|
[1] S.J. Zinkle, G.S. Was, “Materials challenges in nuclear energy,” Acta Materialia, Volume 61, Issue 3, February 2013, Pages 735 - 758. [2] Steven J. Zinkle, Jeremy T. Busby, “Structural materials for fission & fusion energy,” Materialstoday, Volume 12, Issue 11, November 2009, Pages 12 - 19. [3] P. Yvon, F. Carré, “Structural materials challenges for advanced reactor systems,” Journal of Nuclear Materials, Volume 385, Issue 2, 31 March 2009, Pages 217 - 222. [4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes.” Advanced Engineering Materials, Volume 24, May 2004, Pages 299 - 303. [5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, “Microstructures and properties of high-entropy alloys,” Progress in Materials Science, Volume 61, April 2014, Pages 1 - 93. [6] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys,” Advanced Engineering Materials, Volume10, Issue6, June 2008, Pages 534 - 538. [7] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Materials Chemistry and Physics, Volume 132, Issues 2-3, 15 February 2012, Pages 233 - 238. [8] Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, “Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy,” Acta Materialia, Volume 99, 15 October 2015, Pages 247 - 258. [9] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr - Nb - Ti - V - Zr system: Microstructure and phase analysis,” Acta Materialia, Volume 61, Issue 5, March 2013, Pages 1545 - 1557. [10] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, “Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating,” Advanced Engineering Materials, Volume 6, Issue1-2, February 2004, Pages 74 - 78. [11] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, “Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys,” Acta Materialia, Volume 60, Issue 16, September 2012, Pages 5723 - 5734. [12] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, “Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys,” Acta Materialia, Volume 59, Issue 16, September 2011, Pages 6308 - 6317. [13] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, “Fracture-resistant high-entropy alloy for cryogenic applications,” Science, Volume 345, 2014, Pages 1153 - 1158. [14] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan & T. Li, “A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys,” Scientific Reports 4, 2014, Article number: 6200. [15] Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, “A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy,” Journal of Materials Science & Technology, Volume 35, 2019, Pages 369 - 373. [16] D. Chen, Y. Tong, H. Li, J. Wang, Y.L. Zhao, A. Hu, J.J. Kai, “Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He implantation,” Journal of Nuclear Materials, Volume 501, 2018, Pages 208 - 216. [17] J.W. Yeh, “Recent progress in high entropy alloys,” Annales de Chimie Science des Materiaux, Volume 31, 2006, Pages 633 - 648. [18] B.S. Murty, J.W. Yeh, S. Ranganathan, “Chapter 5 - Synthesis and processing, high entropy alloys, 1st edition,” 2014, Pages 77 - 89. [19] Z.H. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, “Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys,” Progress in Materials Science, Volume 102, 2019, Pages 296 - 345. [20] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys.” Advanced Engineering Materials, Volume 10, 2008, Pages 534-538. [21] D.B. Miracle, “Critical Assessment 14: High entropy alloys and their development as structural materials,” Materials Science and Technology, Volume 31, 2015, Pages 1142 - 1147. [22]葉均蔚, 「高熵合金的發展」, 華岡工程學報, 2011, Pages 1 - 18. [23] J.W. Yeh, S.Y. Chang, Y.D Hong, S.K. Chen, S.J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu - Ni - Al - Co - Cr - Fe - Si alloy systems with multi-principal elements.” Materials Chemistry and Physics, Volume 103, 2007, Pages 41 - 46. [24]李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討, 材料科學工程研究所, 2013, 國立清華大學. [25] M.V. Ivchenko, V.G. Pushin, N. Wanderka, “High-entropy equiatomic AlCrFeCoNiCu alloy: hypotheses and experimental data,” Technical Physics, Volume 59, 2014, Pages 211 - 223. [26] Y. Wu, W.H. Liu, X.L. Wang, D. Ma, A.D. Stoica, T.G. Nieh, Z.B. He, Z.P. Lu, “In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy,” Applied Physics Letters, Volume 104, 2014, Pages 051910. [27]阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討, 材料科學工程學, 2016, 國立清華大學. [28] K.Y. Tsai, M.H. Tsai, J.W. Yeh, “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys,” Acta Materialia, Volume 61, 2013, Pages 4887 - 4897. [29] D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, CRC Press, London, UK (1992). [30] M.H. Tsai, J.W. Yeh, “High-Entropy Alloys: A Critical Review,” Materials Research Letters, Volume 2, 2014, Pages 107 - 123. [31]蔡秉修, AlxCoCrFeMnNi(x = 0 ~ 1)微結構與機械性質之研究, 材料科學工程學系, 2015, 國立清華大學. [32] M. Bauccio, ASM metals reference book, 3rd Edition, 1993: ASM International. [33]曾可凱, 新型耐火高熵合金在核能結構材料之研究及開發, 材料科學工程學系, 2016, 國立清華大學。 [34] O.N. Senkov, J.M. Scott, S.V. Senkova, F.Meisenkothen, D.B. Miracle & C.F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” Journal of Materials Science, Volume 47, 2012, Pages 4062 - 4074. [35] O.N.Senkov, J.M.Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” Journal of Alloys and Compounds, Volume 509, 2011, Pages 6043 - 6048. [36] W. Hoffelner, “Irradiation Damage in Nuclear Power Plant,” Springer, New York, 2015, Pages 1427 - 1461. [37] J.H. Gwynne, Nuclear Materials, 2014, Department of Materials Science and Metallurgy: University of Cambridge. [38] H. Trinkaus, B.N. Singh, “Helium accumulation in metals during irradiation - where do we stand?” Journal of Nuclear Materials, Volume 323, 2003, Pages 229 - 242. [39] E.E. Gruber, “Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids,” Journal of Applied Physics, Volume 38, Issue 1, 1967, Pages 243. [40] P.J. Goodhew, S.K. Tyler, “Helium bubble behavior in b. c. c metals below 0.65 Tm,” Proceedings of the Royal Society A, Volume 377, 1981, Pages 151 - 184. [41] G.W. Greenwood, A. Boltax, “The role of fission gas recolution during post-irradiation heat treatment,” Journal of Nuclear Materials 5, 1962, Pages 234. [42] A.J. Markworth, “On the coarsening of gas-filled pores in solids,” Metallurgical Transactions 4, 1973, Pages 2651 - 2656. [43] S.Q. Xia, Z. Wang, T.F. Yang, Y. Zhang, “Irradiation behavior in high entropy alloys, Journal of Iron and Steel Research,” International, Volume 22, 2015, Pages 879 - 884. [44] S. Xia, M.C. Gao, T. Yang, P.K. Liaw, Y. Zhang, “Phase stability and microstructures of high entropy alloys ion irradiated to high doses,” Journal of Nuclear Materials, Volume 480, 2016, Pages 100 - 108. [45] S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, “Irradiation resistance in AlxCoCrFeNi high entropy alloys,” The Journal of the Minerals, Metals and Materials Society, Volume 67, 2015, Pages 2340 - 2344. [46] T. Nagase, P.D. Rack, J.H. Noh, T. Egami, “In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM),” Intermetallics, Volume 59, 2015, Pages 32 - 42. [47] K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, “Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys,” Scripta Materialia, Volume 119, 2016, Pages 65 - 70. [48] C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W. J. Weber, K. Sun, Y. Dong, L. Wang, “Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys,” Acta Materialia, Volume 127, 2017, Pages 98 - 107. [49] Z.J. Wang, C.T. Liu, P. Dou, Physical Review Materials, Volume 1, 2017, Pages 043601. [50] R.W. Harrisona, G. Greavesa, H. Le, H. Bei, Y. Zhang, S.E. Donnellya, “Chemical effects on He bubble superlattice formation in high entropy alloys,” Current Opinion in Solid State & Materials Science, Volume 23, 2019, Pages 100762. [51] Z. Yan, S. Liu, S. Xia, Y. Zhang, Y. Wang, T. Yang, “He behavior in Ni and Ni-based equiatomic solid solution alloy,” Journal of Nuclear Materials, Volume 505, 2018, Pages 200 - 206. [52] D. Chen, Y. Tong, H. Li, J. Wang, Y.L. Zhao, A. Hu, J.J. Kai, “Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He implantation,” Journal of Nuclear Materials, Volume 501, 2018, Pages 208 - 216. [53] Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, “Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage,” Acta Materialia, Volume 196, Pages 133 - 143. [54] C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, “Simultaneously increasing the strength and ductility of a refractory high entropy alloy via grain refining,” Materials Letters, Volume 184, 2016, Pages 200 - 203. [55] S. Chang, K.K. Tseng, T.Y. Yang, D.S. Chao, J.W. Yeh, J.H. Liang, “Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy,” Material Letters, Volume 272, 2020, Pages 127832. [56] G.S. Was, “The displacement of atoms, Fundamentals of Radiation Materials Science,” Springer, New York, NY, 2017, Pages 77 - 130. [57] J.M. Senkov, S.V. Scott, D.B. Senkova, C.F. Miracle, Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” Journal of Alloys and Compounds, Volume 509, 2011, Pages 6043 - 6048. [58] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, “On the use of SRIM for computing radiation damage exposure,” Nuclear Instruments and Methods in Physics Research B, Volume 310, 2013, Pages 75 - 80. [59] “E521-16 Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation,” ASTM International, West Conshohocken, PA, 2016. [60] G.M. Pharr, E.G. Herbert, Y. Gao, “The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations,” Annual Review of Materials Research, Volume 40, July 2010, Pages 271 - 292.
|