帳號:guest(3.145.175.253)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋家榕
作者(外文):Sung, Chia-Jung
論文名稱(中文):樹狀奈米金表面電漿增益拉曼感測器可靠度測試與數值分析方法
論文名稱(外文):Reliability Test and Data Analysis Method for Dendritic Gold Substrates based Surface Enhanced Raman Scattering Sensor
指導教授(中文):陳燦耀
指導教授(外文):Chen, Tsan-Yao
口試委員(中文):吳品鈞
胡芝瑋
口試委員(外文):Wu, Pin-Jiun
Hu, Chih Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011547
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:環境賀爾蒙表面電漿增益拉曼散射可靠度測試數值分析
外文關鍵詞:environmental hormoneSurface-Enhanced Raman Scatteringreliability testdata analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:194
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以試樣快速篩檢技術結合雲端數據分析應用,架構出一套「智慧環境賀爾蒙監控系統」,透過此系統可以快速確認並追蹤環境賀爾蒙的汙染源和擴散影響的區域,防範未然,望能改善長期以來環境賀爾蒙在環境中造成的汙染與影響。
智慧環境賀爾蒙監控系統以能夠快速分析試樣之能力、感測元件具備高感測靈敏度、感測元件可靠度、感測元件單次量測成本控制為研究目標。本研究針對智慧環境賀爾蒙監控系統中用以快速篩檢的樹狀奈米金表面電漿增益拉曼感測器進行可靠度量測最佳化調控、可靠度測試,並與目前主流的環境賀爾蒙分析方法做全方面的比較,討論本研究與高效液相層析法(high performance liquid chromatography, HPLC)、氣相層析法(gas chromatography, GC)的差異之處。
建立分子指紋頻譜資料庫亦為本研究重要的目標,已完成11種環境賀爾蒙分子的濃度校準線、校準線決定因子與濃度偵測範圍,同時將量測及光譜數據分析程序標準化,再以MATLAB程式語言執行自動化數值分析。建立一套標準化量測與數據分析流程,避免不同使用者在擷取數據與分析的過程中,因不同操作方式,而導致儀器損壞及數據分析後與其他使用者差異過大的結果。
「即時監控」是智慧環境賀爾蒙監控系統的宗旨,透過團隊合作與技術結合,智慧環境賀爾蒙監控系統在環境賀爾蒙快速篩檢的能力上將極具競爭力。
The purpose of the study was to combine fast screening technique with cloud data application to establish “smart environment hormone monitoring system”. The system could fast identify and trace the pollution source and affecting area. Expecting to mend the pollution and affection from environment hormone.
Smart environment hormone monitoring system aims for fast analyzing capability and sensors of high sensibility, reliability, cost control with single measurement. The study focused on reliability optimization and test of SERS (Surface-Enhanced Raman Scattering), which implemented as fast screening method in smart environment hormone monitoring system. Then discussed its difference with HPLC (high performance liquid chromatography) and GC (gas chromatography).
Another purpose of the study was to establish a molecular fingerprint database, the calibration curves, factors, and concentration detection areas had been established for 11 environment hormones. Furthermore, standardized the procedures for measurement and analysis, then employed MATLAB for automatic data analyzing.
Real-time monitoring is the objective of smart environment hormone monitoring system, through teamwork and technique integration the smart environment hormone monitoring system will be more competitive in the field of environment hormone fast screening.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 研究動機 1
1-1 環境賀爾蒙的來源、潛在危害與可能解決的方法 1
1-1-1 環境賀爾蒙來源 1
1-1-2 環境賀爾蒙帶來的潛在危害 3
1-1-3 解決環境賀爾蒙對水汙染的方法 4
1-1-4 目前主流的環境賀爾蒙檢驗方法 7
1-2 研究目標 8
第二章 技術原理與方法 11
2-1 表面電漿增益拉曼感測器 12
2-1-1 表面增益拉曼散射 12
2-1-2 樹狀奈米金材料的特性與應用 17
2-2 感測器元件可靠度測試 17
2-3 分子指紋頻譜資料庫 19
2-4 數值分析對應平台開發 20
第三章 研究進程規劃與目標 22
3-1 研究進程規劃 22
3-2 研究指標與完程度 24
第四章 研究成果細節說明 27
4-1 感測靈敏度最佳化參數調控 27
4-1-1 感測元件材料選擇 27
4-1-2 適用雷射波長選擇 30
4-1-3 量測及光譜數據分析程序標準化 31
4-2 感測元件可靠度最佳化調控 35
4-2-1 環境可靠度測試條件 35
4-2-2 環境可靠度測試結果 37
4-3 感測元件可用性評估 44
4-3-1 多分子檢測評估 44
4-3-2 分子指紋頻譜資料庫 45
4-4 程式化數值分析 54
4-4-1 對應程式語言選擇 55
4-4-2 數值分析流程標準化 55
第五章 結論與未來工作建議 59
參考文獻 60
1.Liu, Y.-C., C.-C. Yu, and S.-F. Sheu, Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates. Journal of Materials Chemistry, 2006. 16(35): p. 3546-3551.
2.Raman, C.V. and K.S. Krishnan, A new type of secondary radiation. Nature, 1928. 121(3048): p. 501.
3.Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
4.Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20.
5.Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
6.邱國斌 and 蔡定平, 金屬表面電漿簡介. 物理雙月刊, 2006. 28(2): p. 472-485.
7.陳哲豪 and 李文智, 數位轉型技術應用於法定計量之探討. 標準與檢驗, 2018. P.1-10.
8.Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
9.Creighton, J.A., C.G. Blatchford, and M.G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979. 75: p. 790-798.
10.Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
11.Talley, C.E., et al., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters, 2005. 5(8): p. 1569-1574.
12.Graham, D., et al., Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature nanotechnology, 2008. 3(9): p. 548.
13.Zhao, Q., et al., A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array. International journal of nanomedicine, 2014. 9: p. 1097.
14.Rycenga, M., et al., Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. The journal of physical chemistry letters, 2010. 1(4): p. 696-703.
15.Xiong, Y. and Y. Xia, Shape‐controlled synthesis of metal nanostructures: the case of palladium. Advanced Materials, 2007. 19(20): p. 3385-3391.
16.Zhang, Q., et al., Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chemistry–A European Journal, 2010. 16(33): p. 10234-10239.
17.Kim, T., et al., Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS applied materials & interfaces, 2013. 5(3): p. 788-794.
18.Yang, Y., et al., The role of etching in the formation of Ag nanoplates with straight, curved and wavy edges and comparison of their SERS properties. Small, 2014. 10(7): p. 1430-1437.
19.Rycenga, M., et al., Surface-enhanced Raman scattering: comparison of three different molecules on single-crystal nanocubes and nanospheres of silver. The Journal of Physical Chemistry A, 2009. 113(16): p. 3932-3939.
20.Cheng, S.-C., T.-C. Wen, and Y.-C. Lan, Plasmonic cavities derived from silver nanoparticles atop a massed silver surface for surface enhancement Raman scattering. RSC Advances, 2014. 4(84): p. 44457-44461.
21.蔡博如, 大面積銀表面上的銀奈米立方體之尺寸效應於表面增強拉曼散射. 國立成功大學化學工程學系學位論文, 2014: p. 1-94.
22.謝承蓉, 銀表面上不同尺寸銀奈米立方體應用於表面增強拉曼散射及其分析物檢測. 國立成功大學化學工程學系學位論文, 2015: p. 1-104.
23.黃昱銘, 以奈米金屬薄膜材料建立表面增益拉曼光譜對賀爾蒙快速篩檢之資料庫與數據分析方法, 國立清華大學工程與系統科學系學位論文, 2017:p.1-91.
24.郭珊綺, 樹狀貴金屬的製備及其在表面增顯拉曼散射的應用, 東海大學化學系學位論文, 2015:p.54-57.
25.馬振基 and 化學工程, 奈米材料科技原理與應用. 2017: 全華圖書.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *