ta) nitrides, Surf. Coat. Technol., 257 (2014) 129-137.
[31] Y.-W. Lin, J.-H. Huang, G.-P. Yu, C.-N. Hsiao, F.-Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci., 354 (2015) 155-160.
[32] Y.-W. Lin, H.-A. Chen, G.-P. Yu, J.-H. Huang, Effect of bias on the structure and properties of TiZrN thin films deposited by unbalanced magnetron sputtering, Thin Solid Films, 618 (2016) 13-20.
[33] Y.-W. Lin, C.-W. Lu, G.-P. Yu, J.-H. Huang, Structure and properties of nanocrystalline (TiZr)xN1−x thin films deposited by DC unbalanced magnetron sputtering, J. Nanomater., 2016 (2016) 2982184.
[34] D. Gall, S. Kodambaka, M.A. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
[35] G.G. Stoney, C.A. Parsons, The tension of metallic films deposited by electrolysis, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175.
[36] C.A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys., 88 (2000) 5487-5489.
[37] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[38] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, 1st ed., Elsevier Science, 1997.
[39] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol., 262 (2015) 40-47.
[40] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218.
[41] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27.
[42] W.F. Hosford, R.M. Caddell, Metal Forming Mechanics and Metallurgy, 3rd ed., Cambridge, 2007.
[43] G.E. Dieter, Mechanical Metallurgy, SI Metric ed., McGraw-Hill, 1986.
[44] P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, Springer, 1912.
[45] L.V. Azaroff, M.J. Buerger, The power method in X-ray crystallography, MaGraw-Hill, New York, USA, 1958.
[46] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[47] Freund, L.B. Freund, B. Freund, S. Suresh, Thin Film Materials : Stress, Defect Formation and Surface Evolution, 2003.
[48] J.J. Wortman, R.A. Evans, Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium, J. Appl. Phys., 36 (1965) 153-156.
[49] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3 ed., Pearson Education International, 2001.
[50] A.M. Garde, E. Aigeltinger, R.E. Reed-Hill, Relationship between deformation twinning and the stress-strain behavior of polycrystalline titanium and zirconium at 77 K, Metallurgical Transactions, 4 (1973) 2461-2468.
[51] S.N. Monteiro, R.E. Reed-Hill, An empirical analysis of titanium stress-strain curves, Metallurgical Transactions, 4 (1973) 1011-1015.
[52] H.-L. Liu, Measurement of residual stress of TiZrN thin films by combining average X-ray strain (AXS) and nanoindentation method, National Tsing Hua university, Master thesis, 2015.
[53] JCPDF pdf #89-5009
[54] JCPDF pdf #89-4902
[55] JCPDF pdf #87-0633
[56] JCPDF pdf #89-5269
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *