帳號:guest(18.226.34.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫健智
作者(外文):Sun, Jian-Jhih
論文名稱(中文):應用於矽基微型顯示器之具備脈衝寬度調變功能之驅動電路
論文名稱(外文):A Compact PWM Function Driver for Silicon-Based Micro LED Display
指導教授(中文):盧志文
指導教授(外文):Lu, Chih-Wen
口試委員(中文):陳宏偉
黃彥中
口試委員(外文):Chen, Hung-Wei
Huang, Yen-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011576
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:微型發光二極體顯示器矽基微型發光二極體驅動器脈衝寬度調變高解析度虛擬實境
外文關鍵詞:Micro LED DisplaySilicon-based Micro LED DriverPWMhigh-resolutionVR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微發光二極體(Micro LED)為目前新一代的顯示器,與現有TFT-LCD和OLED技術相比,Micro LED顯示器可以提供卓越的影像品質和省電效能。其應用範圍小至1吋以下、大至100吋以上,而針對不同的應用如擴增實境(AR)、虛擬實境(VR)至大型智慧看板等,若使用適合的製程技術,即可讓產品發揮更多元化的功能。而在小尺寸應用上,主要導入AR及VR產品,其皆屬於頭戴式裝置,故使用時需要離眼睛距離相當近,除了反應速度要求快以外,其最佳畫素量需求為2000ppi以上,正好為Micro LED的優勢。
此篇論文即是應用於高解析度之矽基Micro LED面板驅動電路,其面板採用CMOS的優勢包括元件性能、高整合度以及Micro LED直接堆疊在電路上的短距離連接,使得Micro LED 與電子元件所佔據的表面積最小化。由於Micro LED顯示器需要高效率來提供更明亮的影像,還需要更快的速度以支援不斷提升的高解析度需求,因此驅動電路的設計上必須在固定的畫面更新時間內,啟動數十萬甚至百萬的畫素進行供電。此論文為實現一微型顯示器驅動電路,其具備1280 × 720解析度與每秒90畫面之Silicon-based Micro LED driver。於此論文中採用TSMC 0.18µm製程與6.4µm寬度之畫素設計來達到近4000 PPI之高解析度,並採用PWM調變方式達成10-bit灰階亮度。
Micro light-emitting diode (Micro LED) is the next generation of display. Compared with existing TFT-LCD and OLED technologies, Micro LED displays can provide superior image quality and power saving performance. Its application range is as small as 1 inch or less and as large as 100 inches or more. For different applications, such as augmented reality (AR), virtual reality (VR), and large smart signage, etc., if the appropriate process technology is used, the product can play more diverse functions. For small-size applications, AR and VR products are mainly introduced, which are all head-mounted devices. Therefore, it needs to be quite close to the eyes when using it. In addition to the fast response speed, its optimal pixel quantity requirement is more than 2000ppi, which is exactly the advantage of Micro LED.
This thesis is a high-resolution silicon-based Micro LED panel driver circuit. The advantages of using CMOS on its panel include component performance, high integration, and short-distance connection of Micro LED directly stacked on the circuit, which minimizes the surface area occupied by Micro LED and electronic components. Because Micro LED displays require high efficiency to provide brighter images, they also need faster speeds to support the increasing demand for high resolution. Therefore, the design of the driving circuit must start hundreds of thousands or even millions of pixels to supply power within a fixed screen update time. This thesis is to realize a Micro LED display driver circuit, which has a silicon-based Micro LED driver with 1280 × 720 resolution and 90 frames per second. In this thesis, the pixel design of TSMC 0.18µm process and 6.4µm pitch is used to achieve a high resolution of nearly 4000 PPI, and PWM method is used to achieve 10-bit gray level.
中文摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 顯示器系統介紹 4
2.1 自體發光型顯示器簡介 4
2.1.1 發光二極體簡介 4
2.1.2 有機發光二極體簡介 6
2.1.3 微型發光二極體簡介 8
2.1.4 顯示器優缺點比較 11
2.2 顯示器規格參數簡介 13
2.2.1 解析度 13
2.2.2 色深與灰階亮度 14
2.2.3 畫面更新率 15
2.3 顯示器驅動原理簡介 16
2.3.1 顯示器畫素驅動模式探討 16
2.3.2 顯示器驅動方式簡介 17
2.4 PWM訊號產生器之設計規格 20
2.4.1 脈衝寬度調變訊號(PWM) 20
2.4.2 最低有效位元(LSB) 21
2.4.3 微分非線性誤差(DNL) 21
2.4.4 積分非線性誤差(INL) 22
2.4.5 遺失碼 22
第三章 電路實現與設計 23
3.1 矽基微型顯示器系統介紹 23
3.1.1 系統架構及設計規格 23
3.1.2 矽基微型顯示器驅動原理 24
3.2 畫素驅動電路之設計 25
3.3 時序控制訊號 26
3.3.1 時序控制訊號操作 26
3.3.2 資料擷取操作原理 26
3.3.3 時序電路設計 27
3.4 矽基微型顯示器之源極驅動器 28
3.4.1 源極驅動器架構 28
3.4.2 移位暫存器 30
3.4.3 輸入暫存器與資料栓鎖器 31
3.4.4 PWM訊號產生器 31
3.4.5 差動式輸出緩衝器 32
3.5 矽基微型顯示器之閘極驅動器 34
3.5.1 閘極驅動器架構 34
3.5.2 移位暫存器 35
3.5.3 數位輸出緩衝器 36
3.6 電壓考量之設計 36
3.6.1 電壓位準移位器 37
3.6.2 應用於電壓位準之偏壓緩衝器 38
3.6.3 偏壓電路 39
3.7 源極驅動器功能之測試電路 40
第四章 電路模擬與佈局 42
4.1 子電路模擬 42
4.1.1 源極驅動器模擬 42
4.1.2 應用於電壓位準之運算放大器 44
4.1.3 時脈產生電路 48
4.2 矽基微型顯示器系統模擬 49
4.2.1 微型二極體參數模擬 49
4.2.2 畫素驅動電路模擬 50
4.2.3 模擬結果 52
4.3 電路佈局 54
第五章 晶片量測環境 57
5.1 量測環境的架設 57
第六章 結論與未來展望 59
6.1 結論 59
6.2 未來展望 59
參考文獻 60
[1]A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477–1486, Sep. 2004.
[2]D.-U. Jin et al., “World-largest (6.5”) flexible full color top emission AMOLED display on plastic film and its bending properties,” in SID Symp. Dig. Tech. Papers, 2012, pp. 983–985.
[3]N. Komiya, C. Oh, K. Eom, Y. Kim, S. Park, and S. Kim, “A 2.0-in. AMOLED panel with voltage programming pixel circuits and point scanning data driver circuits,” in Proc. Int. Disp. Workshops (IDW’04), 2004, pp. 283–286.
[4]H.-J. In and O.-K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron. Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
[5]M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura, and Y. Takubo, “A novel current programmed pixel for active matrix OLED displays,” in SID Symp. Dig. Tech. Papers, 2003, pp. 108–111.
[6]J. H. Baek et al., “A current-mode display driver IC using sample-andhold scheme for QVGA full-color AMOLED displays,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2974–2982, Dec. 2006.
[7]Chih-Lung Lin, Member, IEEE, Po-Syun Chen, Mao-Hsun Cheng, Yen-Ting Liu, and Fu-Hsing Chen, “A Three-Transistor Pixel Circuit to Compensate for Threshold Voltage Variations of LTPS TFTs for AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 2, pp. 146-148, FEBRUARY 2015.
[8]Cuicui Wang, Chuanli Leng, Longyan Wang, Wengao Lu, and Shengdong Zhang, “An Accurate and Fast Current-Biased Voltage-Programmed AMOLED Pixel Circuit With OLED Biased in AC Mode, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 7, pp. 615-619, JULY 2015.
[9]Chih-Lung Lin, Fu-Hsing Chen, Chia-Che Hung, Po-Syun Chen, Ming-Yang Deng, Chun-Ming Lu, and Tzuen-Hsi Huang, “New a-IGZO Pixel Circuit Composed of Three Transistors and One Capacitor for Use in High-Speed-Scan AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 12, pp. 1031 - 1034, DECEMBER 2015.
[10]Ching-Lin Fan, Yi-Chiung Chen, Chuang-Cheng Yang, Yung-Kun Tsai, and Bohr-Ran Huang, “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays, ” JOURNAL OF DISPLAY TECHNOLOGY, VOL. 12, NO. 5, pp. 425 - 428, MAY 2016.
[11]J.-S. Bang, H.-S. Kim, S.-H. Park, G.-H. Kim, and G.-H. Cho, “A real-time TFT compensation through power line current sensing for high resolution AMOLED displays,” in SID Symp. Dig. Tech. Papers, 2014, pp. 724–727.
[12]J.-S. Bang et al., “Hybrid driver IC for real-time TFT non-uniformity compensation of ultra high-definition AMOLED display,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2015, pp. 326–327.
[13]Jun-Suk Bang, Hyun-Sik Kim, Ki-Duk Kim, Oh-Jo Kwon, Choong-Sun Shin, Joohyung Lee, and Gyu-Hyeong Cho, “A Hybrid AMOLED Driver IC for Real-Time TFT Nonuniformity Compensation,” IEEE J. Solid-State Circuits, vol. 51, no. 4, pp. 966–978, Sep. 2016.
[14]J. Sanford and E. Schlig, “Direct view active matrix VGA OLED-on-crystalline-silicon,” in Soc. Information Display Dig., 2001, pp. 376–379.
[15]W. Howard and O. Prache, “Microdisplays based upon OLED,” IBM J. Res. Develop., vol. 45, Jan. 2002.
[16]Gary B. Levy, William Evans, John Ebner, Patrick Farrell, Mike Hufford, Bryan H. Allison, David Wheeler, Haiqing Lin, Olivier Prache, and Eric Naviasky, “An 852 600 Pixel OLED-on-Silicon Color Microdisplay Using CMOS Subthreshold-Voltage-Scaling Current Drivers, ” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1879–1889, Sep. 2002.
[17]彰化師大藍光實驗室OLED網, URL:http://ykuo.ncue.edu.tw/oled/index.htm.
[18]StockFeel股感, “Micro LED是什麼?微發光二極體的構造”, URL: https://www.stockfeel.com.tw/.
[19]Yong-Joon Jeon, Student Member, IEEE, Jin-Yong Jeon, Student Member, IEEE, Young-Suk Son, Jin Huh, and Gyu-Hyeong Cho, Member, IEEE, “A High-Speed Current-Mode Data Driver With Push-Pull Transient Current Feedforward for Full-HD AMOLED Displays ” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 9, SEPTEMBER 2010.
[20]J. Sanford, and F. Libsch, “TFT AMOLED pixel circuits and driving methods,” Dig. of Tech. Papers, SID Int. Symp., San Jose, pp. 10-13, 2003.
[21]Y.He, R.Hattori, and J. Kanicki, “Improved a-Si:H TFT circuits for active-matrix organic light emitting displays,” IEEE Trans. Electron Devices, vol. 48, no.7 pp. 1322-1325, July 2001.
[22]G. Gu and S. R. Forrest, “Design of flat-panel displays based on organic light- emitting devices,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 1, pp. 83-99, Jan./Feb. 1998.
[23]G. He, M. Pfeiffer, and K. Leo, “High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers,” Appl. Phys. Lett., vol. 85, pp. 3911–3913, Oct. 2004.
[24]P. Servati, D. Striakhilev, and A. Nathan, “Above-threshold parameter extraction and modeling for amorphous silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 50, no. 11, pp. 2227–2235, Nov. 2003.
[25]P. Servati and A. Nathan, “Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors,” J. Vac. Sci. Technol., pp. 1038–1042, May 2002.
(此全文20250223後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *