帳號:guest(18.216.96.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭重佑
作者(外文):Kuo, Chung-Yu
論文名稱(中文):共平面波導微波干涉儀之研製與電漿密度量測分析
論文名稱(外文):Development of Coplanar Waveguide Microwave Interferometer for Plasma Density Measurement
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):張家豪
謝政宏
口試委員(外文):Chang, Chia-Hao
Hsieh, Cheng-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011574
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:77
中文關鍵詞:電漿密度電漿監測微帶線式
外文關鍵詞:plasma densityplasma diagnosticmicro strip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:170
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電漿製程在半導體製程中有著關鍵的角色,由於晶圓的產量以及製程良率與電漿製程的穩定性息息相關,因此有許多學者致力研究新的量測電漿參數工具,來監測電漿腔體內部的情形去即時控制壓力或射頻功率來達到製程的穩定。
本研究研製共平面波導微波干涉儀,包含模擬計算與實驗量測兩部分,用以量測電漿系統的電漿密度以及其變化情形。微波感測器原理為在相對於真空狀態下,微波在傳輸線中傳遞時,受到電漿影響使得微波波長變化,由電漿和真空下所造成相位差,去得知電漿密度變化。本感測器所設計之結構為陽極化鋁架空基板之微帶線,距離基板高度7 mm微波在兩條側邊與中心微帶線之間傳遞,此結構由高頻模擬軟體模擬出此感測器之電磁場分布,其電磁場分布與原理所得符合。
本感測器研製後對於純氬氣電漿的電漿密度量測可以即時監測隨電漿功率上升有增加的趨勢;CWMI與ABMMI相比較,在模擬結果中,共平面波導微波干涉儀對電漿輻射功率較小,減少對電漿腔體的影響;CWMI與RMMI相比較,去除石英當介電層,且縮小微波干涉儀的尺寸,電磁場分佈於電漿較多,每單位電漿密度改變時的相位變化較大,進而提升微波干涉儀的靈敏度。
Plasma Technology in Manufacturing is important in the semiconductor manufacturing process. Because wafer yield and process yield are closely related to the stability of the plasma technology in manufacturing process. Controling the pressure or RF power in real time achieves the stability of the process.
The structure designed for the sensor is a microstrip line of anodized aluminum overhead substrate. Microwaves transmits between the two sides and the center microstrip line which are height 7 mm from the substrate. This structure is simulated by high-frequency simulation software. The electromagnetic field distribution of the detector is consistent with the principle field. The electromagnetic field distribution of the fundamental mode in the CWMI is obtained from a three dimensional electromagnetic (EM) numerical simulation code, High Frequency Structure Simulation (HFSS, ANSOFT Corp.), based on finite element method.
The plasma density measurement of argon plasma can be monitored in real time to show an increasing trend with the increase of RF power. Compared with the CWMI and the air bridge microstrip microwave interferometer(ABMMI), the simulation results In comparison, There is less radiated power and effect of plasma cavity to CWMI. Compared with the ridge microstrip microwave interferometer(RMMI), the CWMI removes quartz as the dielectric layer and reduces the size of the interferometer , and the phase shift is larger when the density of the plasma per unit changes, thereby improving the sensitivity of the microwave interferometer.
摘要 I
Abstract II
目錄 III
圖目錄 V
第一章 簡介 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 電漿吸收探針 4
2.2 夾型共振器 13
2.3 微波干涉儀 23
2.4 傳輸線式微波干涉儀 26
2.5 微帶線式微波干涉儀 27
第三章 研究原理 34
3.1 微帶線式微波干涉量測電漿的基本原理分析 34
3.2 微帶線式微波干涉儀設計之微波頻率探討 35
3.3 微帶線式微波干涉儀量測電漿的方式 38
3.4 電漿參數 39
第四章 模擬方法與實驗設備 40
4.1 電磁模擬 40
4.2 電漿源及電漿量測實驗機台 43
4.3 微帶線式微波干涉儀搭配的微波電路元件 45
4.4配合使用的量測儀器 47
4.4.1 射頻網路分析儀 47
第五章 結果與討論 50
5.1 共平面波導微波干涉儀模擬 50
5.1.1 共平面波導微波干涉儀模擬計算結果 50
5.1.2 改良共平面波導微波干涉儀結構模擬計算結果 51
5.2 共平面波導微波干涉儀製作 52
5.3 實驗量測 52
5.3.1 共平面波導微波干涉儀實驗量測 52
5.3.2 共平面波導微波干涉儀與其他量測方式比較結果 52
第六章 結論 64
附錄A RMMI實驗量測 65
附錄B ABMMI實驗量測 67
附錄C 探針型感測器實驗量測 69
附錄D 模擬不同電漿區域邊界影響 71
附錄E 模擬不同石英管結構影響 73
參考文獻 76

[1] H. Kokura, K. Nakamura, I. P. Ghanashev, and H. Sugai, "Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 5262-5266, Sep 1999.
[2] K. Nakamura, M. Ohata, and H. Sugai, "Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas," Journal of Vacuum Science & Technology A, vol. 21, pp. 325-331, Jan-Feb 2003.
[3] C. Scharwitz, "The Plasma Absorption Probe: Optimisation by model-based design variations," Ruhr-Universität Bochum, 2007.
[4] B. Li, H. Li, Z. P. Chen, J. L. Xie, G. Y. Feng, and W. D. Liu, "Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe," Plasma Science & Technology, vol. 12, pp. 513-518, Oct 2010.
[5] H. Sugai and K. Nakamura, "Novel Plasma Monitoring by Surface Wave Probe."
[6] 謝政宏, "研製應用於監測電漿製程系統中電漿密度之傳輸線式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2004.
[7] 王瀚廷, "研製應用於監測電漿製程系統中電漿密度之平面式微波感測器," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2005.
[8] 鄭景元, "應用於監測電漿製程系統中電漿密度之傳輸線式微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2006.
[9] 梁耀文, "研製應用於監測電漿密度之微帶線式微波干涉儀," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2007.
[10] 黃竑旻, "電漿電子密度與射頻峰值電壓回授控制電漿蝕刻製程之研究," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[11] 顏才華, "空橋式微帶線微波干涉儀之研製," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2008.
[12] 王景弘, "M型微帶線微波干涉儀之研製及應用於電漿密度量測分析探討," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2010.
[13] C. Scharwitz, M. Boke, and J. Winter, "Optimised Plasma Absorption Probe for the Electron Density Determination in Reactive Plasmas," Plasma Processes and Polymers, vol. 6, pp. 76-85, Jan 2009.

[14] 陳穩智, "電漿吸收探針模擬與實驗分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2012.
[15] 邱晉陞, "高靈敏度微波共振探針研製及其射頻電漿鞘層影響分析," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2015.
[16] R. L. Stenzel, "MICROWAVE RESONATOR PROBE FOR LOCALIZED DENSITY-MEASUREMENTS IN WEAKLY MAGNETIZED PLASMAS," Review of Scientific Instruments, vol. 47, pp. 603-607, 1976.
[17] R. B. Piejak, V. A. Godyak, R. Garner, B. M. Alexandrovich, and N. Sternberg, "The hairpin resonator: A plasma density measuring technique revisited," Journal of Applied Physics, vol. 95, pp. 3785-3791, Apr 2004.
[18] R. B. Piejak, J. Al-Kuzee, and N. S. Braithwaite, "Hairpin resonator probe measurements in RF plasmas," Plasma Sources Science & Technology, vol. 14, pp. 734-743, Nov 2005.
[19] G. S. Gogna, C. Gaman, S. K. Karkari, and M. M. Turner, "Dielectric covered hairpin probe for its application in reactive plasmas," Applied Physics Letters, vol. 101, Jul 2012.
[20] D. J. Peterson, P. Kraus, T. C. Chua, L. Larson, and S. C. Shannon, "Electron neutral collision frequency measurement with the hairpin resonator probe," Plasma Sources Science & Technology, vol. 26, p. 8, Sep 2017.
[21] G. S. Gogna, S. K. Karkari, and M. M. Turner, "Interpreting the behavior of a quarter-wave transmission line resonator in a magnetized plasma," Physics of Plasmas, vol. 21, Dec 2014.
[22] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 1983.
[23] C. H. Chang, C. H. Hsieh, H. T. Wang, J. Y. Jeng, K. C. Leou, and C. Lin, "A transmission-line microwave interferometer for plasma electron density measurement," Plasma Sources Science and Technology, vol. 16, p. 67, 2007.
[24] C. H. Hsieh, Y. W. Liang, J. Y. Jeng, J. S. Chiou, K. C. Leou, and C. Lin, "Development of a ridged microstrip microwave interferometer for plasma electron density measurements," Plasma Sources Science and Technology, vol. 24, p. 035019, 2015.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *