帳號:guest(18.191.130.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許上華
作者(外文):Hsu, Shang-Hua
論文名稱(中文):鰭式及全環繞式場效電晶體之電特性與可靠度研究
論文名稱(外文):Study on Electrical Characteristics and Reliability of FinFET and GAAFET
指導教授(中文):張廖貴術
指導教授(外文):ChangLiao, Kuei-Shu
口試委員(中文):趙天生
羅廣禮
口試委員(外文):Chao, Tien-Sheng
Luo, Guang-li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011569
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:126
中文關鍵詞:鰭式電晶體全環繞式電晶體電特性可靠度電漿介面處理輻射傷害
外文關鍵詞:FinFETGAAFETElectrical CharacteristicsReliabilityPlasma TreatmentRadiation Damage
相關次數:
  • 推薦推薦:0
  • 點閱點閱:55
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著製程技術不斷的進步,元件特徵尺寸微縮,透過不同結構或通道材料來改善電特性,可以克服短通道效應所造成的問題。
本論文研究分為兩部分為主軸,分別為更換通道材料與改變閘極結構,改善金氧半電晶體之電特性與可靠度。
第一部分,取代傳統鰭式電晶體中的矽材料,以矽與矽鍺交互堆疊的矽鍺超晶格為通道材料,提升載子遷移率,再以不同的低溫電漿處理介面,改善鍺材料漏電問題。從實驗結果來看,不論是p或n型鰭式電晶體,在經低溫NH3電漿後,對於導通電流、關閉電流、次臨界擺幅、可靠度測試,都有較好的表現。推測經低溫NH3電漿處理後,能有效抑制鍺的擴散和鈍化介面,使通道載子侷限在矽與矽鍺量子井內,以提升載子遷移率及元件電特性。
第二部分,以改變結構做平面式、鰭式以及全環繞式電晶體,比較其電特性。全環繞式電晶體能有較佳的導通電流、關閉電流、次臨界擺幅以及可靠度測試。推測全環繞式電晶體有著更好的靜電閘極控制能力。
最後,對平面式、鰭式以及全環繞式電晶體,經不同輻射傷害後,對電特性與可靠度進一步分析。以電容器而言,隨著輻射傷害的提升,使電容劣化,造成EOT上升與漏電流增加。以金氧半電晶體電特性而言,可以發現全環繞式電晶體對於輻射傷害的抵抗能力,優於平面式電晶體與鰭式電晶體,除此之外,發現輻射傷害對於元件都有一定的傷害,其中以源、汲極接面劣化最為嚴重。
In recent years, the short channel effect (SCE) with the shrinking feature size of MOSFETs was reduced and electrical characteristics can be improved by replacing material channel or gate structure.
This thesis can be divided into two parts. One is different channel materials; the other is different gate structures of FinFET. Two approaches are studied to improve electrical characteristics and reliability.
In the first part, since Ge can provide higher carrier mobility than Si, the high performance of FinFET can be achieved by using Si/SiGe super-lattice channel. However, leakage current of Ge-based device is higher due to more Ge diffusion. Therefore, low temperature (NH3/H2) plasma treatments were applied on channel surface to suppress gate leakage. After NH3 plasma treatment, both the n-FinFET and p-FinFET exhibit higher on drive current, lower off current, smaller sub-threshold swing, and better reliability. It indicates that Si/SiGe super-lattice channel can be passivated by NH3 plasma treatment. Hence, the carrier can be effectively confined in the quantum well between Si and SiGe.
In the second part, the effects of different MOSFET structures are studied. The results suggest that GAAFET shows better electrical characteristics than FinFET and planar MOSFET. This indicates that the structure of GAAFET has superior control ability of the electrostatic in gate stack.
Finally, the effects of radiation damage on different MOSFET structures are studied. With increasing radiation damage, the degradation of gate capacitance in MOS device is observed. It leads to higher EOT and higher leakage current. As a result, GAAFET shows better radiation hardness. Moreover,it is found that the radiation damage to source/drain junction is more, as compared to that on gate dielectrics.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 序論 1
1.1 前言 1
1.2 高介電材料(High-k)介紹 1
1.3 高介電材料的選擇 2
1.4 矽鍺虛擬基板-應變通道 3
1.4.1 臨界厚度 4
1.4.2 差排 4
1.5 絕緣層覆矽基板 5
1.6 鰭式電晶體(FinFET)、全環繞式電晶體(GAAFET) 5
1.7 輻射傷害 6
1.8 論文架構 6
第二章 元件製程與量測 21
2.1 SOI 電晶體製作流程 21
2.1.1 晶圓刻號與清潔 21
2.1.2 晶圓對準記號形成 21
2.1.3 主動區形成 22
2.1.4 閘極介電層沉積 22
2.1.5 金屬閘電極的形成 22
2.1.6 源極(Source)、汲極(Drain)、基極(Base)的形成 22
2.1.7 鈍化層沉積 23
2.1.8 金屬導線、燒結 23
2.2 電性的量測 23
2.2.1 電晶體電流-電壓(I-V)特性量測 23
2.2.2 電容-電壓(C-V)量測與模擬 24
2.3 物性分析 24
2.3.1 穿透式電子顯微鏡 24
第三章 應用於不同低溫氣體電漿對矽鍺超晶格通道處理之鰭式電晶體之電性分析 …………………………………………………………………………..31
3.1 研究動機 31
3.2 製程與量測 32
3.2.1 製程流程條件 32
3.2.2 量測參數 33
3.3 實驗結果與討論 33
3.3.1 不同低溫氣體電漿處理對矽鍺超晶格通道之電容器之電特性分析 …………………………………………………………………..34
3.3.2 不同低溫氣體電漿對矽鍺超晶格通道處理之鰭式電晶體之電特性分析 34
3.4 本章結論 36
第四章 平面、鰭式、全環繞式電晶體之電特性研究 49
4.1 研究動機 49
4.2 製程與量測 51
4.2.1 製程條件 51
4.2.2 量測參數 51
4.3 實驗結果與討論 52
4.3.1 平面、鰭式、全環繞式電晶體在穿透式電子顯微鏡下的分析 …………………………………………………………………..52
4.3.2 金氧半電晶體之電容器之電特性分析 53
4.3.3 平面、鰭式、全環繞式電晶體之電特性分析 53
4.4 本章結論 56
第五章 平面、鰭式、全環繞式電晶體經輻射傷害之可靠度研究 74
5.1 研究動機 75
5.2 製程與量測 75
5.2.1 製程條件 75
5.2.2 量測參數 76
5.3 實驗結果與討論 76
5.3.1 不同輻射傷害對電容器之電特性分析 77
5.3.2 平面、鰭式、全環繞式電晶體經輻射傷害之電特性分析 78
5.4 本章結論 84
第六章 結論與未來展望 120
6.1 結論 120
6.2 未來展望 121
參考文獻 122
[1] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode," Physical Review, vol. 74, no. 2, p. 230, 1948.
[2] C. M. Melliar-Smith, M. G. Borrus, D. E. Haggan, T. Lowrey, A. S. G. Vincentelli, and W. W. Troutman, "The transistor: an invention becomes a big business," Proceedings of the IEEE, vol. 86, no. 1, pp. 86-110, 1998.
[3] K. Dawon, "Electric field controlled semiconductor device," ed: Google Patents, 1963.
[4] R. R. Schaller, "Moore's law: past, present and future," IEEE spectrum, vol. 34, no. 6, pp. 52-59, 1997.
[5] J. Stathis and D. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," in International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), 1998: IEEE, pp. 167-170.
[6] M. Agostinelli, M. Alioto, D. Esseni, and L. Selmi, "Leakage–delay tradeoff in FinFET logic circuits: A comparative analysis with bulk technology," IEEE Transactions on very large scale integration (VLSI) systems, vol. 18, no. 2, pp. 232-245, 2009.
[7] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices. Cambridge university press, 2013.
[8] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
[9] H.-S. Wong, "Beyond the conventional transistor," IBM Journal of Research and Development, vol. 46, no. 2.3, pp. 133-168, 2002.
[10] M. Houssa et al., "Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions," Materials Science and Engineering: R: Reports, vol. 51, no. 4-6, pp. 37-85, 2006.
[11] D. Pattanayak, J. Poksheva, R. Downing, and L. Akers, "Fringing field effect in MOS devices," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 5, no. 1, pp. 127-131, 1982.
[12] S. Saito, "Unified mobility model for high-k gate stacks," Tech. Dig. of IEDM, 2003, pp. 797-800, 2003.
[13] J. Choi, Y. Mao, and J. Chang, "Development of hafnium based high-k materials—A review," Materials Science and Engineering: R: Reports, vol. 72, no. 6, pp. 97-136, 2011.
[14] N. Lu, "High-permittivity dielectrics and high mobility semiconductors for future scaled technology: Hf-based High-K gate dielectrics and interface engineering for HfO₂/Ge CMOS device," 2006.
[15] X. Zhang, "Strain Technology for Silicon Conductivity Enhancement.," 2007.
[16] A. I. Kingon, J.-P. Maria, and S. Streiffer, "Alternative dielectrics to silicon dioxide for memory and logic devices," Nature, vol. 406, no. 6799, p. 1032, 2000.
[17] D.J.Paul, "Strain in Si/SiGe Heterostructures.," 2000.
[18] D. Houghton, "Strain relaxation kinetics in Si1− xGex/Si heterostructures," Journal of applied physics, vol. 70, no. 4, pp. 2136-2151, 1991.
[19] D.J.Paul, "Misfit Dislocations.," 2000.
[20] M. Poljak, V. Jovanović, and T. Suligoj, "Improving bulk FinFET DC performance in comparison to SOI FinFET," Microelectronic Engineering, vol. 86, no. 10, pp. 2078-2085, 2009.
[21] C. Manoj, M. Nagpal, D. Varghese, and V. R. Rao, "Device design and optimization considerations for bulk FinFETs," IEEE transactions on electron devices, vol. 55, no. 2, pp. 609-615, 2008.
[22] B. Parvais et al., "The device architecture dilemma for cmos technologies: opportunities & challenges of finFET over planar MOSFET," in 2009 International Symposium on VLSI Technology, Systems, and Applications, 2009: IEEE, pp. 80-81.
[23] G. Vellianitis et al., "The Influence of TiN Thickness and SiO2 Formation Method on the Structural and Electrical Properties of TiN/HfO2/SiO2 Gate Stacks," IEEE Transactions on Electron Devices, vol. 56, no. 7, pp. 1548-1553, 2009.
[24] T. Hayashida et al., "Fin-height effect on poly-Si/PVD-TiN stacked-gate FinFET performance," IEEE transactions on electron devices, vol. 59, no. 3, pp. 647-653, 2012.
[25] P. Zheng, D. Connelly, F. Ding, and T.-J. K. Liu, "FinFET evolution toward stacked-nanowire FET for CMOS technology scaling," IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 3945-3950, 2015.
[26] A. Veloso, A. De Keersgieter, P. Matagne, N. Horiguchi, and N. Collaert, "Advances on doping strategies for triple-gate finFETs and lateral gate-all-around nanowire FETs and their impact on device performance," Materials Science in Semiconductor Processing, vol. 62, pp. 2-12, 2017.
[27] M. Gaillardin, P. Paillet, V. Ferlet-Cavrois, O. Faynot, C. Jahan, and S. Cristoloveanu, "Total ionizing dose effects on triple-gate FETs," IEEE transactions on nuclear science, vol. 53, no. 6, pp. 3158-3165, 2006.
[28] Z. Liu et al., "Influence of poly region extended into field oxide on total ionizing dose effect for deep submicron MOSFET," in 2011 12th European Conference on Radiation and Its Effects on Components and Systems, 2011: IEEE, pp. 28-35.
[29] C. Peng et al., "Total-ionizing-dose induced coupling effect in the 130-nm PDSOI I/O nMOSFETs," IEEE Electron Device Letters, vol. 35, no. 5, pp. 503-505, 2014.
[30] C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, "Extreme ultraviolet lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 16, no. 6, pp. 3142-3149, 1998.
[31] E. Stassinopoulos and J. P. Raymond, "The space radiation environment for electronics," Proceedings of the IEEE, vol. 76, no. 11, pp. 1423-1442, 1988.
[32] O. M. Haraz, A. Elboushi, S. A. Alshebeili, and A.-R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, vol. 2, pp. 909-913, 2014.
[33] J. R. Schwank et al., "Radiation effects in MOS oxides," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 1833-1853, 2008.
[34] STMicroelectronics., "Learn More About FD-SOI.."
[35] V. Subramanian et al., "Planar bulk MOSFETs versus FinFETs: An analog/RF perspective," IEEE Transactions on Electron Devices, vol. 53, no. 12, pp. 3071-3079, 2006.
[36] J. Colinge, J. Park, and C. Colinge, "SOI devices for sub-0.1μm gate lengths," in 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595), 2002, vol. 1: IEEE, pp. 109-113.
[37] J.-P. Colinge, "Multigate transistors: Pushing Moore's law to the limit," in 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2014: IEEE, pp. 313-316.
[38] E. Snow, "Fowler-Nordheim tunneling in SiO2 films," Solid State Communications, vol. 5, no. 10, pp. 813-815, 1967.
[39] M. Cho et al., "Improved Channel Hot-Carrier Reliability in p-FinFETs With Replacement Metal Gate by a Nitrogen Postdeposition Anneal Process," IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 408-412, 2013.
[40] S. Maikap, L. Bera, S. Ray, S. John, S. K. Banerjee, and C. Maiti, "Electrical characterization of Si/Si1− xGex/Si quantum well heterostructures using a MOS capacitor," Solid-State Electronics, vol. 44, no. 6, pp. 1029-1034, 2000.
[41] C. O. Chui, "Germanium MOS capacitors incorporating ultrathin high-k gate dielectric," IEEE Electron Device Letters, vol. 23, no. 8, pp. 476-478, 2002.
[42] S. Whang et al., "Germanium p-& n-MOSFETs fabricated with novel surface passivation (plasma-PH3/and thin AlN) and TaN/HfO2/gate stack," in IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004., 2004: IEEE, pp. 307-310.
[43] C. C. Yeo et al., "Electron mobility enhancement using ultrathin pure Ge on Si substrate," IEEE electron device letters, vol. 26, no. 10, pp. 761-763, 2005.
[44] M. Palmer et al., "Effective mobilities in pseudomorphic Si/SiGe/Si p-channel metal-oxide-semiconductor field-effect transistors with thin silicon capping layers," Applied Physics Letters, vol. 78, no. 10, pp. 1424-1426, 2001.
[45] Y.-J. Song et al., "Effects of Si-cap layer thinning and Ge segregation on the characteristics of Si/SiGe/Si heterostructure pMOSFETs," Solid-State Electronics, vol. 46, no. 11, pp. 1983-1989, 2002.
[46] W.-K. Yeh et al., "The improvement of high-k/metal gate pMOSFET performance and reliability using optimized Si cap/SiGe channel structure," IEEE Transactions on Device and Materials Reliability, vol. 11, no. 1, pp. 7-12, 2010.
[47] K. Sardashti et al., "Nitride passivation of the interface between high-k dielectrics and SiGe," Applied Physics Letters, vol. 108, no. 1, p. 011604, 2016.
[48] I. Martın et al., "Improvement of crystalline silicon surface passivation by hydrogen plasma treatment," Applied physics letters, vol. 84, no. 9, pp. 1474-1476, 2004.
[49] M. Vinet et al., "Self-Aligned Planar Double-Gate MOSFETs by Bonding for 22-nm Node, With Metal Gates, High-k Dielectrics, and Metallic Source/Drain," IEEE Electron Device Letters, vol. 30, no. 7, pp. 748-750, 2009.
[50] M. Jurczak, N. Collaert, A. Veloso, T. Hoffmann, and S. Biesemans, "Review of FINFET technology," in 2009 Ieee International Soi Conference, 2009: IEEE, pp. 1-4.
[51] C.-S. Tang, S.-M. Yu, H.-M. Chou, J.-W. Lee, and Y. Li, "Simulation of electrical characteristics of surrounding-and omega-shaped-gate nanowire FinFETs," in 4th IEEE Conference on Nanotechnology, 2004., 2004: IEEE, pp. 281-283.
[52] Y. Li, H.-M. Chou, and J.-W. Lee, "Investigation of electrical characteristics on surrounding-gate and omega-shaped-gate nanowire FinFETs," IEEE Transactions on Nanotechnology, vol. 4, no. 5, pp. 510-516, 2005.
[53] Y. Tian et al., "New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: Process integration, experimental characterization of carrier transport and low frequency noise," in 2007 IEEE International Electron Devices Meeting, 2007: IEEE, pp. 895-898.
[54] S.-D. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook, and M.-H. Na, "Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond," in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2015: IEEE, pp. 1-3.
[55] Y. Li and C.-S. Lu, "Characteristic comparison of sram cells with 20 nm planar mosfet, omega finfet and nanowire finfet," in 2006 Sixth IEEE Conference on Nanotechnology, 2006, vol. 1: IEEE, pp. 339-342.
[56] P. Zheng, Y.-B. Liao, N. Damrongplasit, M.-H. Chiang, and T.-J. K. Liu, "Variation-Aware Comparative Study of 10-nm GAA Versus FinFET 6-T SRAM Performance and Yield," IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 3949-3954, 2014.
[57] A. Veloso et al., "Gate-all-around NWFETs vs. triple-gate FinFETs: Junctionless vs. extensionless and conventional junction devices with controlled EWF modulation for multi-VT CMOS," in 2015 Symposium on VLSI Technology (VLSI Technology), 2015: IEEE, pp. T138-T139.
[58] C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, "22nm half-pitch patterning by CVD spacer self alignment double patterning (SADP)," in Optical Microlithography XXI, 2008, vol. 6924: International Society for Optics and Photonics, p. 69244E.
[59] J.-P. Colinge, "Novel gate concepts for MOS devices," in Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No. 04EX850), 2004: IEEE, pp. 45-49.
[60] F. Campabadal, S. Ghatnekar-Nilsson, G. Rius, E. Figueras, and J. Esteve, "Nanocantilevers with integrated CMOS: Effects of electron beam lithography on NMOS transistors," in Conference on Electron Devices, 2005 Spanish, 2005: IEEE, pp. 213-216.
[61] A. Kojima, T. Ohta, H. Ohyi, and N. Koshida, "7.5: Massive parallel electron beam lithography based on a planar type si nanowire array ballistic electron source with large surface," in International Vacuum Nanoelectronics Conference, 2010: IEEE, pp. 111-112.
[62] J. D. Cressler et al., "A scaled 0.25μm m bipolar technology using full e-beam lithography," IEEE electron device letters, vol. 13, no. 5, pp. 262-264, 1992.
[63] S. Guhathakurata, S. Chattopadhyay, and M. Palit, "Optimization of electron beam dose for reliable nanoscale growth template formation in electron beam lithography system," in 2018 International Symposium on Devices, Circuits and Systems (ISDCS), 2018: IEEE, pp. 1-4.
[64] A. B. Sachid and C. Hu, "A little known benefit of FinFET over planar MOSFET in high performance circuits at advanced technology nodes," in 2012 IEEE International SOI Conference (SOI), 2012: IEEE, pp. 1-2.
[65] Y. Hashim, "A Review on Transistors in Nano Dimensions," International Journal of Engineering Technology and Sciences (IJETS), vol. 4, no. 1, pp. 8-18, 2015.
[66] D. Nagy, G. Indalecio, A. J. García-Loureiro, M. A. Elmessary, K. Kalna, and N. Seoane, "FinFET versus gate-all-around nanowire FET: Performance, scaling, and variability," IEEE Journal of the Electron Devices Society, vol. 6, pp. 332-340, 2018.
[67] G. Qu, D. Min, Z. Zhao, M. Fréchette, and S. Li, "Radiation Effect on the Electron Transport Properties of SiO2/Si Interface: Role of Si Dangling-Bond Defects and Oxygen Vacancy," in 2018 IEEE 2nd International Conference on Dielectrics (ICD), 2018: IEEE, pp. 1-4.
[68] G. Kaushal, S. Rathod, S. Maheshwaram, S. Manhas, A. Saxena, and S. Dasgupta, "Radiation effects in Si-NW GAA FET and CMOS inverter: A TCAD simulation study," IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 1563-1566, 2012.
[69] Y. Li, W. M. Porter, R. Ma, M. A. Reynolds, B. J. Gerbi, and S. J. Koester, "Capacitance-based dosimetry of Co-60 radiation using fully-depleted silicon-on-insulator devices," IEEE transactions on nuclear science, vol. 62, no. 6, pp. 3012-3019, 2015.
[70] D. M. Fleetwood, "Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling," IEEE Transactions on Nuclear Science, vol. 65, no. 8, pp. 1465-1481, 2017.
[71] X. Xie et al., "An Analytical Study of the Effect of Total Ionizing Dose on Body Current in 130-nm PDSOI I/O nMOSFETs," IEEE Transactions on Nuclear Science, vol. 66, no. 3, pp. 625-634, 2019.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *