|
[1] D.B. Williams, C.B. Carter, The transmission electron microscope, in: Transmission electron microscopy, Springer, 1996, pp. 3-17. [2] R.E. Lee, Scanning electron microscopy and X-ray microanalysis, PTR Prentice Hall, 1993. [3] J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr, C.E. Lyman, C. Fiori, E. Lifshin, Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists, Springer Science & Business Media, 2012. [4] 張維祐, 曾英碩, 方建閔, 陳福榮, 新世代桌上型電子顯微鏡的設計與製作, 科儀新知, (2013) 4-13. [5] H.H. Rose, Geometrical charged-particle optics, Springer, 2009. [6] J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363 (1995) 316-325. [7] H. Schatten, J.B. Pawley, Biological low-voltage scanning electron microscopy, Springer, 2008. [8] D. Maas, S. Henstra, M. Krijn, S. Mentink, Electrostatic aberration correction in low-voltage SEM, in: Proc. SPIE, 2001, pp. 205-217. [9] S. Asahina, T. Togashi, O. Terasaki, S. Takami, T. Adschiri, M. Shibata, N. Erdman, High-resolution low-voltage scanning electron microscope study of nanostructured materials, Microscopy and Analysis, 2 (2012) S12-S14. [10] R. Richards, G.R. Owen, I. Ap Gwynn, Low voltage backscattered electron imaging (< 5 kV) using field emission scanning electron microscopy, Scanning Microsc, 13 (1999) 55-60. [11] D.C. Joy, C.S. Joy, Low voltage scanning electron microscopy, Micron, 27 (1996) 247-263. [12] H.A. Béarat, Low Voltage Scanning Electron Microscopy: Promises and Challenges, in, Application Note# 5991-0736EN, Agilent Technologies Inc. 2012, 4p. [13] Y. Beyer, R. Beanland, P. Midgley, Low voltage STEM imaging of multi-walled carbon nanotubes, Micron, 43 (2012) 428-434. [14] F. Boerrnert, A. Bachmatiuk, B. Buechner, M. Ruemmeli, Low-voltage aberration-corrected transmission electron microscopy: progressing carbon nanostructures, Microscopy: Science, Technology, Applications and Education, 1852 (1846). [15] A. Morikawa, C. Kamiya, S. Watanabe, M. Nakagawa, T. Ishitani, Low-voltage dark-field STEM imaging with optimum detection angle, Microscopy and Microanalysis, 12 (2006) 1368. [16] H.A. Béarat, Potential of Low Voltage Scanning Electron Microscopy Use in Archaeology and History of Art: A Preliminary Study. [17] M. Shiojiri, Imaging of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy and Microscopy Studies of GaN-based Light Emitting Diodes and Laser Diodes, CHIANG MAI JOURNAL OF SCIENCE, 35 (2008) 495-520. [18] M. Shiojiri, T. Yamazaki, Atomic resolved HAADF-STEM for composition analysis, JEOL news, 38 (2003) 54. [19] X.F. Zhang, A 200-kV STEM/SEM Produces 1 Å SEM Resolution, Microscopy Today, 19 (2011) 26-29. [20] K. Ganesh, M. Kawasaki, J. Zhou, P. Ferreira, D-STEM: A parallel electron diffraction technique applied to nanomaterials, Microscopy and Microanalysis, 16 (2010) 614-621. [21] A. V. Crewe, J. Wall, J. Langmore, Visibility of Single Atoms, Science, 168 (1970), 1338-1340. [22] S. J. Pennycook, L. A. Boatner, Chemically Sensitive Structure-Imaging with a Scanning Transmission Electron Microscope, Nature, 336(1988), 565-567. [23] S. J. Pennycook, Z-contrast stem for materials science, Ultramicroscopy, 30(1989), 58-69. [24] E. M. James, N. D. Browning, A. W. Nicholls, M. Kawasaki, Y. Xin, S. Stemmer, Demonstration of atomic resolution Z-contrast imaging by a JEOL JEM-2010F scanning transmission electron microscope, Journal of Electron Microscopy 47(1998), 561-574. [25] M. Shiojiri, Imaging of High-Angle Annular Dark Field Scanning Transmission Electron Microscopy and Microscopy Studies of GaN-based Light Emitting Diodes and Laser Diodes, Chiang Mai Journal of Science, 35(2008), 495-520. [26] P. J. Brown, A. G. Fox, E. N. Maslen, M. A. O'Keefe, B. T. M. Willis, Intensity of diffracted intensities, International Tables for Crystallography (2006). Vol. C, ch. 6.1, 554-595. [27] Chun-Ying Tsai, Yuan-Chih Chang, Ivan Lobato, Dirk Van Dyck, Fu-Rong Chen, Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins, Scientific Reports, 6(2016), 1-9. [28] L.-M. Peng, G. Ren, S. L. Dudarev and M. J.Whelan, Debye–Waller Factors and Absorptive Scattering Factors of Elemental Crystals. [29] Akinari Morikawa, Chisato Kamiya, Shunya Watanabe, Mine Nakagawa, Tohru Ishitani, Low-Voltage Dark-Field STEM Imaging with Optimum Detection Angle, Microsc Microanal, 12(2006), 1368-1369 [30] http://library.tescan.com/index.php/application-examples/84 [31] Radon J., On the Determination of Functions from their Integrals along Certain Manifolds, Ber. Verh, Sachs Akad Wiss., 69(1917), 262-277. [32] Hart RG., Electron microscopy of unstained biological material: the polytropic montage, Science, 159(1968),1464-1467. [33] de Rosier DJ, Klug A., Reconstruction of three dimensional structures from electron micrographs, Nature, 217(1968), 130-134. [34] Marcel A. Verheijen, Rienk E. Algra, Magnus T. Borgstrom, George Immink, Erwan Sourty, Willem J. P. van Enckevort, Elias Vlieg, Erik P. A. M. Bakkers, Three-Dimensional Morphology of GaP−GaAs Nanowires Revealed by Transmission Electron Microscopy Tomography, Nano Letters, 7(2007), 3051-3055. [35] Ileana Florea, Cédric Feral-Martin, Jérome Majimel, Dris Ihiawakrim, Charles Hirlimann, Ovidiu Ersen, Three-Dimensional Tomographic Analyses of CeO2 Nanoparticles, crystal growth & design, 13(2013), 1110-1121.
|