帳號:guest(3.141.4.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宜珊
作者(外文):Tsai, Yi-Shan
論文名稱(中文):游離輻射效應對氧化鉿鋯鐵電記憶體特性之影響
論文名稱(外文):Effects of Ionizing Radiation on Memory Characteristics for HfZrOx-Based FeFETs
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
口試委員(中文):李耀仁
吳添立
口試委員(外文):Lee, Yao-Jen
Wu, Tian-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011562
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:游離輻射氧化鉿鋯鐵電電晶體非揮發性記憶體
外文關鍵詞:Ionizing RadiationHfZrOxFeFETsnon-volatile memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二氧化鉿基底的鐵電材料與傳統鐵電材料相比具相容於先進CMOS 製程、高切換速度及低功率消耗等特性,歸功於鐵電材料的極化特性能隨著外加電場改變極化狀態,相較於其他非揮發性記憶體,鐵電記憶電晶體實現一個電晶體作為記憶體元件。游離輻射廣泛應用於低軌道衛星、醫療、核能發電、航太工程等領域,然而游離輻射的高能量使原子激發、分離電子並造成半導體元件失效,輻射效應又可分為總游離劑量(Total Ionizing Dose ,TID)和單粒子效應(Single Event Effect, SEE)。
本篇論文以金屬-氧化鉿鋯-矽半導體為結構之鐵電記憶電晶體探討不同程度的總游離劑量對鐵電記憶電晶體之影響,並使用鈷60 作為游離輻射來源,實驗討論輻射照射後,鐵電記憶電晶體之電性、可靠度、及物性分析。
輻射照射之鐵電記憶電晶體相較於未受輻射照射之鐵電記憶電晶體其記憶體視窗並未縮減,儘管輻射照射過程中在氧化鉿鋯留下氧空缺導致鐵電材料剩餘極化值減少及晶相改變。在記憶體可靠度方面,從保留時間來看,游離輻射照射300 krad 之鐵電記憶電晶體其起始狀態記憶體視窗與未受游離輻射照射之鐵電記憶電晶體相近,保留時間延長至十年線時其開關比仍有2.2×103 次方。然而,從耐久度來看,游離輻射所產生的氧空缺使受游離輻射照射之鐵電記憶電晶體在重複施加106 次脈衝後,記憶體視窗減少至0.52 V。
Since HfO2-based ferroelectric materials have been reported, it seems to replace the conventional ferroelectric materials with plenty of advantages, such as compatible to CMOS process, well performance in switching speed, and with better energy efficiency. Regarding ferroelectricity, the key property is its hysteretic curve of electric polarization versus electric field strength. It has a spontaneous electric polarization which can be reversed by applying an external electric field, and can be set to either assist in the inversion channel or to enhance its accumulation state when applying to transistors. Comparison to other types of non-volatile memory, ferroelectric field-effect transistors realize the application of 1T-memory.
Ionizing radiation is widely used in low orbit satellite, radiotherapy, nuclear industry, and aerospace engineering. However, radiation with sufficient energy to excite and detach the electrons from atoms and may cause hard or soft error for semiconductor devices from the total ionizing dose (TID) and single event effect (SEE).
This work discusses ionizing radiation effect on HfZrOx-FeFETs, with electrical characteristics, reliability test, and physical property analysis.
Both of the irradiated devices show comparable memory window comparison with the devices without radiation. Although γ-ray radiation left lots of oxygen vacancy in the bulk HZO, it caused reduction of remnant polarization and phase change. Retention of the 300 kard irradiated devices keeps current ratio up to 2.2×103 till 10-year line. Endurance of the the 300 kard irradiated devices degrades memory window to 0.52 V after 106 cycles.
摘要……………………………………………………………………………………………i
Abstract…………………………………………………………………………….ii
目錄………………………………………………………………………………………iii
圖目錄………………………………………………………………………………………vi
表目錄…………………………………………………………………………………………x
第一章 緒論……………………………………………………………………………1
1-1鐵電材料……………………………………………………………………………1
1-1-1材料結構劃分………………………………………………………………1
1-1-2鐵電性……………………………………………………………………………2
1-1-3 鐵電材料比較……………………………………………………………3
1-2 鐵電材料應用於非揮發性記憶體…………………………4
1-2-1 鐵電隨機存儲記憶體……………………………………………4
1-2-2 鐵電穿隧接面…………………………………………………………5
1-2-3 鐵電電晶體………………………………………………………………6
1-3 游離輻射…………………………………………………………………………6
1-3-1輻射定義………………………………………………………………………7
1-3-2宇宙中輻射組成…………………………………………………………7
1-3-3 輻射應用領域……………………………………………………………7
1-3-4 總游離劑量/單粒子效應………………………………………8
第二章 文獻回顧……………………………………………………………………21
2-1 鐵電電晶體失效機制……………………………………………………21
2-1-1 鐵電電晶體之記憶體視窗………………………………………21
2-1-2鐵電電晶體電荷捕捉捕捉情形………………………………21
2-1-3鐵電電晶體記憶保持失效原因………………………………22
2-1-4 鐵電電晶體耐久度失效機制…………………………………23
2-2 游離輻射對鐵電材料影響……………………………………………25
2-2-1 游離輻射改善界面缺陷密度…………………………………25
2-2-2 游離輻射效應對鐵電電晶體影響………………………25
第三章 實驗動機及流程………………………………………………………39
3-1 實驗動機……………………………………………………………………………39
3-2 實驗流程……………………………………………………………………………40
第四章 實驗結果與討論………………………………………………………48
4-1 鐵電電晶體電性分析……………………………………………………48
4-1-1電流電壓特性分析………………………………………………………48
4-1-2 電容電壓特性分析……………………………………………………49
4-2 鐵電電晶體可靠度分析………………………………………………51
4-2-1 鐵電電晶體切換速度分析……………………………………51
4-2-2 鐵電電晶體切換電流分析……………………………………52
4-2-3 鐵電電晶體耐久度分析…………………………………………53
4-2-4 鐵電電晶體保持時間分析……………………………………54
4-3鐵電電晶體物性分析………………………………………………………55
第五章 結論及未來展望………………………………………………………71
參考文獻………………………………………………………………………………………73
第一章
[1]. T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick, “About the deformation of ferroelectric hystereses,” J. Appl. Phys., vol. 1, no. 4, 2014, pp. 041103-1–041103-14.
[2]. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., vol. 99, no. 10, 2011, pp. 102903-1–102901-3.
[3]. International Roadmap for Devices and Systems (IRDS), 2017. [Online]
[4]. S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.-A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, and S. Beyer, “A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond,” IEDM Tech. Dig., 2017, pp. 19.7.2–19.7.4.
[5]. J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, “Radiation effects in MOS oxides,” IEEE Trans. Nucl. Sci., vol. 55, no. 4, 2008, pp. 1833–1853.
第二章
[6]. H. T. Lue, C. J. Wu and T. Y. Tseng, “Device modeling of ferroelectric memory field-effect transistor (FeMFET),” IEEE Trans. Electron Devices, vol. 49, no. 10, 2002 , pp. 1790–1798.
[7]. K. Ni, P. Sharma, J. Zhang, M. Jerry, J. A. Smith, K. Tapily, R. Clark, S. Mahapatra, and S. Datta, “Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance,” IEEE Trans. Electron Devices, vol. 65, no. 6, 2018, pp. 2461–2469.
[8]. T. P Ma, and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive?,” IEEE Electron Device Lett., vol. 23, no. 7, 2002, pp. 386–388.
[9]. J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, and T. Mikolajick, “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG,” Proc. IEEE VLSI Technol., 2012, pp. 25–26.
[10]. N. Gong, and T. P. Ma, “A study of endurance issues in HfO2-based ferroelectric field effect transistors: charge trapping and trap generation,” IEEE Electron Device Lett., vol. 39, no. 1, 2018, pp. 15–18.
[11]. S. Maurya, “Effect of zero bias gamma ray irradiation on HfO2 thin films,” J. Master. Sci., vol. 27, no. 12, 2016, pp. 12796–12802.
[12]. S. A. Yan, Y. Xiong, M. H. Tang, Z. Li, Y. G. Xiao, W. L. Zhang, W. Zhao, H. X. Guo, H. Ding, J. W. Chen, and Y. C. Zhou, “Impact of total ionizing dose irradiation on electrical property of ferroelectric-gate field-effect transistor,” J. Appl. Phys., vol. 115, no. 20, 2014, pp. 204504-1–204504-6.
第三章
[13]. Q. Shi, Y. Ma, Y. Li, and Y.Zhou, “Drastic reduction of leakage current in ferroelectric Bi3.15Nd0.85Ti3O12 films by ionizing radiation,” Nucl. Instrum. Methods B, vol. 269, no. 4, 2011, pp. 452–454.
[14]. J. Müller, T. S. Böscke, U. Schröder, S.Mueller, D. Bräuhaus, U. Böttger, L. Fre, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, 2012, pp. 4318–4323.
[15]. F. Huang, Y. Wang, X. Liang, J. Qin, Y. Zhang, X. Yuan, Z. Wang, B. Peng, L. Deng, Q. Liu, L. Bi, and M. Liu, “HfO2-based highly stable radiation-immune ferroelectric memory,” IEEE Electron Device Lett., vol. 38, no. 3, 2017, pp. 330–333.
[16]. W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, “Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications,” ACS Appl. Electron. Mater. Article ASAP, vol. 1, no. 6, 2019, pp. 919–927.
[17]. Y. Wang, F. Huang, Y. Hu, R. Cao, T. Shi, Q. Liu, L. Bi, and M. Liu, “Proton Radiation Effects on Y-Doped HfO2-Based Ferroelectric Memory,” IEEE Electron Device Lett., vol. 39, no. 6, 2018, pp. 823–826.
[18]. T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph, B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, M. Czernohorsky, K. Kühnel, P. Steinke, J. Calvo, K. Zimmermann, and J. Müller, “High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty,” IEEE Trans. Electron Devices, vol. 65, no. 9, 2018, pp. 3769–3774.
第四章
[19]. R. L. Pease, S. D. Clark, P. L. Cole, J. F. Krieg, and J. C. Pickel, “Total dose response of transconductance in MOSFETs at low temperature,” IEEE Trans. Nucl. Sci., vol. 41, no. 3, 1994, pp. 549–554.
[20]. N. Medhi, and A. K. Nath, “Gamma ray irradiation effects on the ferroelectric and piezoelectric properties of barium titanate ceramics,” J. Mater. Eng. Perform., vol. 22, no. 9, 2013, pp. 2716–2722.
[21]. K. Klyukin, and V. Alexandrov, “Effect of intrinsic point defects on ferroelectric polarization behavior of SrTiO3,” Phys. Rev. B, vol. 95, no. 3, 2017, pp. 035301-1–035301-8.
[22]. N. Gong, and T. P. Ma, “Why is FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? A retention perspective,” IEEE Electron Device Lett., vol. 37, no. 9, 2016, pp. 1123–1126.
第五章
[23]. K. Y. Chen, P. H. Chen, and Y. H. Wu, “Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment,” Symp VLSI Technol, 2017, pp. T84–T85.
[24]. S. Oh, J. Song, I. K. Yoo, and H. Hwang, “Improved endurance of HfO2-based metal-ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing,” IEEE Electron Device Lett. (Early Access), 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *