帳號:guest(3.145.48.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張皓淯
作者(外文):Zhang, Hao-Yu
論文名稱(中文):一至五元含鉭等莫爾合金之氦離子輻照誘發機械性質變化研究
論文名稱(外文):Modification of mechanical properties induced by helium ion irradiation in Ta-containing equimolar alloys of various constituent elements
指導教授(中文):梁正宏
葉均蔚
指導教授(外文):Liang, Jenq-Horng
Yeh, Jien-Wei
口試委員(中文):趙得勝
洪健龍
口試委員(外文):Chao, Der-Sheng
Horng, Jain-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011552
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:93
中文關鍵詞:高熵合金氦離子輻照輻射損傷輻照腫脹輻照硬化等莫爾比合金
外文關鍵詞:high entropy alloyhelium ion irradiationradiation damageradiation swellingradiation hardeningequimolar alloy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在探討含鉭等莫爾比例合金對氦離子輻射損傷的影響,並加入不銹鋼 420 做為對照。本研究採用氦離子輻照模擬反應器中核能結構材料受中子輻照(n, α)核反應產生的氦累積,使用蒙地卡羅模擬粒子遷移的計算程式 SRIM(Stopping and Range of Ions in Matter)預測氦離子照射的縱深及損傷分佈。經由機械性質分析與微結構觀察,藉此釐清氦離子照射誘發的輻照腫脹和輻照硬化的機制。
當前的結果表明,合金元數與輻照溫度共同影響輻照腫脹和輻照硬化。合金元數、輻照溫度增加會導致輻照腫脹程度降低,高熵合金具有比純金屬、簡單合金更好的抗輻照腫脹能力。一至四元含 Ta 合金在室溫下輻照後硬化程度隨合金元數增加而降低,當輻照溫度增加到某一個臨界值,硬化程度開始下降,且合金元數高的合金具有更高的臨界溫度。五元高熵合金 HfNbTaTiZr 具有特殊的硬化現象,經 673 K 輻照後硬化程度是所有含 Ta 合金中最低的,然而,經 923 K 輻照後,硬度甚至低於未佈植前的原始硬度,稱為輻照軟化。
This study aims to investigate the influence of He ion irradiation on Ta-containing equimolar alloys and compare with stainless steel 420. He ion irradiation was used in this study to simulate the He accumulation of nuclear energy structure materials in reactors through neutron irradiation (n, α) nuclear reaction. The Monte Carlo calculation code SRIM (Stopping and Range of Ions in Matter) was also used in this study to predict the depth and damage distributions of He ion irradiation. Through mechanical property analysis and microstructure observation, the mechanisms of radiation swelling and radiation hardening induced by He ion irradiation can be clarified.
The results show that the irradiation temperature and the elemental number of alloys are correlative to the swelling and hardening induced by irradiation. The increase in elemental number of alloys or the irradiation temperature will decrease the radiation swelling. High entropy alloys have better resistance to radiation swelling than pure metals and binary alloys. For Ta-containing alloys consisting of one to four elements, the hardening induced by irradiation decreases with the increase in constituent elements of alloys and irradiation temperature. As the irradiation temperature increases to a critical value, the radiation hardening begins to decrease, and the alloys composed of greater elements corresponds to a higher critical temperature. The five-element high-entropy alloy HfNbTaTiZr has a special hardening phenomenon. The radiation hardening of HfNbTaTiZr at 673 K is the lowest one among all Ta-containing alloys, and the hardness after 923 K irradiation is even lower than the pristine hardness, and this is the so-called radiation softening.
摘要...............ii
Abstract...............iii
致謝...............iv
目錄...............v
表目錄...............viii
圖目錄...............ix
第一章 序論...............1
第二章 文獻回顧...............3
2.1 高熵合金(High entropy alloys)...............3
2.1.1高熵效應(High entropy effect)...............4
2.1.2 嚴重晶格扭曲效應(Severe lattice distortion effect)..........5
2.1.3 遲緩擴散效應(Sluggish diffusion effect)..........10
2.1.4 雞尾酒效應(Cocktail effect)..........14
2.1.5 耐火高熵合金(Refractory high entropy alloys)HfNbTaTiZr.......15
2.2 輻射損傷..........19
2.2.1 氦氣泡的擴散..............21
2.2.2 輻照效應..........23
2.3 高熵合金的輻射損傷...........26
2.3.1高熵合金的重離子輻射損傷..........26
2.3.2 高熵合金的氦離子輻照..................31
2.4 高熵合金的輻射損傷 MD 模擬..................33
第三章 實驗製程與原理................36
3.1 試片製備.................37
3.2 氦離子照射..................37
3.3 SRIM 電腦模擬計算程式..................38
3.4 微結構觀察............38
3.4.1 掃描式電子顯微鏡 SEM.............39
3.4.2 低掠角 X 光繞射儀 GIXRD................39
3.4.3 電子顯微鏡 TEM...............39
3.4.4 原子力顯微鏡 AFM...............40
3.5 機械性質量測..................41
3.5.1 硬度量測..................41
第四章 結果與討論...................43
4.1 SRIM 模擬..................43
4.2 SEM 分析....................47
4.3 GIXRD 分析.................52
4.3.1 GIXRD 圖譜................52
4.3.2 計算晶格常數..................54
4.4 硬度縱深分佈與 NIX AND GAO 模型.....................58
4.4.1 硬度縱深分布....................58
4.4.2 Nix and Gao Model 修正硬度 H0.....................60
4.5 300 K 氦離子輻照的輻射損傷...................63
4.5.1 輻照腫脹分析.....................63
4.5.2 硬化率分析..................65
4.6 673 K 氦離子輻照的輻射損傷.....................67
4.6.1 氦氣泡分析.................67
4.6.2 輻照腫脹分析....................71
4.6.3 硬化率分析........................72
4.7 923 K 氦離子輻照的輻射損傷........................74
4.7.1 輻照腫脹分析......................74
4.7.2 硬化率分析.....................75
4.8 氦離子輻照溫度對輻射損傷的影響...................77
4.8.1 輻照腫脹分析....................77
4.8.2 硬化率分析..................79
4.8.3 晶格常數分析....................81
第五章 結論與未來工作......................83
5.1 結論...................83
5.2 未來建議....................85
[1] S.J. Zinkle, G.S. Was, “Materials challenges in nuclear energy,” Acta Materialia, Volume 61, Issue 3, February 2013, Pages 735 - 758.
[2] Steven J. Zinkle, Jeremy T. Busby, “Structural materials for fission & fusion energy,” Materialstoday, Volume 12, Issue 11, November 2009, Pages 12 - 19.
[3] P. Yvon, F. Carré, “Structural materials challenges for advanced reactor systems,” Journal of Nuclear Materials, Volume 385, Issue 2, 31 March 2009, Pages 217 - 222.
[4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes.” Advanced Engineering Materials, Volume 24, May 2004, Pages 299 - 303.
[5] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, “Microstructures and properties of high-entropy alloys,” Progress in Materials Science, Volume 61, April 2014, Pages 1 - 93.
[6] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys,” Advanced Engineering Materials, Volume10, Issue6, June 2008, Pages 534 - 538.
[7] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys,” Materials Chemistry and Physics, Volume 132, Issues 2-3, 15 February 2012, Pages 233 - 238.
[8] Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, “Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy,” Acta Materialia, Volume 99, 15 October 2015, Pages 247 - 258.
[9] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr - Nb - Ti - V - Zr system: Microstructure and phase analysis,” Acta Materialia, Volume 61, Issue 5, March 2013, Pages 1545 - 1557.
[10] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, “Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating,” Advanced Engineering Materials, Volume 6, Issue1-2, February 2004, Pages 74 - 78.
[11] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, “Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys,” Acta Materialia, Volume 60, Issue 16, September 2012, Pages 5723 - 5734.
[12] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, “Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys,” Acta Materialia, Volume 59, Issue 16, September 2011, Pages 6308 - 6317.
[13] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, “Fracture-resistant high-entropy alloy for cryogenic applications,” Science, Volume 345, 2014, Pages 1153 - 1158.
[14] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan & T. Li, “A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys,” Scientific Reports 4, 2014, Article number: 6200.
[15] Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, “A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy,” Journal of Materials Science & Technology, Volume 35, 2019, Pages 369 - 373.
[16] D. Chen, Y. Tong, H. Li, J. Wang, Y.L. Zhao, A. Hu, J.J. Kai, “Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He implantation,” Journal of Nuclear Materials, Volume 501, 2018, Pages 208 - 216.
[17] J.W. Yeh, “Recent progress in high entropy alloys,” Annales de Chimie Science des Materiaux, Volume 31, 2006, Pages 633 - 648.
[18] B.S. Murty, J.W. Yeh, S. Ranganathan, “Chapter 5 - Synthesis and processing, high entropy alloys, 1st edition,” 2014, Pages 77 - 89.
[19] Z.H. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, “Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys,” Progress in Materials Science, Volume 102, 2019, Pages 296 - 345.
[20] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, “Solid-Solution Phase Formation Rules for Multi-component Alloys.” Advanced Engineering Materials, Volume 10, 2008, Pages 534-538.
[21] D.B. Miracle, “Critical Assessment 14: High entropy alloys and their development as structural materials,” Materials Science and Technology, Volume 31, 2015, Pages 1142 - 1147.
[22]葉均蔚, 「高熵合金的發展」, 華岡工程學報, 2011, Pages 1 - 18.
[23] J.W. Yeh, S.Y. Chang, Y.D Hong, S.K. Chen, S.J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu - Ni - Al - Co - Cr - Fe - Si alloy systems with multi-principal elements.” Materials Chemistry and Physics, Volume 103, 2007, Pages 41 - 46.
[24]李軝, Ni 至 CoCrFeMnNi 等莫耳合金變形行為之比較探討, 材料科學工程研究所, 2013, 國立清華大學.
[25] M.V. Ivchenko, V.G. Pushin, N. Wanderka, “High-entropy equiatomic AlCrFeCoNiCu alloy: hypotheses and experimental data,” Technical Physics, Volume 59, 2014, Pages 211 - 223.
[26] Y. Wu, W.H. Liu, X.L. Wang, D. Ma, A.D. Stoica, T.G. Nieh, Z.B. He, Z.P. Lu, “In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy,” Applied Physics Letters, Volume 104, 2014, Pages 051910.
[27]阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討, 材料科學工程學, 2016, 國立清華大學.
[28] K.Y. Tsai, M.H. Tsai, J.W. Yeh, “Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys,” Acta Materialia, Volume 61, 2013, Pages 4887 - 4897.
[29] D.A. Porter, K.E. Easterling, Phase transformations in metals and alloys, CRC Press, London, UK (1992).
[30] M.H. Tsai, J.W. Yeh, “High-Entropy Alloys: A Critical Review,” Materials Research Letters, Volume 2, 2014, Pages 107 - 123.
[31]蔡秉修, AlxCoCrFeMnNi(x = 0 ~ 1)微結構與機械性質之研究, 材料科學工程學系, 2015, 國立清華大學.
[32] M. Bauccio, ASM metals reference book, 3rd Edition, 1993: ASM International.
[33]曾可凱, 新型耐火高熵合金在核能結構材料之研究及開發, 材料科學工程學系, 2016, 國立清華大學。
[34] O.N. Senkov, J.M. Scott, S.V. Senkova, F.Meisenkothen, D.B. Miracle & C.F. Woodward, “Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy,” Journal of Materials Science, Volume 47, 2012, Pages 4062 - 4074.
[35] O.N.Senkov, J.M.Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” Journal of Alloys and Compounds, Volume 509, 2011, Pages 6043 - 6048.
[36] W. Hoffelner, “Irradiation Damage in Nuclear Power Plant,” Springer, New York, 2015, Pages 1427 - 1461.
[37] J.H. Gwynne, Nuclear Materials, 2014, Department of Materials Science and Metallurgy: University of Cambridge.
[38] H. Trinkaus, B.N. Singh, “Helium accumulation in metals during irradiation - where do we stand?” Journal of Nuclear Materials, Volume 323, 2003, Pages 229 - 242.
[39] E.E. Gruber, “Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids,” Journal of Applied Physics, Volume 38, Issue 1, 1967, Pages 243.
[40] P.J. Goodhew, S.K. Tyler, “Helium bubble behavior in b. c. c metals below 0.65 Tm,” Proceedings of the Royal Society A, Volume 377, 1981, Pages 151 - 184.
[41] G.W. Greenwood, A. Boltax, “The role of fission gas recolution during post-irradiation heat treatment,” Journal of Nuclear Materials 5, 1962, Pages 234.
[42] A.J. Markworth, “On the coarsening of gas-filled pores in solids,” Metallurgical Transactions 4, 1973, Pages 2651 - 2656.
[43] S.Q. Xia, Z. Wang, T.F. Yang, Y. Zhang, “Irradiation behavior in high entropy alloys, Journal of Iron and Steel Research,” International, Volume 22, 2015, Pages 879 - 884.
[44] S. Xia, M.C. Gao, T. Yang, P.K. Liaw, Y. Zhang, “Phase stability and microstructures of high entropy alloys ion irradiated to high doses,” Journal of Nuclear Materials, Volume 480, 2016, Pages 100 - 108.
[45] S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, “Irradiation resistance in AlxCoCrFeNi high entropy alloys,” The Journal of the Minerals, Metals and Materials Society, Volume 67, 2015, Pages 2340 - 2344.
[46] T. Nagase, P.D. Rack, J.H. Noh, T. Egami, “In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM),” Intermetallics, Volume 59, 2015, Pages 32 - 42.
[47] K. Jin, C. Lu, L.M. Wang, J. Qu, W.J. Weber, Y. Zhang, H. Bei, “Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys,” Scripta Materialia, Volume 119, 2016, Pages 65 - 70.
[48] C. Lu, T. Yang, K. Jin, N. Gao, P. Xiu, Y. Zhang, F. Gao, H. Bei, W. J. Weber, K. Sun, Y. Dong, L. Wang, “Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys,” Acta Materialia, Volume 127, 2017, Pages 98 - 107.
[49] Z.J. Wang, C.T. Liu, P. Dou, Physical Review Materials, Volume 1, 2017, Pages 043601.
[50] R.W. Harrisona, G. Greavesa, H. Le, H. Bei, Y. Zhang, S.E. Donnellya, “Chemical effects on He bubble superlattice formation in high entropy alloys,” Current Opinion in Solid State & Materials Science, Volume 23, 2019, Pages 100762.
[51] Z. Yan, S. Liu, S. Xia, Y. Zhang, Y. Wang, T. Yang, “He behavior in Ni and Ni-based equiatomic solid solution alloy,” Journal of Nuclear Materials, Volume 505, 2018, Pages 200 - 206.
[52] D. Chen, Y. Tong, H. Li, J. Wang, Y.L. Zhao, A. Hu, J.J. Kai, “Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He implantation,” Journal of Nuclear Materials, Volume 501, 2018, Pages 208 - 216.
[53] Y. Lin, T. Yang, L. Lang, C. Shan, H. Deng, W. Hu, F. Gao, “Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage,” Acta Materialia, Volume 196, Pages 133 - 143.
[54] C.C. Juan, M.H. Tsai, C.W. Tsai, W.L. Hsu, C.M. Lin, S.K. Chen, S.J. Lin, J.W. Yeh, “Simultaneously increasing the strength and ductility of a refractory high entropy alloy via grain refining,” Materials Letters, Volume 184, 2016, Pages 200 - 203.
[55] S. Chang, K.K. Tseng, T.Y. Yang, D.S. Chao, J.W. Yeh, J.H. Liang, “Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy,” Material Letters, Volume 272, 2020, Pages 127832.
[56] G.S. Was, “The displacement of atoms, Fundamentals of Radiation Materials Science,” Springer, New York, NY, 2017, Pages 77 - 130.
[57] J.M. Senkov, S.V. Scott, D.B. Senkova, C.F. Miracle, Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy,” Journal of Alloys and Compounds, Volume 509, 2011, Pages 6043 - 6048.
[58] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, “On the use of SRIM for computing radiation damage exposure,” Nuclear Instruments and Methods in Physics Research B, Volume 310, 2013, Pages 75 - 80.
[59] “E521-16 Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation,” ASTM International, West Conshohocken, PA, 2016.
[60] G.M. Pharr, E.G. Herbert, Y. Gao, “The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations,” Annual Review of Materials Research, Volume 40, July 2010, Pages 271 - 292.
(此全文20250926後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *