帳號:guest(18.118.226.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅 揚
作者(外文):Luo, Yang
論文名稱(中文):有機聯氨化學摻雜之N型單壁奈米碳管製備與分析
論文名稱(外文):Preparation and analysis of N-type single-walled carbon nanotubes induced by chemical doping with organic hydrazines
指導教授(中文):王本誠
指導教授(外文):Wang, Pen-Cheng
口試委員(中文):吳劍侯
王翔郁
口試委員(外文):Wu, Chien-Hou
Wang, Hsiang-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011556
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:57
中文關鍵詞:單壁奈米碳管有機聯氨共價改質硝基還原N型摻雜共軛效應3-硝基苯聯氨
外文關鍵詞:single-walled carbon nanotubeorganic hydrazinecovalent modificationnitro group reductionN-type dopingconjugation effect3-nitrophenylhydrazine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:163
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
此篇研究使用以光化學反應及多種有機聯氨改質單壁奈米碳管,並且經過葡萄糖、氫氧化鉀、二甲基亞碸於熱環境中還原有機聯氨上的硝基,嘗試將於空氣中呈現P型載子極性的單壁奈米碳管還原為空氣中穩定之N型奈米碳管,藉著誘導效應結合共軛效應具拉電子效果的硝基轉為推電子基氨基,以此立論預期氨基之親水效應及推電子效應使奈米碳管具備高分散性及N型效應以利於後續之各種應用。
實驗中以一般表面觀察如樣品分散性,直接證明改質還原效應的成功,並且由掃描式電子顯微鏡觀察樣品表面形貌,得知單壁奈米碳管結構並無被破壞。經由光譜測量如紫外-可見光光譜儀定位硝基、氨基特徵峰值的消長以判定改質還原反應之效果,而拉曼光譜則可為改質還原奈米碳管提供結構品質之訊息,得知有機聯氨具備如一般聯氨氮自由基增加碳管品質之趨勢。而電性分析如四點探針量測,配合厚度量測得知改質還原後奈米碳管之導電率並無明顯差異,且經過一系列有機聯氨進行載子霍爾係數量測以推拉電子基相位及共軛效應或苯環親電取代定位效應推論官能基位置對於P/N摻雜的影響,並得到最終以re(3-NPHCNTs)為最理想之N型摻雜單壁奈米碳管。
In this study, a photochemical reaction and many kinds of organic hydrazine be used to modify single walled carbon nanotubes, and the nitro groups on the organic hydrazine was reduced to amino groups in a hot environment by glucose, potassium hydroxide and dimethyl sulfoxide. The single-walled carbon nanotubes exhibiting the polarity of the P-type carrier in the air are reduced to N-type carbon nanotubes which are stable in the air. The nitro groups on organic hydrazine which has the electron-withdrawing effect because of combination of the conjugate effect and induction effect. On the other hand, amino groups which has hydrophilic effect and electron-withdrawing effect make carbon nanotubes have high dispersibility and N-type effect for subsequent applications.
In this study, the appearance of product, such as sample dispersibility, was used to directly prove the success of the reduction effect. And the surface morphology of the sample was observed by scanning electron microscopy, which indicates the structure of the modified and reduced single-walled carbon nanotube was not destroyed. The nitro group is measured by spectroscopy measurement, such as ultraviolet-visible spectrometer, and the peak of the amino characteristic determine the effect of the modification and reduction reaction, while the Raman spectrum provide the structural quality information for the modified and reduced carbon nanotube. Organic hydrazine has a tendency to increase the quality of carbon nanotubes, like general hydrazine effect. The electrical analysis, such as four-point probe measurement, combined with the thickness measurement, found that there is no significant difference in the conductivity of the carbon nanotubes after the modification and reduction, and the series of organic hydrazine is used and measure the carrier Hall coefficient. Push-pull electron-based orientation and conjugate effect or orientation effect of electrophilic aromatic directing groups infers the influence of functional group position on P/N doping, and finally obtains the ideal n-type doped single-walled carbon nanotube with re(3-NPHCNTs).
摘要…………………………………………………………………………………I
ABSTRACT………………………………………………………..………………II
致謝……………………………………………………………………………….III
目錄……………………………………………………………………….……….IV
表目錄…………………………………………………………………….………VI
圖目錄……………………………………………………………………………VII
第一章 緒論……………………………………………………………………...1
1-1 前言………………………………………………………………….......1
1-2 研究動機與目的………………………………………………………...2
第二章 文獻回顧………………………………………………………………...3
2-1 奈米碳管簡介及應用………………………….. ……………………....3
2-2 奈米碳管的結構………………………………………………………...5
2-3 奈米碳管的合成………………………………………………………...7
2-4 奈米碳管電性……………………………………………………...……8
2-5 奈米碳管有機聯氨改質……………………………….………………11
2-5-1 聯氨相關簡介………………………………………...………..11
2-5-2 奈米碳管表面改質…………………………….………………13
2-5-3 奈米碳管有機聯氨改質……………………………………….18
2-6 硝基化合物還原與碳管摻雜……………………….…………………20
2-6-1 硝基化合物還原……………………………………...………..20
2-6-2 碳管P、N摻雜……………………………………..…………23
第三章 儀器設備與操作原理……………………………………….…………25
3-1 掃描式電子顯微鏡………………………………….…………………25
3-2 光譜儀器………………………………………………….……………27
3-2-1 紫外-可見光光譜儀………………………………………………28
3-2-2 傅立葉轉換紅外光光譜儀………………………….……………29
3-2-3 共軛聚焦顯微拉曼光譜儀…………………………….…………30
3-3 四點探針量測…………………………………………………………31
3-4 載子霍爾係數量測………………………………….…………………32
第四章 實驗方法與步驟……………………………………….………………35
4-1 實驗藥品…………………………………………….…………………35
4-2 實驗方法……………………………………….………………………35
4-2-1 單壁奈米碳管有機聯氨改質……….……………………………35
4-2-2 硝基還原為氨基…………………………………………….……36
4-2-3 奈米碳管薄膜製備………………………………………………37
第五章 結果與討論……………………………………………………….……38
5-1 奈米碳管懸浮液分散性……………………………………….…………38
5-2 掃描式電子顯微鏡分析…………………………………………….……39
5-3 紫外-可見光光譜儀分析…………………………………………....……40
5-4 共軛聚焦顯微拉曼光譜分析……………………………………….……42
5-5 四點探針量測與穩定性測量……………………………………….……45
5-6 載子霍爾係數量測………………………………………………….……46
第六章 結論……………………………………………………………….……52
第七章 參考文獻………………………………………………………….……53
[1] P. G. Collins, K. Bradley, M. Ishigami, and d. A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," science, vol. 287, no. 5459, pp. 1801-1804, 2000.
[2] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, no. 6042, p. 162, 1985.
[3] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, no. 6348, p. 56, 1991.
[4] Y. Saito, K. Nishikubo, K. Kawabata, and T. Matsumoto, "Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge," Journal of applied physics, vol. 80, no. 5, pp. 3062-3067, 1996.
[5] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[6] E. T. Thostenson, Z. Ren, and T.-W. Chou, "Advances in the science and technology of carbon nanotubes and their composites: a review," Composites science and technology, vol. 61, no. 13, pp. 1899-1912, 2001.
[7] P. G. Collins and P. Avouris, "Nanotubes for electronics," Scientific american, vol. 283, no. 6, pp. 62-69, 2000.
[8] M. Yu et al., "Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope," Nanotechnology, vol. 10, no. 3, p. 244, 1999.
[9] W. A. De Heer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission electron source," Science, vol. 270, no. 5239, pp. 1179-1180, 1995.
[10] K. Kordas et al., "Chip cooling with integrated carbon nanotube microfin architectures," Applied Physics Letters, vol. 90, no. 12, p. 123105, 2007.
[11] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, and P. Ajayan, "Direct synthesis of long single-walled carbon nanotube strands," Science, vol. 296, no. 5569, pp. 884-886, 2002.
[12] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. Elsevier, 1996.
[13] B. I. Yakobson, C. Brabec, and J. Bernholc, "Nanomechanics of carbon tubes: instabilities beyond linear response," Physical review letters, vol. 76, no. 14, p. 2511, 1996.
[14] B. Yakobson, G. Samsonidze, and G. Samsonidze, "Atomistic theory of mechanical relaxation in fullerene nanotubes," Carbon, vol. 38, no. 11-12, pp. 1675-1680, 2000.
[15] C. Liu et al., "Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method," Carbon, vol. 11, no. 37, pp. 1865-1868, 1999.
[16] M. Ishigami, J. Cumings, A. Zettl, and S. Chen, "A simple method for the continuous production of carbon nanotubes," Chemical Physics Letters, vol. 319, no. 5-6, pp. 457-459, 2000.
[17] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic growth of single-walled manotubes by laser vaporization," Chemical physics letters, vol. 243, no. 1-2, pp. 49-54, 1995.
[18] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, "Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal," Chemical physics letters, vol. 278, no. 1-3, pp. 102-106, 1997.
[19] P. Birkett, A. Cheetham, B. Eggen, J. Hare, H. Kroto, and D. Walton, "Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter," Chemical physics letters, vol. 281, no. 1-3, pp. 111-114, 1997.
[20] H. Cheng et al., "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Applied Physics Letters, vol. 72, no. 25, pp. 3282-3284, 1998.
[21] P. M. Ajayan, "Nanotubes from carbon," Chemical reviews, vol. 99, no. 7, pp. 1787-1800, 1999.
[22] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes," Nature, vol. 391, no. 6662, p. 59, 1998.
[23] H. Dai, "Carbon nanotubes: synthesis, integration, and properties," Accounts of chemical research, vol. 35, no. 12, pp. 1035-1044, 2002.
[24] H. Dai, E. W. Wong, and C. M. Lieber, "Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes," Science, vol. 272, no. 5261, pp. 523-526, 1996.
[25] A. Thess et al., "Crystalline ropes of metallic carbon nanotubes," Science, vol. 273, no. 5274, pp. 483-487, 1996.
[26] S. J. Tans et al., "Individual single-wall carbon nanotubes as quantum wires," Nature, vol. 386, no. 6624, p. 474, 1997.
[27] C. T. White and T. N. Todorov, "Carbon nanotubes as long ballistic conductors," Nature, vol. 393, no. 6682, p. 240, 1998.
[28] S. Frank, P. Poncharal, Z. Wang, and W. A. De Heer, "Carbon nanotube quantum resistors," science, vol. 280, no. 5370, pp. 1744-1746, 1998.
[29] S. Tarucha, T. Honda, and T. Saku, "Reduction of quantized conductance at low temperatures observed in 2 to 10 μm-long quantum wires," Solid state communications, vol. 94, no. 6, pp. 413-418, 1995.
[30] A. Yacoby, H. Stormer, N. S. Wingreen, L. Pfeiffer, K. Baldwin, and K. West, "Nonuniversal conductance quantization in quantum wires," Physical review letters, vol. 77, no. 22, p. 4612, 1996.
[31] M. Bockrath et al., "Luttinger-liquid behaviour in carbon nanotubes," Nature, vol. 397, no. 6720, p. 598, 1999.
[32] E. C. Venancio, P.-C. Wang, and A. MacDiarmid, "The azanes: A class of material incorporating nano/micro self-assembled hollow spheres obtained by aqueous oxidative polymerization of aniline," Synthetic metals, vol. 156, no. 5-6, pp. 357-369, 2006.
[33] A. Konnov and J. De Ruyck, "Kinetic modeling of the decomposition and flames of hydrazine," Combustion and flame, vol. 124, no. 1-2, pp. 106-126, 2001.
[34] R. Asatryan, J. W. Bozzelli, G. d. Silva, S. Swinnen, and M. T. Nguyen, "Formation and decomposition of chemically activated and stabilized hydrazine," The Journal of Physical Chemistry A, vol. 114, no. 21, pp. 6235-6249, 2010.
[35] J. Masters, J. Ginder, A. MacDiarmid, and A. J. Epstein, "Thermochromism in the insulating forms of polyaniline: Role of ring‐torsional conformation," The Journal of chemical physics, vol. 96, no. 6, pp. 4768-4778, 1992.
[36] C.-H. Hsu, P. Peacock, R. Flippen, S. Manohar, and A. MacDiarmid, "The molecular weight of polyaniline by light scattering and gel permeation chromatography," Synthetic metals, vol. 60, no. 3, pp. 233-237, 1993.
[37] S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, "A chemical route to graphene for device applications," Nano letters, vol. 7, no. 11, pp. 3394-3398, 2007.
[38] S. Stankovich et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," carbon, vol. 45, no. 7, pp. 1558-1565, 2007.
[39] H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films," Journal of the American Chemical Society, vol. 129, no. 25, pp. 7758-7759, 2007.
[40] C. Klinke, J. Chen, A. Afzali, and P. Avouris, "Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors," Nano Letters, vol. 5, no. 3, pp. 555-558, 2005/03/01 2005.
[41] P.-C. Wang et al., "Thermally induced variation in redox chemical bonding structures of single-walled carbon nanotubes exposed to hydrazine vapor," Carbon, vol. 50, no. 4, pp. 1650-1658, 2012/04/01/ 2012.
[42] P.-C. Wang, Y.-C. Liao, L.-H. Liu, Y.-L. Lai, Y.-C. Lin, and Y.-J. Hsu, "Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine," Applied Surface Science, vol. 305, pp. 46-54, 2014/06/30/ 2014.
[43] A. Hirsch, "Functionalization of single‐walled carbon nanotubes," Angewandte Chemie International Edition, vol. 41, no. 11, pp. 1853-1859, 2002.
[44] M. Karimi et al., "Carbon nanotubes part I: preparation of a novel and versatile drug-delivery vehicle," Expert opinion on drug delivery, vol. 12, no. 7, pp. 1071-1087, 2015.
[45] C.-C. Teng et al., "Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites," Composites Part A: Applied Science and Manufacturing, vol. 39, no. 12, pp. 1869-1875, 2008.
[46] R. R. Meyer et al., "Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes," Science, vol. 289, no. 5483, pp. 1324-1326, 2000.
[47] C. Wang, Z.-X. Guo, S. Fu, W. Wu, and D. Zhu, "Polymers containing fullerene or carbon nanotube structures," Progress in Polymer Science, vol. 29, no. 11, pp. 1079-1141, 2004.
[48] M. J. O'Connell et al., "Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping," Chemical physics letters, vol. 342, no. 3-4, pp. 265-271, 2001.
[49] E. V. Basiuk, M. Monroy-Peláez, I. Puente-Lee, and V. A. Basiuk, "Direct solvent-free amination of closed-cap carbon nanotubes: a link to fullerene chemistry," Nano Letters, vol. 4, no. 5, pp. 863-866, 2004.
[50] K. Mylvaganam and L. Zhang, "Chemical bonding in polyethylene− nanotube composites: a quantum mechanics prediction," The Journal of Physical Chemistry B, vol. 108, no. 17, pp. 5217-5220, 2004.
[51] K. Balasubramanian and M. Burghard, "Chemically functionalized carbon nanotubes," small, vol. 1, no. 2, pp. 180-192, 2005.
[52] D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, "Chemistry of carbon nanotubes," Chemical reviews, vol. 106, no. 3, pp. 1105-1136, 2006.
[53] J. Liu et al., "Fullerene pipes," Science, vol. 280, no. 5367, pp. 1253-1256, 1998.
[54] J. Chen et al., "Dissolution of full-length single-walled carbon nanotubes," The Journal of Physical Chemistry B, vol. 105, no. 13, pp. 2525-2528, 2001.
[55] R. Czerw, Z. Guo, P. M. Ajayan, Y.-P. Sun, and D. L. Carroll, "Organization of polymers onto carbon nanotubes: a route to nanoscale assembly," Nano Letters, vol. 1, no. 8, pp. 423-427, 2001.
[56] Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik, and Y.-P. Sun, "Functionalizing multiple-walled carbon nanotubes with aminopolymers," The Journal of Physical Chemistry B, vol. 106, no. 6, pp. 1294-1298, 2002.
[57] Y. Lin, D. E. Hill, J. Bentley, L. F. Allard, and Y.-P. Sun, "Characterization of functionalized single-walled carbon nanotubes at individual nanotube-thin bundle level," The Journal of Physical Chemistry B, vol. 107, no. 38, pp. 10453-10457, 2003.
[58] Y. Chen et al., "Chemical attachment of organic functional groups to single-walled carbon nanotube material," Journal of Materials Research, vol. 13, no. 9, pp. 2423-2431, 1998.
[59] J. Chen et al., "Solution properties of single-walled carbon nanotubes," Science, vol. 282, no. 5386, pp. 95-98, 1998.
[60] M. Holzinger et al., "Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes," Journal of the American Chemical Society, vol. 125, no. 28, pp. 8566-8580, 2003.
[61] M. J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, and M. J. McCall, "Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry," nano letters, vol. 4, no. 1, pp. 89-93, 2004.
[62] K. M. Lee, L. Li, and L. Dai, "Asymmetric end-functionalization of multi-walled carbon nanotubes," Journal of the American Chemical Society, vol. 127, no. 12, pp. 4122-4123, 2005.
[63] S. Banerjee and S. S. Wong, "Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes," Journal of the American Chemical Society, vol. 126, no. 7, pp. 2073-2081, 2004.
[64] T. Yokoi, S.-i. Iwamatsu, S.-i. Komai, T. Hattori, and S. Murata, "Chemical modification of carbon nanotubes with organic hydrazines," Carbon, vol. 43, no. 14, pp. 2869-2874, 2005.
[65] U. Sharma, P. Kumar, N. Kumar, V. Kumar, and B. Singh, "Highly Chemo‐and Regioselective Reduction of Aromatic Nitro Compounds Catalyzed by Recyclable Copper (II) as well as Cobalt (II) Phthalocyanines," Advanced Synthesis & Catalysis, vol. 352, no. 11‐12, pp. 1834-1840, 2010.
[66] K. Junge, B. Wendt, N. Shaikh, and M. Beller, "Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes," Chemical communications, vol. 46, no. 10, pp. 1769-1771, 2010.
[67] C. T. Redemann and C. E. Redemann, "5‐Amino‐2, 3‐dihydro‐1, 4‐phthalazinedione: 1, 4‐Phthalazinedione, 5‐amino‐2, 3‐dihydro‐," Organic Syntheses, vol. 29, pp. 8-8, 2003.
[68] H. Imai, T. Nishiguchi, and K. Fukuzumi, "Homogeneous Catalytic Reduction of Aromatic Nitro-Compounds by Hydrogen Transfer," Chemistry Letters, vol. 5, no. 7, pp. 655-656, 1976.
[69] J. W. Bae, Y. J. Cho, S. H. Lee, and C. M. Yoon, "Chemoselective reduction of nitroaromatics to anilines using decaborane in methanol," Tetrahedron Letters, vol. 41, no. 2, pp. 175-177, 2000.
[70] M. Kumar, U. Sharma, S. Sharma, V. Kumar, B. Singh, and N. Kumar, "Catalyst-free water mediated reduction of nitroarenes using glucose as a hydrogen source," RSC Advances, vol. 3, no. 15, pp. 4894-4898, 2013.
[71] L. Brownlie and J. Shapter, "Advances in carbon nanotube n-type doping: Methods, analysis and applications," Carbon, vol. 126, pp. 257-270, 2018.
[72] C. Yu, A. Murali, K. Choi, and Y. Ryu, "Air-stable fabric thermoelectric modules made of N-and P-type carbon nanotubes," Energy & Environmental Science, vol. 5, no. 11, pp. 9481-9486, 2012.
[73] Y. Nonoguchi et al., "Simple Salt‐Coordinated n‐Type Nanocarbon Materials Stable in Air," Advanced Functional Materials, vol. 26, no. 18, pp. 3021-3028, 2016.
[74] K. Aoki et al., "Structural analysis and oxygen reduction reaction activity in bamboo-like nitrogen-doped carbon nanotubes containing localized nitrogen in nodal regions," Carbon, vol. 123, pp. 99-105, 2017.
[75] D. J. Li et al., "Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction," Nano letters, vol. 14, no. 3, pp. 1228-1233, 2014.
[76] M. Tominaga, M. Togami, M. Tsushida, and D. Kawai, "Effect of N-doping of single-walled carbon nanotubes on bioelectrocatalysis of laccase," Analytical chemistry, vol. 86, no. 10, pp. 5053-5060, 2014.
[77] Ting-Jung Tsai. 蔡庭榮, "共價改質與分析單壁奈米碳管薄膜表面並應用於有機光伏電池," 2018.
[78] Hsiao-Yu Chang. 張孝瑜, "單壁奈米碳管網絡應用於薄膜電晶體與非揮發性記憶體之特性研究," 2007.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *