帳號:guest(18.191.44.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘孟汝
作者(外文):Pan, Meng-Ju
論文名稱(中文):以奈米指狀結構增益拉曼及螢光二合一晶片應用於 miRNA液態活檢檢測
論文名稱(外文):Enhance Raman and Fluorescent Two-in-One Chip with Nano-Finger Structure Applied to miRNA liquid biopsy detection.
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):魏培坤
王本誠
口試委員(外文):Wei, Pei-Kuen
Wang, Pen-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011544
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:106
中文關鍵詞:液態活檢小分子核糖核酸表面增強拉曼散射頻譜奈米級別識別條碼
外文關鍵詞:Liquid BiopsymicroRNA (miRNA)Surface-Enhanced Raman Spectroscopy (SERS)Nano-Barcode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:222
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文不同於以往癌症相關液態活檢將標誌物聚焦於CTCs和ctDNA等已成熟之市場,我們將microRNA (miRNA)作為生物標誌物,並且製作一款生醫晶片,使其對目標miRNA達到低濃度之檢測極限,從而實現癌症早期篩查之最終目的。
現已有多篇生醫相關領域研究不同miRNA與不同癌症之間的相關性,使miRNA對於病理的判讀極具意義。傳統檢測鹼基序列的方式是以螢光標定並追蹤,但由於螢光分子並不存在特異性,若是在複雜之生理環境下同時存在多種miRNA,僅透過螢光標定則無法針對不同內源miRNA作判讀。因此本論文近一步結合具有分子結構訊息特性(Finger Structure)之拉曼頻譜,欲達到利用拉曼頻譜定性、並同時使用螢光技術之高靈敏度定量之實驗目的。
由於拉曼屬於非彈性散射,在特定頻率下產生拉曼散射的機率極低,因此相較於不同光學原理之螢光技術而言,拉曼散射之截面積(Cross-section)低了近10-12個數量級,意即若要使用拉曼頻譜作為鹼基之直接量測,則在靈敏度不及螢光的前提下,檢測之極限值LOD (Limit Of Detection)勢必會大幅增加。在本研究中得出:若要使用拉曼頻譜直接量測miRNA,則需約1.291*1014/# miRNA分子,此數量級遠超過人體中存在之miRNA的表現量,因此在捕獲生物標誌物後,勢必再導入qPCR之概念作序列擴增、才得以進一步進行量測分析。
由於qPCR所使用之螢光染料SYBR Green不具有專一性,因此在本論文中設計出一款增益表面拉曼散射訊號之奈米粒子Nano-Mushrooms (NMs),使其同時鍵結上miRNA之primer以及所對應之非標定Nano-Barcode序列,藉由Nano-Barcode之拉曼散射頻譜,可形成判讀內源miRNA之依據。
在本論文中,為提升表面增益拉曼散射(Surface Enhanced Raman Spectroscopy, SERS)效益,藉由製造奈米級高深寬比微結構於奈米粒子表面之粗糙化製程、以物理性作用力DEP Force (Dielectrophoresis Force)及EOF (Electroosmotic Flow)聚集奈米粒子等方式增加奈米粒子表面之粗糙程度,以形成更多的Hot-Spots分布。同時在被檢測之序列上設計SH官能基,使其接和至奈米粒子之鍍金屬表面產生自組裝效應SAM等方式,以增加分子吸附率,使序列坐落於Hot-Spots之作用範圍內,才得以使序列訊號具有SERS之最大效益,最後與無粗糙化製程之Bare Silicon 基板相比,可以使SERS效益放大近1160倍。
透過最佳化之SERS增益方式,我們可以達到以非標定的方式直接量測到終濃度為4 μM之鹼基序列,可將此結果應用於Nano-Barcode。定義不同之鹼基組合為不同的Nano-Barcode,就現有技術而言,已可鑑別出至少10種Nano-Barcode訊號,進而將此訊號作為輔助判讀,彌補螢光頻譜無法定性之不足。
最後透過「螢光訊號之高靈敏特性作為定量依據;同時判讀具分子結構之拉曼頻譜作為定性標準」的概念,可以在未知之人體環境中同時判讀多種miRNA的表現量,達到癌症早期篩查的主要目的。
This paper is different from previous cancer-related liquid biopsy markers that focus on mature bio-markets such as CTCs and ctDNA. We used microRNA (miRNA) as a biomarker and make a biomedical chip that achieves the low LOD (Limit Of Detection) value of target miRNA. Ability of detecting lower concentration of biomarker can further achieve the ultimate goal of early cancer screening.
There are many biomedical related researches to study the correlation between different miRNAs amounts and different cancers, making miRNA's interpretation of pathology very meaningful. The traditional method of detecting nucleotides sequences is based on Fluorescence technologies including cursor and tracking. However, since the fluorescent molecules are not specific, if multiple miRNAs exist simultaneously in a complex physiological environment, it is impossible to target different endogenous
miRNAs only through the fluorescent cursor. Therefore, this paper further combines the Raman spectrum features in finger-print which can obtain the molecular scaled information. To achieve the purpose of qualitative through the Raman spectrum and simultaneously use the high sensitivity to quantitate by fluorescence technology.
Since Raman Scattering belongs to inelastic scattering, the probability of Raman scattering at a specific frequency is extremely low, so the cross-section of Raman scattering is nearly 1010-1012 lower than that of fluorescent technology with different optical principles. Meaning that if the Raman spectrum is to be used as a label-free measurement of the nucleotides sequences, the Limit Of detection (LOD) is bound to increase significantly under the premise that the sensitivity is not as good as that of fluorescence. In this paper, it is concluded that if the miRNA is directly measured through label-free way by the Raman spectrum, about 1.291*1014/# miRNA molecules are needed, which is much larger than the amount of miRNA present in the human body. Therefore, it is bound to introduce the concept of Real-time polymerase chain reaction (qPCR) for sequence amplification before further measurement and analysis.
According to the fluorescent dye SYBR Green used in qPCR is not specific, in this paper, a Nano-Mushrooms (NMs) particles with a surface-enhancement Raman scattering signal is designed to simultaneously bind the miRNA primer. And the corresponding Nano-Barcode sequence characterised by label-free, through the Raman scattering spectrum of Nano-Barcode, can form the basis for diagnosis of endogenous miRNA.
In this paper, in order to improve the benefits of Surface-Enhanced Raman spectroscopy (SERS), by making a nano-scaled structure features in high aspect ratio on the surface of the nanoparticle, applying the physical force including Dielectrophoresis Force (DEP Force) and Electroosmotic Flow (EOF) tin order to aggregate nano particles, which can increase the roughness of the nanoparticles’ surface to form more Hot-Spots distribution.
At the same time, the SH functional group is designed on the 5’ terminate of analyte sequence, and it is connected to the metallized surface of the nanoparticle to produce a self-assembly effect (SAM) to increase the molecular adsorption rate onto NPs, so that the analyte sequence is located within the scope of action of Hot-Spots, it will produce greatest benefit of SERS through these ways. Finally, the SERS benefit can be magnified nearly 1160 times compared to the bare silicon substrate without the abovementioned process.
Through the optimized SERS fabrication, we can directly measure the nucleotides sequence characterised by label-free with a final concentration of 4 μM, and this result can be served as Nano-Barcode. Different base of nucleotide combinations are defined as different Nano-Barcodes. In the prior art, at least 10 Nano-Barcode signals can be identified, and this signal is used as an auxiliary interpretation to make up for the insufficiency of the fluorescence spectrum.
Finally, through the concept of "highly sensitive characteristics of fluorescent signals as a quantitative basis; and reading the Raman spectrum with molecular structure as a qualitative standard", it is possible to simultaneously interpret the expression of multiple miRNAs in an unknown human environment to achieve final purpose of early cancer screening.
摘要 i
Abstract iii
誌謝詞 vi
目錄 vii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1.1.前言 1
1.1.1.大腸癌(colorectal cancer, CRC) 1
1.1.2 液態生物檢體 / 液態活檢 (Liquid Biopsy) 2
1.2.液態活檢的發展 3
1.3.研究動機與目的 7
1.4. 研究方向MicroRNAs(miRNAs) 10
1.5. 研究手法(一) 螢光光譜分析 13
1.5.1. 現有研究方法 13
1.5.2. 螢光光譜分析實驗設計 14
1.6. 研究手法(二) 表面增強拉曼效應(Surface-Enhance Raman Scattering, SERS)分析 16
1.6.1. SERS原理 17
1.6.2. 電磁場增強效應(Electromagnetic enhancement) 19
1.6.3. 化學增強效應(Chemical enhancement) 22
1.6.4. 熱點效應(Hot spots) 23
第二章 文獻回顧 24
2.1. miRNA與不同癌症相關性之研究 25
2.2.螢光手法量測鹼基序列之相關研究 27
2.2.1. Molecular beacon 28
2.2.2. TaqMan probe 29
2.3. SERS放大訊號機制測得鹼基序列相關研究。 30
第三章 研究方法與分析 34
3.1.羧化聚苯乙烯奈米微珠(carboxylated polystyrene beads,PSBs-COOH) 34
3.1.1. 羧化聚苯乙烯奈米微珠單層排列機制 35
3.1.2.實驗製備 36
3.1.3.實驗步驟 37
3.2.反應離子蝕刻(Reactive-Ion Etching, RIE) 38
3.2.1.蝕刻氣體之選擇 39
3.2.2.實驗步驟 40
3.3.電子腔真空蒸鍍系統(E-gun system) 40
3.3.1.實驗步驟 42
3.4. Scanning Electron Microscope(SEM)結合Image J影像軟體分析 42
3.4.1. 相鄰微珠之間的電漿子耦合效應 42
3.4.2. 次結構(nano-finger)深寬比之計算 43
3.5. Atomic Force Microscope, AFM原子力顯微鏡分析平均粗糙度 45
第四章 實驗製程及結果討論 46
4.1. 螢光實驗量測分析 46
4.1.1 雙股雜交最佳條件 48
4.2. Au-coated finger structure 52
4.2.1 Au-coated finger structure 製程 52
4.2.2. Au-coated finger structure基板SEM影像形貌、AFM分析以及量測R6G螢光之拉曼頻譜 54
4.2.3. Au-coated finger structure分析及改良 56
4.3. Au-coated Nano-finger structure所製作之AuNMs- Substrate 57
4.3.1. AuNMs- substrate製程 57
4.3.2.AuNMs-substrate SEM影像形貌分析以及量測R6G螢光之拉曼頻譜 59
4.3.2.1 不同氧電漿蝕刻參數基板之R6G拉曼頻譜結果及其SEM影像分析 59
4.3.2.2 E-gun沉積不同金厚度基板之R6G拉曼頻譜結果及其SEM影像分析 60
4.3.3 AuNMs- substrate之增益 64
4.3.4.miRNA序列配於AuNMs- substrate 64
4.3.5. AuNMs- substrate分析及改良:導入Barcode概念 70
4.4. AgNMs- Substrate 73
4.4.1. AgNMs-substrate製程及其拉曼散射訊號增益 74
4.4.2.鹼基序列配於AgNMs-substrate 77
4.4.3.AgNMs-substrate分析及改良 80
4.5. AgNMs-Sonics 81
4.5.1. AgNMs-sonics製程 81
4.5.2.鹼基序列配於AgNMs-sonics 82
4.5.3. AgNMs-sonics分析及改良 85
4.6. AgNMs-Sonics + EOF (Electroosmotic Flow) 87
4.7. 總結 92
第五章 未來工作 93
參考文獻 96
[1] https://dep.mohw.gov.tw/DOS/np-1776-113.html
[2] https://health.udn.com/health/story/6030/365573
[3] http://www.taiwan-pharma.org.tw/magazine/125/012.pdf
[4] 謝興邦(2007)‧簡介癌症標靶治療藥物研究 現況‧國家衛生研究院電子報,199。
[5] McAfee MK, A. M., Trastek VF, Ilstrup DM, Deschamps C, Pairolero PC. Colorectal lung metastases: results of surgical excision. Ann Thorac Surg 1992; 53(5):780-5; discussion 785-6
[6] Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926–1933.
[7] Piper Jaffray Investment Research: The 2015 Liquid Biopsy Report
[8] http://www.personalizedmedicinecoalition.org/Userfiles/PMCCorporate/file/The-Personalized-Medicine-Report1.pdf
[9] http://www.how01.com/post_vW8K6oZJAYwp3.html

[10] http://www.sabiosciences.com/manuals/seminars/Liquid_Biopsies_Part1_Feb.pdf
[11] Alix-Panabières, Catherine, and Klaus Pantel. "Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy." Cancer discovery 6.5 (2016): 479-491.
[12] http://www.marketsandmarkets.com/PressReleases/liquid-biopsy.asp
[13] Calin GA, Croce CM. “MicroRNA signatures in human cancers.” Nature Reviews Cancer volume 6, pages 857–866 (2006).
[14] Yong Peng & Carlo M Croce”The role of MicroRNAs in human cancer” Signal Transduction and Targeted Therapy volume1, Article number: 15004 (2016).
[15] WAN Xiao-Qing, WANG Xue-Jian, WANG Yi-Fei, JIANG Yu, LU Zhong, SHI Li-Hong, DING Yi, WANG Li-Hua “The Active Excretion Mechanism of Circulating microRNAs and Their Effects on Invasion and Metastases of Breast Cancer” Biochemistry and Biophysics, 2017, 44(4): 269-278.
[16] Michael, M.Z.; O’Connor, S.M.; van Holst Pellekaan, N.G.; Young, G.P.; James, R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003, 1, 882–891.
[17] Josie Hayes, Pier Paolo Peruzzi, Sean Lawler”MicroRNAs in cancer: biomarkers, functions and therapy” Cell PressVolume 20, Issue 8, p460–469, August 2014.
[18] Jing Zheng, Dandan Ma, Muling Shi, Junhui Bai, Yinhui Li, Jinfeng Yangcand Ronghua Yang “A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum” Chemical Communications, September 2015.
[19] Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 2006, 6, 857–866.
[20] Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529.
[21] Garzon, R.; Calin, G.A.; Croce, C.M. MicroRNAs in Cancer. Annu. Rev. Med. 2009, 60, 167–179.
[22] Díez-Torre A,Díaz-Núñez M,Eguizábal C,et al. Evidence for a role of matrix metalloproteinases and their inhibitors in primordial germ cell migration[J]. Andrology,2013,1(5):779-786.
[23] Kosaka, Nobuyoshi, Haruhisa Iguchi, and Takahiro Ochiya. "Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis." Cancer science 101.10 (2010): 2087-2092.
[24] Faulds K1, Fruk L, Robson DC, Thompson DG, Enright A, Smith WE, Graham D. “A new approach for DNA detection by SERRS.” Faraday Discuss. 2006;132:261-8; discussion 309-19.
[25] ZhenGuia, QuanboWangb, JinchangLia, MingchenZhua, LiliYua, TangXuna, FengYana, HuangxianJu” Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon”, Talanta Volume 154, 1 July 2016, Pages 520-525.
[26] C. V. RAMAN & K. S. KRISHNAN “A New Type of Secondary Radiation” Nature volume 121, pages 501–502 (31 March 1928).
[27] Fleischmann, M.; Hendra, P. J.; McQuillan, A. J.” Raman spectra of pyridine adsorbed at a silver electrode” Chemical Physics Letters, Volume 26, Issue 2, p. 163-166.
[28] Katrin Kneipp, Yang Wang, Harald Kneipp, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld” Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering” Phys. Rev. Lett. 76, 2444 – Published 1 April 1996.
[29] Carlos J. L. Constantino, Tibebe Lemma, Patricia A. Antunes, and Ricardo Aroca” Single-Molecule Detection Using Surface-Enhanced Resonance Raman Scattering and Langmuir−Blodgett Monolayers” ,Anal. Chem., 2001, 73 (15), pp 3674–3678.
[30] David L.Jeanmaire*Richard P.Van Duyne” Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode” Electroanalytical Chemistry and Interfacial Electrochemistry,Volume 84, Issue 1, 10 November 1977.
[31] M. Kerker, D.-S. Wang, and H. Chew” Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles” ,Applied Optics Vol. 19, Issue 19, pp. 3373-3388 (1980).
[32] Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandra R Dasari and Michael S Feld” Surface-enhanced Raman scattering and biophysics” Journal of Physics: Condensed Matter, Volume 14, Number 18,2002.
[33] JensOddershedeE.NørbySvendsen” Dynamic polarizabilities and raman intensities of CO, N2, HCl and Cl2” Chemical Physics Volume 64, Issue 3, 1 February 1982, Pages 359-369.
[34] Kerker, M.; Siiman, O.; Bumm, L.; Wang, D. Surface 60 enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver; Defense Technical Information Center, 1980.
[35] Cheng Yang, Chao Zhanga, Yanyan Huoa, Shouzhen Jianga, Hengwei Qiua, Yuanyuan Xua, Xiuhua Lib, and Baoyuan Man” Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS” Carbon Volume 98, March 2016, Pages 526-533.
[36] Lee RC1, Feinbaum RL, Ambros V.” The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.” Cell. 1993 Dec 3;75(5):843-54.
[37] Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. “The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.” Nature 2000; 403: 901–906.
[38] Lee RC, Ambros V. “An extensive class of small RNAs in Caenorhabditis elegans.” Science 2001; 294: 862–864.
[39] http://www.mirbase.org
[40] Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. “Proc Natl Acad Sci USA 2002; 99: 15524–15529.
[41] M D Bullock, K M Pickard, B S Nielsen, A E Sayan, V Jenei, M Mellone, R Mitter, J N Primrose, G J Thomas, G K Packham & A H Mirnezami “Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression” Cell Death & Disease volume4, pagee684 (2013).
[42] Yuji Toiyama, Masanobu Takahashi, Keun Hur, Takeshi Nagasaka, Koji Tanaka, Yasuhiro Inoue, Masato Kusunoki, C. Richard Boland, and Ajay Goel” Serum miR-21 as a Diagnostic and Prognostic Biomarker in Colorectal Cancer” J Natl Cancer Inst. 2013 Jun 19; 105(12): 849–859.
[43] Peng Zhang Terry Beck Weihong Tan” Design of a Molecular Beacon DNA Probe with Two Fluorophores” ,Volume40, Issue2January 19, 2001 Pages 402-405.
[44] Jiahao Huang, Xuefen Su, and Zhigang Li,” Enzyme-Free and Amplified Fluorescence DNA Detection Using Bimolecular Beacons”, Anal. Chem., 2012, 84 (14), pp 5939–5943.
[45] Zhen Gui, Quanbo Wang, Jinchang Li, Mingchen Zhu, Lili Yu, Tang Xun, Feng Yan, Huangxian Ju” Direct detection of circulating free DNA extracted from serum samples of breast cancer using locked nucleic acid molecular beacon”, Talanta Volume 154, 1 July 2016, Pages 520-525.
[46] L G Lee, C R Connell, and W Bloch” Allelic discrimination by nick-translation PCR with fluorogenic probes.” ,Nucleic Acids Res. 1993 Aug 11; 21(16): 3761–3766.
[47] Kenneth J.Livak” Allelic discrimination using fluorogenic probes and the 5′ nuclease assay” Genetic Analysis: Biomolecular Engineering Volume 14, Issues 5–6, February 1999, Pages 143-149
[48] Lee, P. C.; “Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols.” J. Phys. Chem. 1982, 86, 3391−3395.
[49] Nicolae Leopold, and Bernhard Lendl,” A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride” J. Phys. Chem. B, 2003, 107 (24), pp 5723–5727.
[50] Hsin-Yi Hsieh, Jian-Long Xiao, Chau-Hwang Lee, Tsu-Wei Huang, Chung-Shi Yang, Pen-Cheng Wang, and Fan-Gang Tseng” Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations via Surface-Carboxylation-Shielded Anisotropic Etching for Significant SERS Signal Enhancement”, J. Phys. Chem. C, 2011, 115 (33), pp 16258–16267
[51] Li-Jia Xu, Zhi-Chao Lei, Jiuxing Li, Cheng Zong, Chaoyong James Yang, and Bin Ren.” Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity”. J. Am. Chem. Soc., 2015, 137 (15), pp 5149–5154
[52] Fani Madzharova, Zsuzsanna Heiner, Marina Gühlke, and Janina Kneipp “Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil” J. Phys. Chem. C, 2016, 120 (28), pp 15415–15423.
[53] Jing Zheng, Dandan Ma, Muling Shi, Junhui Bai, Yinhui Li, Jinfeng Yang
and Ronghua Yang” A new enzyme-free quadratic SERS signal amplification approach for circulating microRNA detection in human serum” Chem. Commun., 2015, 51, 16271
[54] R. H. Hansen J. V. Pascale T. De Benedictis P. M. Rentzepis” Effect of atomic oxygen on polymers” Metrics June 1965 Pages 2205-2214
[55] Mirkin CA1, Letsinger RL, Mucic RC, Storhoff JJ.” A DNA-based method for rationally assembling nanoparticles into macroscopic materials.” Nature. 1996 Aug 15;382(6592):607-9.
[56] http://www.cytimmune.com
[57] Jean-Francois Masson, Kirsty F. Gibson, and Audrey Provencher-Girard” Surface-Enhanced Raman Spectroscopy Amplification with Film over Etched Nanospheres” J. Phys. Chem. C 2010, 114, 22406–22412.
[58] S. Dick and S. E. J. Bell “Quantitative surface-enhanced Raman spectroscopy of single bases in oligodeoxynucleotides.” Faraday Discuss., 2017, 205, 517.
[59] Chiara Novara, Alessandro Chiad`o et al. “SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA” Faraday Discuss., 2017, 205, 271
[60] Aoune Barhoumi, Dongmao Zhang, Felicia Tam, and Naomi J. Halas” Surface-Enhanced Raman Spectroscopy of DNA”, J. Am. Chem. Soc., 2008, 130 (16), pp 5523–5529
[61] Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N. J. J. Am. Chem.Soc. 2008, 130, 5523−5529.
[62] Barhoumi, A.; Halas, N. J. J. Am. Chem. Soc. 2010, 132,12792−12793.
[63] Abell, J. L.; Garren, J. M.; Driskell, J. D.; Tripp, R. A.; Zhao, Y. J. Am. Chem. Soc. 2012, 134, 12889−12892.
[64] Guerrini, L.; Krpetić, Ž.; van Lierop, D.; Alvarez-Puebla, R. A.; Graham, D. Angew. Chem., Int. Ed. 2015, 54, 1144−1148.
[65] Jisung Kim et al. “Clinical Validation of Quantum Dot Barcode Diagnostic Technology”. ACS Nano 2016, 10, 4742−4753.
[66] Michael D.Gammage, ShannonStauffer, GraemeHenkelman,Michael F.Becker,John W.Keto,DesiderioKovar.” Ethylene binding to Au/Cu alloy nanoparticles”. Surface Science Volume 653, November 2016, Pages 66-70
[67] J.H. Fischer. “The magazine of Separation Science 1995” ; 8: 254-264Publication Number 0083 May 1995.
[68] Nicolae Leopold, and Bernhard Lendl. “A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride.” J. Phys. Chem. B 2003, 107, 5723-5727.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *