帳號:guest(3.135.186.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂璨夆
作者(外文):Lu, TSAN-FENG
論文名稱(中文):聚苯胺色態電導二重瞬間變化性質子射束感應生醫矽膠之特性與分析
論文名稱(外文):Fabrication and Characterization of Polyaniline Composite Capable of Instant Dual Chromism-Conductivity Transduction by Proton Radiation
指導教授(中文):王本誠
指導教授(外文):Wang, Pen-Cheng
口試委員(中文):蔡惠予
林明緯
口試委員(外文):Tsai, Hui-Yu
Lin, Ming-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011577
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:導電高分子生醫矽膠有機半導體表面處理質子射束
外文關鍵詞:Conjugated polymerPDMSOrganic semiconductorSurface treatmentProton radiation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:43
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗研究有關全高分子聚苯胺 ( PANI ) 質子感測器,全高分子感測器在質子射束方面還未被研究,因此對其進行初步的實驗探討,藉由材料特性的色態與電導立即改變,得到偵測質子射束的反應訊號,並結合具有相當生醫相容性的生醫矽膠材料聚二甲基矽氧烷 ( PDMS ),可以在軟微影技術 ( soft lithography ) 下,設計出所需模組。我們也對PANI與PDMS的介面接合,進行優化處理,使PANI與PDMS之間以共價鍵結的方式連接,而非一般的物理吸附,有效地改善表面成膜性與提升薄膜附著力,也發現最佳化的表面改質材料,有利於後續的質子感測器發展。對放射劑量偵測及定位,與輻射生物資訊探測,在醫療相關技術中,具有生物電子相容性的優勢。
在核研所進行質子射束輻照實驗,嘗試不同劑量的質子射束輻照高分子材料,探討質子射束與高分子複合材料其中的效應,藉由儀器分析的結果,透過材料的色態及電性的改變,來證實PANI對於質子射束具有捕獲能力。
在感測器的設計中,也提出了將感測材料溶於PDMS中、多層薄膜式結構感測,對於質子射束中的布拉格峰特性,可以進行偵測及定位。
在未來中可望結合全高分子轉印電路、軟性穿戴式電子裝置,發展能夠傳輸相關質子射束之控制訊號,探測相關療程之輻射的臨床生物資訊,並提高質子治療之臨床醫療效用。
This study is working on the All-polymer PANI proton sensor, and the topic has not been studied in the proton beam. The reaction signal detecting the proton beam is obtained by changing the color state and the conductance of the material property immediately. It combined with the biomedical materials (PDMS), which has biomedical compatibility, the modules can be designed under soft lithography. We also modify the surface which connect PANI and PDMS in a covalently bonded manner. It effectively improves surface formation of thin film and enhances adhesion of thin film. We have found that optimized surface modification materials are beneficial to the development of proton sensors. Radiation dose detection, localization and radiation biological detection have the advantage of bioelectronic compatibility.
In the proton beam irradiation experiments, we tried different doses of proton beam to irradiate polymer materials to explore the effects of proton beam and polymer composites. Through the analysis of the instrument, it is proved that the PANI has the ability to capture the proton through the color change and electrical properties of the material. In the design of the sensor, it is proposed to place the sensing material in the PDMS and the multi-layer film. The characteristics of the Bragg peak in the proton beam can be detected and located.
In the future, it is expected to combine all-polymer transfer circuits and soft wearable electronic devices to detect clinical biological information of radiation during treatments and improve the clinical utility of proton therapy.

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 導電高分子 4
2-1-1 導電高分子的發現 4
2-1-2 導電高分子的簡介 6
2-1-3 導電機制 7
2-1-4 聚苯胺之簡介 9
2-1-5 聚苯胺質子酸摻雜/去摻雜 11
2-1-6 完全摻雜態聚苯胺 12
2-1-7 聚苯胺的合成 13
2-1-8 聚二甲基矽氧烷與其複合材料的應用 15
2-1-9 聚二甲基矽氧烷表面處理方式 18
2-1-11 游離輻射 ( ionizing radiation ) 對聚苯胺的影響 20
第三章 儀器設備與操作原理 22
3-1 掃描式電子顯微鏡 ( Scanning Electron Microscope, SEM ) 22
3-1-1電子束系統 22
3-1-2 成像系統 23
3-2 四點探針量測儀 24
3-3 光譜分析 25
3-4 紫外光-可見光-近紅外光光譜儀 ( UV-VIS-NIR Spectrometer ) 27
3-5 共軛聚焦顯微拉曼光譜儀 ( Confocal Micro-Raman spectroscopy ) 29
3-6 吸附性測試原理 30
3-7 核研所質子射束儀器 32
3-8 二次離子質譜儀 ( Secondary Ion Mass Spectrometer : SIMS ) 34
第四章 實驗內容及程序 37
4-1 實驗藥品 37
4-3-1 聚二甲基矽氧烷 ( PDMS ) 基材製備 39
4-3-2 聚二甲基矽氧烷 ( PDMS ) 基材的親水性表面改質 40
4-3-3 聚二甲基矽氧烷基材接枝有機矽烷 40
4-3-4 化學氧化法製備聚苯胺 ( PANI ) 41
4-3-5 非導電態聚苯胺粉體/聚二甲基矽氧烷複合材料製備 42
4-3-6 核研所質子射束輻照實驗 43
4-3-7 實驗有機矽烷代號命名 44
第五章 實驗結果與討論 46
5-1 去摻雜聚苯胺薄膜/聚二甲基矽氧烷複合材料 46
5-1-1 沈積、壓印、氣相蒸鍍之表面成膜性/顏色均勻度分析 46
5-1-2 片電阻值測量 47
5-1-3 接觸角測試 48
5-1-4 薄膜附著性測試-百格測試 50
5-2 非導電態聚苯胺粉體/聚二甲基矽氧烷複合材料 50
5-3 質子射束實驗 51
5-3-1 去摻雜聚苯胺薄膜/聚二甲基矽氧烷複合材料質子射束實驗結果 53
5-3-2非導電態聚苯胺粉體/聚二甲基矽氧烷複合材料質子射束實驗結果 63
第六章 未來工作 65
第七章 結論 67
第八章 參考文獻 69

[1] A. Monkman, D. Bloor, G. Stevens, J. Stevens, and P. Wilson, "Electronic structure and charge transport mechanisms in polyaniline," Synthetic Metals, vol. 29, no. 1, pp. 277-284, 1989.
[2] A. G. MacDiarmid, "“Synthetic metals”: A novel role for organic polymers (Nobel lecture)," Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2581-2590, 2001.
[3] W.-S. Huang, B. D. Humphrey, and A. G. MacDiarmid, "Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 82, no. 8, pp. 2385-2400, 1986.
[4] X.-R. Zeng and T.-M. Ko, "Structures and properties of chemically reduced polyanilines," Polymer, vol. 39, no. 5, pp. 1187-1195, 1998.
[5] A. MacDiarmid, J. Chiang, A. Richter, Epstein, and AJ, "Polyaniline: A new concept in conducting polymers," Synthetic Metals, vol. 18, no. 1-3, pp. 285-290, 1987.
[6] S. Virji, J. Huang, R. B. Kaner, and B. H. Weiller, "Polyaniline nanofiber gas sensors: Examination of response mechanisms," Nano letters, vol. 4, no. 3, pp. 491-496, 2004.
[7] T. Lindfors and A. Ivaska, "pH sensitivity of polyaniline and its substituted derivatives," Journal of Electroanalytical Chemistry, vol. 531, no. 1, pp. 43-52, 2002.
[8] P.-C. Wang, E. C. Venancio, D. M. Sarno, and A. G. MacDiarmid, "Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media," Reactive and functional polymers, vol. 69, no. 4, pp. 217-223, 2009.
[9] G. Inzelt, Conducting polymers: A new era in electrochemistry. Springer Science & Business Media, 2012.
[10] D. M. Mohilner, R. N. Adams, and W. J. Argersinger, "Investigation of the kinetics and mechanism of the anodic oxidation of aniline in aqueous sulfuric acid solution at a platinum electrode," Journal of the American Chemical Society, vol. 84, no. 19, pp. 3618-3622, 1962.
[11] A. Watanabe, K. Mori, Y. Iwasaki, Y. Nakamura, and S. Niizuma, "Electrochromism of polyaniline film prepared by electrochemical polymerization," Macromolecules, vol. 20, no. 8, pp. 1793-1796, 1987.
[12] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, no. 21, pp. 3563-3576, 2003.
[13] J. R. Windmiller and J. Wang, "Wearable electrochemical sensors and biosensors: A review," Electroanalysis, vol. 25, no. 1, pp. 29-46, 2013.
[14] R. C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y-.S. Kim, W-.H. Yeo, J.S. Park, J. Song, Y. Li, Y. Huang, A.M. Gorbach, and J.A. Rogers, "Ultrathin conformal devices for precise and continuous thermal characterization of human skin," Nature materials, vol. 12, no. 10, p. 938, 2013.
[15] X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals," Advanced materials, vol. 26, no. 9, pp. 1336-1342, 2014.
[16] D.-H. Kim, R. Ghaffari, N. Lu, and J. A. Rogers, "Flexible and stretchable electronics for biointegrated devices," Annual review of biomedical engineering, vol. 14, pp. 113-128, 2012.
[17] W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X. M. Tao, "Fiber‐based wearable electronics: A review of materials, fabrication, devices, and applications," Advanced materials, vol. 26, no. 31, pp. 5310-5336, 2014.
[18] D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining," in Micro Electro Mechanical Systems, 1999. MEMS'99. Twelfth IEEE International Conference on, 1999, pp. 222-227: IEEE.
[19] B.-H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, "Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer," Journal of microelectromechanical systems, vol. 9, no. 1, pp. 76-81, 2000.
[20] J. Zhou, D. A. Khodakov, A. V. Ellis, and N. H. Voelcker, "Surface modification for PDMS‐based microfluidic devices," Electrophoresis, vol. 33, no. 1, pp. 89-104, 2012.
[21] K. Haubert, T. Drier, and D. Beebe, "PDMS bonding by means of a portable, low-cost corona system," Lab on a Chip, vol. 6, no. 12, pp. 1548-1549, 2006.
[22] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, "Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength," Journal of microelectromechanical systems, vol. 14, no. 3, pp. 590-597, 2005.
[23] M. A. Eddings, M. A. Johnson, and B. K. Gale, "Determining the optimal PDMS–PDMS bonding technique for microfluidic devices," Journal of Micromechanics and Microengineering, vol. 18, no. 6, p. 067001, 2008.
[24] P.-C. Wang, L-.H. Liu, D.A. Mengistie, K-.H. Li, B-.J. Wen, T-.S. Liu, and C-.W. Chu, "Transparent electrodes based on conducting polymers for display applications," Displays, vol. 34, no. 4, pp. 301-314, 2013.
[25] M. Wolszczak, J. Kroh, and M. Abdel-Hamid, "Some aspects of the radiation processing of conducting polymers," Radiation Physics and Chemistry, vol. 45, no. 1, pp. 71-78, 1995.
[26] Q. Yao, L. Liu, and C. Li, "High energy proton beam bombardment of polyaniline," Radiation Physics and Chemistry, vol. 41, no. 6, pp. 791-795, 1993.
[27] S. A. Katz and A. Chatt, Hair analysis: Applications in the biomedical and environmental sciences. Wiley-VCH, 1988.
[28] X.-S. Du, C.-F. Zhou, and Y.-W. Mai, "Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds," The Journal of Physical Chemistry C, vol. 112, no. 50, pp. 19836-19840, 2008.
[29] J. Stejskal, P. Kratochvil, and N. Radhakrishnan, "Polyaniline dispersions 2. UV—Vis absorption spectra," Synthetic Metals, vol. 61, no. 3, pp. 225-231, 1993.
[30] B. Guo, Y. Zhao, W. Wu, H. Meng, H. Zou, J. Chen, and G. Chu, "Research on the preparation technology of polyaniline nanofiber based on high gravity chemical oxidative polymerization," Chemical Engineering and Processing: Process Intensification, vol. 70, pp. 1-8, 2013.
[31] G. Ćirić-Marjanović, M. Trchová, and J. Stejskal, "The chemical oxidative polymerization of aniline in water: Raman spectroscopy," Journal of Raman Spectroscopy, vol. 39, no. 10, pp. 1375-1387, 2008.
[32] S. S. Patil, S.P. Koiry, P. Veerender, D.K. Aswal, S.K. Gupta, D.S. Joag, and M.A. More, "Synthesis of vertically aligned polyaniline (PANI) nanofibers, nanotubes on APTMS monolayer and their field emission characteristics," RSC Advances, vol. 2, no. 13, pp. 5822-5827, 2012.
[33] A. Kellenberger, E. Dmitrieva, and L. Dunsch, "The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ ATR-FTIR spectroelectrochemical study," Physical Chemistry Chemical Physics, vol. 13, no. 8, pp. 3411-3420, 2011.
[34] Z. Morávková, M. Trchová, M. Exnerová, and J. Stejskal, "The carbonization of thin polyaniline films," Thin Solid Films, vol. 520, no. 19, pp. 6088-6094, 2012.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *